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ON THE NUMBER OF POLYNOMIALS OF AN
IDEMPOTENT ALGEBRA, II

G. GRATZER AND J. PLONK A

In part I of this paper a conjecture was formulated ac-
cording to which, with a few obvious exceptions, the sequence
(Pn(&)} of an idempotent algebra is eventually strictly in-
creasing. In this paper this conjecture is verified for idem-
potent algebras satisfying p2QX) — 0, pzQX) > 0, and p*QX) > 0.
In fact, somewhat more is proved:

THEOREM. Let It be an idempotent algebra with no es-
sentially binary polynomial and with essentially ternary and
quaternary polynomials. Then the sequence

is strictly increasing, that is, for all n ^ 2

PnQX) + 1 £ Pn+l(U) .

The proof starts in §2 where a lemma of K. Urbanik is modified
to show that the proof splits naturally into three cases. §§3 and 4
handle the first two cases. In §5 the third case is analyzed and it
is proved that it splits into two further cases that are settled in §§6
and 7. In each of these sections examples are provided that the case
under consideration is not void.

For the undefined concepts and basic results the reader is referred
to [2].

Examples of algebras satisfying the conditions of the Theorem
abound. On a two element Boolean algebra {0, 1} the operation
(x A y) V (y A z) V (z A x) defines such an algebra.

2* The classification* An algebra U = {A; F} is idempotent if
every operation feF has type (arity) > 0, and f(a, , a) = a for all
α e A. All algebras considered in this paper are assumed to have
more than one element. An ^-ary polynomial p of II (that is, an
%-ary function or A composed from functions in JP) depends on xi

(1 ^ i ^ n) if there exist α1? , αΛ, α e A with p(al9 , a{, , an) Φ
p(al9 , eel, , an); p is essentially n-ary, if p depends on xly , xn.
For n ^ 2, let pΛ(tt) denote the number of essentially w-ary polynomials.

In this paper we shall deal exclusively with idempotent algebras
satisfying

ftOX) - 0, ps(U) Φ 0 , and p4(U) Φ 0 .

The sequence <jpw(U)> is strictly increasing because II must have

99
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essentially ternary polynomials with very nice properties. This will
be used to classify all algebras satisfying these conditions.

A ternary (idempotent) polynomial p is called a minority poly-
nomial if

p(x, x, y) = p(x, y, x) = p(y, x, x) = y

p is a majority polynomial, if

p(x, x, y) = p(x, y, x) = p(y, x, x) = x

p is a first projection polynomial, if

p(x, x, y) = p(x, y, x) = p(x, y,y) = x .

Observe that a minority or majority ternary polynomial is essentially
ternary.

LEMMA 1. Let p(x, y, z) be an essentially ternary polynomial
satisfying p(x, y, y) — y. Then one of p(z, y, x) and p(y, x, z) is an
essentially ternary first projection polynomial or one of p(x, y, z) and
p(p(x, y, z), y, z) is a majority polynomial.

This statement can be verified by easy computation, observing
that p(y, x, y) = x or y, p{y, y,x) — x or y, and considering the four
cases separately. This argument is the first half of the proof of
Lemma 3 of K. Urbanik [6].

THEOREM 2. Let U be an idempotent algebra satisfying pz(U) — 0
and p5QX) Φ 0. Then U satisfies one (or more) of the following three
conditions:

(a) U has a ternary majority polynomial;
(b) U has an essentially ternary first projection polynomial;
(c) all essentially ternary polynomials of VL are minority poly-

nomials.

Proof. Since p3(U) Φ 0, U has an essentially ternary polynomial
p. Since U is idempotent and p2(tt) = 0, p(x, y,y) = % or y, p(y, x,y)-x
or y, and p{y, y, x) = x or y. If the second alternative occurs for any
essentially ternary p, say p(x, y, y) = y, then by Lemma 1, p(z, y, x)
or p(y, χ9 z) is an essentially ternary first projection polynomial, or
one of p(χf y, z) and p(p(x9 y, z), y, z) is a majority polynomial. Thus
U satisfies (a) or (b) This conclusion cannot be drawn only if for
any essentially ternary polynomial p we have p{x, y, y) = p(y, x, y) —
p(y, V, %) — x, which is (c).
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3* Majority polynomial* Algebras satisfying condition (a) of
Theorem 2 shall be handled in this section.

THEOREM 3. Let U be an ίdempotent algebra satisfying p2(VL) — 0.
If 11 has a ternary majority polynomial / , then

pn(U) + 1 ^ Pn+1QX)

for n ^ 2.

Proof. For any %-ary polynomial p define an (n + l)-ary poly-
nomial pF:

pF = f(p(xl9 , O , p(xl9 , xn-u » +i), P(»i, , »»-i, »i))

Let /8 = / and for w ^ 3 define recursively:

Finally, we define an (n + l)-ary polynomial g:

9 = f{fn{%U , »»), Λ(»l, , »»-l, »n+l), ^2)

Now we make the following claims:
( i ) For n ^ 3,

fn(xl9 , a? n _ l f aji) = a?x .

( i i ) For w ^ 3,

(iii) If the polynomial p is essentially ti-ary, then pi 7 is essenti-
ally (n + l)-ary.

(iv) fn is essentially w-ary.
(v ) pF — qF implies p — q.
(vi) g is essentially (n + l)-ary.
(vii) g = ^ F for no polynomial p.
Statements (i)-(vii) easily imply the statement of Theorem 3.

Indeed, consider the set

{g} U {pF\p is an essentially w-ary polynomial of U) .

By (iii) and (vi) all elements of this set are essentially (n + l)-ary
polynomials, (vii) shows that the union is a disjoint union, and so
by (v) the set has pn(U) + 1 elements. Thus, pΛ+1(U) ^ pn(U) + 1.

Proof of (i). For n — 3 /3 = / is a majority polynomial, hence
/sfai, 82, #1) = #i Proceeding by induction, if fn(xl9 , a?n«!, x,) = xlf

then
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Proo/ 0/ (ii). For w = 3 (ii) is trivial. By induction, if /

Jn(Xl, X2, # ' ' , #2) — ^2 9

then

= /(/»(«!, »2, * , ^2), fn(%l, %2, , O , /•(»!, 0?2, , X2, Xλ)

Proo/ 0/ (iii). Setting xn = α?%+1 in p F we get p, since / is a
majority polynomial. Hence pF depends on xlf •• ,xn_1 and on one
or both of xn and xn+1. Since pF is symmetric in xn and xn+1 in any two
element subalgebra the first possibility cannot occur, hence pF is
essentially (n + l)-ary.

Proof of (iv). Trivial induction using (iii).

Proof of (v). pF with xn = xn+ί yields p, from which the state-
ment follows.

Proof of (vi). Same as the proof of (iv).

Proof of (vii). Let g = pF. Setting xn — xn+1 we conclude that
fn = p. Thus g = / Λ F = /w + 1, in other words,

f(fn(Xif , »w), /•(»!, , Xn-l, Xn+l), fn(Xl, '", B»-i, »i))

= f(fn(Xι, •••,»»), Λ ( » i , * * * , «»_l, »»+i), ^2)

Setting #! = a?w+1 and using (i) and that / is majority we get

Xι = J\Jn\Xu ' ' * y *^n)j Xly Xv

Finally, setting x2 = xΆ = = #w and using (ii) we obtain xt = a?2, a
contradiction, proving (vii).

An example of an algebra satisfying the conditions of Theorem 3
was given in §1. Further examples are easy to construct.

4. First projections polynomial* In this section the Theorem
is proved, in a somewhat sharper form, for algebras having an es-
sentially ternary first projection polynomial.
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THEOREM 4. Let U be an idempotent algebra with pz(U) = 0. If
U has an essentially ternary first projection polynomial f, then for
n^3

(n - l)pn(U) ^ pn+ί(U) .

REMARK. Since, for n ̂  3, (n - l)p»(tt) ^ 2pn(U) ^ pn(U) + 1,
Theorem 4 is stronger than the corresponding special case of the
Theorem.

Proof. For an w-ary polynomial p and 1 ̂  i rg n set

pF{ = f(p(xl9 , O , xi9 xn+1) .

Then we make the following claims:
( i ) pFi — qFi implies p = q.
(ii) If i Φ j , then pFt Φ qFά.
(iii) pFi depends o n ^ , xn.

Since substituting x4 = xn+1 in pF{ yields p, we see that if pF{

is not essentially (n + l)-ary, then by (iii) pF{ = p. By (ii), pFi Φ
pFj if i Φ j ; hence for i Φ j we cannot have both pFi and pF3- not
essentially (n + l)-ary. Thus for an essentially w-ary p

{pFtli^ 1,2, ...,w}

contains at least n — 1 essentially (n + l)-ary polynomials. Further-
more, by (i) and (ii) the sets

{pFt\i = 1,2, ...,w} and {gFJi = 1, 2, •-., w}

are disjoint if ί) and g are distinct essentially w-ary polynomials, from
which Theorem 4 follows trivially.

Proof of (i). pFi with x{ — xn+ι yields p, hence (i) is trivial.

Proof of (ii). Let us assume that i Φ j and pFt = gJPy, that is,

f(p(xl9 , a?n), a?i, a?Λ+1) = f(q(xl9 , a?n), %, »n+i)

Set α? = % for k Φ i,l -^ k -^ n, in this identity; since p2(ϊl) = 0 after
the substitution p = α? or a?f and g = α; or a?<# The four possibilities
yield the following identities:

f(x, xj9 xn+ι) = f(x, x, xn+1) ,

/ ( « , x ό , x n + 1 ) = / ( % , a?, α?n+1) ,

/(a?, a?y, a?Λ+1) = f(x, x , x n + 1 ) ,

J\Xf Xjj Xn+i) == J\Xji Xj Xn+l)
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The first and third contradict that / is essentially ternary, while the
second and fourth mean that / is symmetric in its first and second
variable, contradicting that / is a first projection polynomial.

Proof of (iii). Setting xt = xn+1 in pFi gives p, hence pFi depends
on xl9 , Xi_u xi+1, •••,$». Assume that pF{ does not depend on x{.
Then

Substituting α; = ^ for 3 Φ iyl^ j ^ n and using p2(U) = 0 we get
one of

f(x9 x i 9 x n + 1 ) = a? ,

i , X%y Xn+l) — ^71+1 '

The first contradicts that / is essentially ternary, while the second
is Xi — xn+1, a contradiction.

An example of an algebra satisfying the condition of Theorem 4
can be defined on the two element set {0, 1} taking

x + (x + y)(x + z)(y + z)

as operation

(u + v = (u A v') V (u' A v)) .

Taking both

(x A y) V (y A z) V (z A x) and x + (x 4- y)(x + z)(y + z)

as operations we get an algebra satisfying the conditions of Theorems
3 and 4.

Note that in Theorems 3 and 4 p4(tt) Φ 0 follows from the assump-
tions.

5* The second classification* In this and the subsequent sec-
tions we consider an idempotent algebra U with p2(U) = 0 in which
all essentially ternary polynomials are minority polynomials.

LEMMA 5. U has exactly one essentially ternary polynomial.

Proof. Let / and g be essentially ternary polynomials, and consider
the polynomial f(g(x, y, z), y, z) = h. Then h(x, y, x) =f(g(x, y, x), y, x) =
f(y, y, #) = #• Thus h cannot be essentially ternary, because it is not
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minority. Due to p2(VL) = 0, h(x, y9 z) = x, or y, or z. h(x, y, x) = x
eliminates h — y. Furthermore,

h(x, x, z) = f(g(x, x, z), x, z) = f(z, x, z) = x ,

eliminating h — z. Hence, h — x, that is, we proved the identity

f(g(x, y,z),y,z) = x .

Now let α, α', b, ce A and /(α, 6, c) — f{a\ δ, c). Then

α - /(/(α, δ, c), 6, c) - /(/(α', δ, c), δ, c) = α' ,

by the above identity (used with / = g)

(α =)f(f(a, δ, c), δ, c) = (a =)f(g(a, δ, c), δ, c) ,

and so by the above remark, /(α, δ, c) = ^(α, δ, c), proving that / = #,
completing the proof of Lemma 5.

The only essentially ternary polynomial shall be denoted by /.
Keep in mind that

f(f(x, y,z),y,z) = x ,

and that / is fully symmetric.
The next important step is again due to K. Urbanik. We call a

ternary function g on A a Boolean group reduct if a Boolean group
operation + can be defined on A(i e , (A; +> is an abelian group satis-
fying 2x = 0) such that g(x, y, z) = x + y + z. The proof of the next
lemma is identical with the proof of Lemma 5 of K. Urbanik [6].

LEMMA 6. f is a Boolean group reduct if and only if

f(f(x9 y, z), x, u)

does not depend on x. If this is the case + is defined by fixing an
arbitrary element OeA and x + y = f(x, y, 0)

Accordingly, the proof of the Theorem in the minority polynomial
case splits into two completely different cases according to whether or
not /(/(«, y, z), x, u) depends on x.

6* The minority polynomial is not a Boolean group reduce

THEOREM 7. Let U be an idempotent algebra satisfying p2QX) = 0.
Let f be the unique essentially ternary minority polynomial of U.
If f(f(x, V, z)> χy u) depends on x, then for n ^ 2

pn(U) + 1 ^ pn+1(U) .
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Proof. We define /3 = / and, inductively, for n ^ 3

Λ+i = /(Λ(«i, , O , »i, »»+i) .

For an w-ary polynomial p and 2 <Ξ ί ^ w we set

pG, = f(p(xl9 , a;n), xl9 xn+1) ,

pG.. = p(xl9 x2, , α;^, /(»<, a?!, α?Λ+1), &ί+1, •••,<>•

Observe t h a t pG* with ^ = a?n+1 yields p
We make t h e following claims:
( i ) fn is essentially n-ary, and

/ s θ i , «2, ^ 2) = &i, Λ(a?i, a?2, ̂ 2, ̂  = # 4 .

/»(«i, a?2, »2, *4, , α?n) = Λ-2(«i, »4, , «•) for n- ̂  5

(ii) If p and g are essentially w-ary polynomials and 1 ^ ί, j ^ n,
then pGi — qGό implies p — q.

(iii) For an essentially w-ary polynomial p, at least one of
pGu •••, pGn is essentially (w + l)-ary.

Using (i)-(iii) it is easy to prove Theorem 7. Indeed, by (ii) and

(in),

P = {pGi\p is essentially n-arγ, i = 1, •••, n}

contains at least pn{%) essentially (n + l)-ary polynomials. By (i),

9 — Jn+1\%29 *̂ 1> Mn + lj X39 W4, * , Xn)

is also essentially (n -j- l)-ary If g e P, that is,

9 = ^Gi ,

for some essentially ^-ary p and 1 <£ i ^ n, then the substitution
»i = »»+i yields

/ « + i ( a ? 2 , * i , » i , ^ 3 , , α » ) = p{xu » 2 , • • - , » * ) .

By the second part of (i) the left-hand side does not depend on xx

while the right-hand side does, a contradiction. Thus gίP, and so
P (J {g} contains at least pΛ(3X) + 1 essentially (w + l)-ary polynomials,
proving Theorem 7.

Proof of (i). We start by proving the formulas in (i). Obviously,

fz{xu x2, x2) = x,

and

/ 4 ( ^ , a?2, x2, x4) = /(/ 3 fe , α?2, ffj), a?lf α?4) = / f e , χl9 x,) = x, .
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Thus, for n ;> 5, by induction,

= f(f«-*(Xi, X*, , ̂ ~ i ) , »i, »»)

(For n = 5 interpret / w - 3 as a .̂)
/ 3 is essentially ternary by assumption. f4(χ19 x2, x3, x,) = /gfo, a?2, a?3),

hence /4 depends on x29 x3. By assumption, f4 depends on xl9 Finally,
Λ(#i» χ2y χ2, XA) = 4̂> hence /4 depends on a?4. Thus /4 is essentially 4-ary.
Proceeding by induction for n^5,fn with ^ = α?w yields fn-ι{xu , #n-i)>
hence fn depends on x2, •••, α?4_lβ Finally, /w with α;2 = α;3 gives

which depends on ^ and xn, hence /% depends on xx and a?n.

Proof of (ii). Obvious; by setting ^ = xn+1 in pG, — qG3 we get

P = Q-

Proof of (iii). pGi wi th x1 = a?n+1 gives p f o , ••-, a?»), hence ^G^
depends on x2, , α?Λ. Fur thermore, pGί with ^ = x2 = = a?n gives
f(xί9 xl9 xn+ι) = xn+1 and pG$ > 1) with xί = xn+ι gives

p ( x ί y , « ? < _ ! , a ? w + 1 , a ? < + 1 , • • • , & « ) ,

hence all pG^, 1 ^ i ^ ^ depend on xn+1. Thus if none of pGlf , pGTC

is essentially (w + l)-ary then none of them depend on xλ.
So assume that none of pGu **,pGn depend on xx. Then by

substituting x1 — xn+1 in pGt we get the identity

For i > 1 we obtain

Since this holds for all i > 1, p is symmetric. Then, using the identity
(*) repeatedly we obtain

= f(f(P(Xl, Xl, %n-2, * , »l), »i, »»-l), »l, fl?»)

= / ( ' -/(P(«i, »i, , Xi), Xi, ««) )

= fn(Xl9 X2, , ff»)

Hence, p = fn. But then (*) states that fn+ι(xl9 , xn+i) does not
depend on x19 a contradiction.
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Idempotent algebras satisfying p2 = 0 and having a unique ternary
minority polynomial can be constructed from Steiner quadruple systems
and vice versa, A Steiner quadruple system is a set A and a set S
of four element subsets of A with the property that any three ele-
ment subset of A belongs to one and only one member of S. For
such a system define an algebra (A; / ) as follows:

/ is a minority function and for three distinct elements α, δ, c e A
there is a unique member Be S with a, δ, c e B; let B = {α, δ, c, d};
set /(α, δ, c) = d.

Conversely, if an idempotent algebra (A; F} satisfies p2 = 0 and
/ is the unique ternary minority polynomial, then set

S = {{α, δ, c,f(a, δ, c)}\a, b,ceA, |{α, 6, c}| = 3} .

Then this defines a Steiner quadruple system.
The smallest Steiner quadruple system which is associated with

an algebra satisfying the conditions of Theorem 7 can be defined on
A = {1, 2, •••, 10} as follows (see [1]):

1
4
7
1
2
3
1
2
3
3
2
1
2
5
4

2
5
8
4
5
6
5
6
4
5
4
6
3
6
6

3
6
9
7
8
9
9
7
8
7
9
8
4
8
7

10
10
10
10
10
10
10
10
10
10
10
10
7
9
9

1
4
1
2
1
1
2
1
3
2
1
1
2
1
3

3
5
2
3
5
3
4
2
4
3
4
3
5
2
6

5
7
6
8
6
7
6
7
5
5
8
4
7
4
7

8
8
9
9
7
9
8
8
9
6
9
6
9
5
8

Obviously, the associated / is not a Boolean group reduct since | A | = 10
is not a power of two. However, an example, which is due to N.S.
Mendelsohn, shows that even if |A| is a power of two, examples of
algebras satisfying the conditions of Theorem 7 can be defined on A
provided that \A\ ^ 16. Let A = {1, 2, , 16} and let S be given
by the following table:

1
1
1
1

2
2
2
2

3
5
7
9

4
6
8
10

2
2
2
2

3
3
3
3

5
9
13
6

8
12
16
7
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1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
3
3
3
3
3
3
3
3
3
3
3
3
3

2
2
2
3
3
3
3
3
3
4
4
4
4
4
4
5
5
5
5
6
6
6
6
7
7
7
7
8
8
8
8
5
5
5
6
6
6
6
7
7
7
7
8
8

11
13
15
5
6
9
10
13
14
5
6
9
10
13
14
9
10
11
12
9
10
11
12
9
10
11
12
9
10
11
12
10
11
12
9
11
12
13
9
10
11
12
9
10

12
14
16
7
8
11
12
15
16
8
7
12
11
16
15
13
14
15
16
14
13
16
15
15
16
13
14
16
15
14
13
15
16
13
10
15
16
14
16
13
14
15
15
16

2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
5
5
5
5
5
5
5
5
5
6
6
6
6

3
3
4
4
4
4
4
4
5
5
5
5
6
6
6
6
7
7
7
7
8
8
8
9
4
4
4
4
4
4
5
6
7
7
7
7
8
8
8
8
7
7
7
7

10
14
5
8
10
13
6
11
9
10
11
12
8
10
9
12
9
10
11
12
10
12
11
14
5
7
9
10
11
15
9
11
9
11
13
15
9
13
10
14
9
13
10
14

11
15
7
9
12
15
16
14
15
16
13
14
14
15
11
13
13
14
15
16
13
15
16
16
6
8
13
14
12
16
14
14
10
12
14
16
12
16
11
15
12
16
11
15
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In this example,

f(J

and therefore

3
3

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

5

5

5

5

8
8

5

5

5

5

6

6

6

6

7

7

7

7

8

8

8

9

6

6

6

6

X
2
, ί

11
12

9

12

14

10

8

11
12

9

9

10
11

12

11

12

13

10

7

9

10

13

Ks), *i

13
14

11

15

16

18

10

13

14

15

14

15

16

13

15

16

14
16

8

16

12

15

6
6

6

6

7

7

7

7

8

9

9

9

9

9

9

10

10

10

10

11
11
13

8
8

8

10

8

8

8

8

9

10

10

11

11

12

12

11

11

12

12

12

12

14

,X>,

9
15

11

14

9

10

13
14

10
11

13

13

15

13

14

13

14

13

15

13

14

15

f(χ
ιt

13
16

12

16

11

12

15

16

14

12

15

14

16

16

15

16

15

14

16

15

16

16

x
3
, x

t
))

defines a Boolean group operation for any fixed Qe A. However,
f(x, y, z) Φ x + y + z. To prove this it suffices by Lemma 6 to illustrate
that f(f(x, y, z), x, u) depends on x. Indeed, /(/(I, 4, 5), 1, 6) = 3 and
/(/(9, 4, 5), 9, 6) - 2.

It may be of interest to note that recently C. Treash [5] has
solved the word problem for algebras {A; /> of type <3>, where / is
a minority function and

f(f(x, y, z), y9z) = a?.

7 Boolean reducts* In this section we settle the final case of
the Theorem.

THEOREM 8. Let U be an idempotent algebra satisfying p2(VL) = 0,
pz(U) Φ 0, and p4(tt) Φ 0, having a unique essentially ternary minority
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polynomial / . If f(f(x, y, z), x, u) does not depend on x, then

pn(U) + 1 ^ pn+1(VL)

for n = 2, 3, .

Proof. By Lemma 6, a Boolean group operation + can be defined
on A such that f(x, y, z) = x + y + z. Let p be an essentially 4-ary
polynomial of U (recall that Pi(Vί) Φ 0). It follows from Lemma 6 of
[6], that there exists a ternary polynomial p0 of <A; /> such that
p{x, y, z, u) — po(x, y, z, u) whenever x, y, z> and u are not all distinct
If p0 = x, then we can conclude that p is an essentially i-ary first
projection polynomial, that is, it satisfies

p(x, y, z,u) = x whenever x, y, z, and u are not all distinct.
If p0 = yy p0 — z, or p0 = u, we get a first projection polynomial by
permuting the variables of p. If p0 = x + y + z, then p + V + % is
the first projection polynomial. Observe that p + y + z is essentially
4-ary, since otherwise #> + ?/ + z would be a polynomial of /, implying
that p — (p + y + z) + y + z is a polynomial of / . If p0 — a? + V +
u, we proceed similarly.

Thus there exists in 11 an essentially 4-ary first projection poly-
nomial g. (This statement is a small part of Lemma 7 in [6].)

Now we start our constructions.
Let p = p(xu ••-,&») be an essentially w-ary polynomial, w ^ 4.

We construct an (w + l)-ary polynomial p as follows:
p(x, x, , a?, 2/, 2) is a ternary polynomial of IX, hence it is », y, z,

or x + y + z;
(1) if p(x, , x, y, z) = x, then p = g(p(xίf ••-,&»), a?»_i, α», a?»+i);
(2) if p(x, -- ,x,y,z) = y, then p = g(p(xl9 , α?n), ̂ , ajw, xn+1);
( 3 ) if j>(α?, , x, y, z) = 2, then p = g(p(xl9 , α?Λ), ̂ , av-i, »«+i);
( 4 ) if p(α?, , α?, y, z) = α? + y + 2, t h e n

Furthermore, for n ^ 4 we define gn by recursion: g^ — g and

Then we claim the following:
( i ) For an essentially w-ary p, the polynomial p is essentially

(n + l)-ary.
(ii) If p and q are essentially w-ary polynomials and p Φ q9 then

pφq.
(iii) F o r w ̂  4, ̂ % ( ^ , , x u xn__u x%) = ^ f e , # 2, α^, - , α%) = x,.
(iv) flrn is essentially w-ary
(v) flr»+1 = p for no essentially w-ary polynomial p.
Now Theorem 8 is clear:
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{p I p essentially w-ary} U {gn+ι}

is a set of pn(U) + 1 essentially (n + l)-ary polynomials by (i), (ii), (iv),
and (v).

In the subsequent proofs Case 1, , Case 4 refer to the cases
in the definition of p.

Proof of (i). Case 1. p with xn+1 = xn yields p(xlf , xn), hence
p depends on xl9 , xn^. The substitution xn+1 = xn_t gives that
p depends on xn. Setting xt = x2 = = xn_γ in p (observe that
p(xίf •••,»!, $„_!, xn) = a?! by assumption) yields flrfo, αv-i, a?n, xn+1), hence
p depends on xn+1.

Case 2. Use the substitutions

xn+1 = xlt xn+1 = a?Λ, and ^ = = α?n_2.

Case 3. Use the substitutions

xn+1 = a?i, aΛ+1 = &»_!, and ^ = = xn_2.

Case 4. Just as in the previous cases,

xn+ι = α;w and xn+ί = »„_!

establish that jp depends on α?x, , xn. Setting x1 = = ^Λ_2 in p
we get λ = ί/ία?!, OJ..!, xn, xn+1) + ^w_! + xn. Observe that h + xn~i Λ-^n-
0(%i, %n~u χn, xn+i) depends on xn+1, therefore so does h. Thus p depends
on xn+1.

Proof of (ii). Set Aλ = {n — 1, n9 n + 1}, A2 = {1, n, n + 1}, A, =
{1, ^ — 1, n + 1}, and A+= {n — l9nfn + 1}. If p belongs to Case i
and k, I e Aif k Φ ϊ, then xk = #z substituted into p yields p. Observe
that I A{ Π Aj I ̂  2 for 1 ίg i, y ^ 4. Now if ^ = q, p belongs to Case
if q to Case j , then we can choose k, I e A{ Π Aj9 k Φ I. Substituting
xk = a?, into p — q gives p = q.

Proof of (iii). For w = 4, ffcfo, α?lf α?3, x4) = gn(xlf x2, x*, a*) = a?i»
since ^4 = g is a first projection polynomial. Assuming the identities
for n, we compute:

and

Proof of (iv). 4̂ = g so the statement is true for n = 4. Assume
it for w. Substituting a?w+1 = α;2 or xn+1 — x% into ^rΛ+1 yields gn, hence
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gn+1 depends on xu , χn. Subst i tut ing x3 = x4 = . . . = α?n into # % + ι

g i v e s b y (iii) g(gn(xl9 x2, a?3, — , £ 3 ), «2, «8, a«+i) = 0(α?i, α?2, £ 3, a?Λ+1), h e n c e

0Λ + 1 depends on xn+1.

Proof of (v). Observe t h a t gn+ι{xu &2, &2, a*, , ajn+1) = a?!. Hence,

if gn+1 = p, then p f e , a?a, α?2, α?4, , xn+1) = a?x. F u r t h e r subs t i tut ing

a?w+1 = xw or (Case 3) xn+1 = a?^^ we conclude t h a t

This is impossible if p belongs to Cases 2 or 3, and it immediately

yields a contradiction in Case 1 (namely, xt = g(x19 a?n-1, a;n, α?n+1)) and

in Case 4.
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