A CHARACTERIZATION OF THE UNITARY AND SYMPLECTIC GROUPS OVER FINITE FIELDS OF CHARACTERISTIC AT LEAST 5

MICHAEL ASCHBACHER

The following characterization is obtained:

THEOREM. Let G be a finite group generated by a conjugacy class D of subgroups of prime order $p \geq 5$, such that for any choice of distinct A and B in D, the subgroup generated by A and B is isomorphic to $Z_p \times Z_p$, $L_2(p^m)$ or $SL_2(p^m)$, where m depends on A and B. Assume G has no nontrivial solvable normal subgroup. Then G is isomorphic to $Sp_n(q)$ or $U_n(q)$ for some power q of p.

A much larger class of groups satisfies the analogous property for p=2 or 3, including many of the sporatic simple groups. The classification for p=2 appears in [3]. The classification for p=3 is incomplete, but a partial solution appears in [4].

For the most part the proof here mimics that in the papers mentioned above. The exception comes in handling certain degenerate cases. This is accomplished in § 4 by first showing a minimal counter example possesses a doubly transitive permutation representation, and then utilizing numerous results on doubly transitive groups.

1. Notation. In general G is a finite group and D a G invariant collection of subgroups generating G. G acts on D by conjugation with this representation denoted by G^{D} . If $\alpha \subseteq D$ is a set of imprimitivity for this action we define

$$egin{aligned} D_{lpha} &= \{eta \in lpha^{G} \colon [lpha,\,eta] = 1,\,lpha
eq eta \} \ lpha^{ot} &= \{lpha\} \cup D_{lpha} \ A_{lpha} &= lpha^{G} - lpha^{ot} \ V_{lpha} &= \{eta \in lpha^{G} \colon lpha^{ot} = eta^{ot} \} \ W_{lpha} &= \{eta \in lpha^{G} \colon D_{lpha} = D_{eta} \} \ D_{lpha}^{lpha} &= \{eta \colon B \in eta \in D_{lpha} \} \ . \end{aligned}$$

For $\Omega \subseteq \alpha^{G}$, $\mathscr{D}(\Omega)$ is the graph with point set Ω and edges (α^{g}, α^{h}) where $\alpha^{g} \in D_{\alpha^{h}}$. $\mathscr{B}(\Omega)$ is the geometry with point set Ω and block set $\{\beta^{\perp} \cap \Omega \colon \beta \in \Omega\}$. For $\alpha, \beta \in \Omega$ the line through α and β in $\mathscr{B}(\Omega)$ is

$$lpha*eta=igcap_{\gamma\inlpha^\perp\capeta^\perp\capoldsymbolarOmega}(\gamma^\perp\caparOmega)$$

 $\alpha*\beta$ is singular if $\beta \in D_{\alpha}$ and hyperbolic otherwise.

A triangle is a triple (A, B, C) with $A \in D$, $C \in D_A$, and $B \in A_A \cap A_C$. If G is a permutation group on a set Ω , $\Delta \subseteq \Omega$ and $X \subseteq G$, then X_A , $X(\Delta)$ is the pointwise, global stabilizer of Δ in X respectively. $X^A = X(\Delta)/X_A$ with induced permutation representation. F(X) is the set of fixed points of X.

 $O_{\infty}(G)$ is the largest normal solvable subgroup of G. All groups are finite.

2. Locally *D*-simple groups. Let *G* be a finite group and *D* a collection of subgroups of *G* such that $D^G = D$. Represent *G* as a permutation group on *G* by conjugation. *G* is said to be *D*-simple if *G* is generated by any *G* invariant subset of *D*. *G* is locally *D*-simple if *D* generates *G* and for any *A* and *B* in *D* either [A, B] = 1 or $\langle A, B \rangle$ is generated by $A^{\langle A, B \rangle}$. α is a set of imprimitivity for G^P if $\alpha \cap \alpha^G = \emptyset$ for $g \in G - N_G(\alpha)$, and $\emptyset \neq \alpha = \langle \alpha \rangle \cap D \neq D$.

Lemma 2.1. Let G be locally D-simple and Δ a G invariant subset of D. Then

- (1) If H is a D-subgroup of G then H is locally $(H \cap D)$ -simple.
- (2) If α is a homomorphism of G then $G\alpha$ is locally $D\alpha$ -simple.
- (3) Let $\Gamma = \langle \Delta \rangle \cap D$. Then $[\Gamma, D \Gamma] = 1$.
- (4) If G^{\perp} is transitive then $\langle \Delta \rangle^{\perp}$ is transitive.
- (5) If $D \cap Z(G)$ is empty and $G = \langle \Delta \rangle$ for some orbit Δ of G^{\triangleright} , then G is D-simple.

Proof. (1) and (2) are straightforward. Let $H = \langle A \rangle$. Then $H \subseteq G$. Let $A \in \Gamma$, $B \in D - \Gamma$ and assume $[A, B] \neq 1$. Let $X = \langle A, B \rangle$. Then $X = \langle A^x \rangle \subseteq H$ so $B \in \Gamma$, contradicting the choice of B. Therefore, (3) holds.

Assume $G^{\mathfrak{I}}$ is transitive. Let $K=\langle D-\Gamma \rangle$. Then by (3) G is the central product of H and K so for $A\in \mathcal{I}, \ \mathcal{I}=A^{\mathfrak{G}}=A^{KH}=A^{H}$. Thus (4) holds.

Finally assume G^{J} is transitive, $G = \langle J \rangle$ and $Z(G) \cap D$ is empty. Suppose Ω is an orbit of G^{D} with $K = \langle \Omega \rangle \neq G$. Then as $G = \langle J \rangle$, $J \cap K$ is empty, so by (3), $[J, \Omega] = 1$. Thus Ω is centralized by G, a contradiction. Thus (5) holds.

LEMMA 2.2. Let G be locally D-simple and α a set of imprimitivity for $G^{\scriptscriptstyle D}$. Then

- (1) If $A \in \alpha$, $B \in \alpha^g \neq \alpha$ and [A, B] = 1, then $]\alpha, \alpha^g] = 1$.
- (2) $\langle \alpha^{\scriptscriptstyle G} \rangle$ is locally $\langle \alpha \rangle^{\scriptscriptstyle G}$ -simple.

Proof. (1) $A = A^{B} \in \alpha^{B}$, so $\alpha^{B} = \alpha$. Thus 2.1.3 applied to $\langle \alpha, B \rangle$ implies $[\alpha, B] = 1$. But now the same argument shows $[\alpha^{g}, C] = 1$ for each C in α . (2) Let $H = \langle \alpha \rangle \neq K = \langle \alpha^{g} \rangle$, and $X = \langle H, K \rangle$. Assume

 $[H,K] \neq 1$ and let $A \in \alpha, B \in \alpha^g$. Then by (1), $[A,B] \neq 1$ so $B \in \langle A^{(A,B)} \rangle \leq \langle H^X \rangle$. Thus $X = \langle H^X \rangle$.

LEMMA 2.3. Let G be locally D-simple with G^D transitive, and A abelian. Then

- (1) Either V_A or W_A equals $\{A\}$.
- (2) V_A and W_A are sets of imprimitivity for G^D .
- (3) $V_{V_A} = \{V_A\} \ and \ W_{W_A} = \{W_A\}.$

Proof. Straightforward.

LEMMA 2.4. Let G be locally D-simple with G^D transitive and $\mathcal{D}(D)$ connected. Let $A \in D$. Then A is contained in a unique maximal set of imprimitivity α of G and $\langle D_{\alpha}^{\alpha} \rangle$ is D_{α}^{α} -simple.

Proof. Let $H = \langle D_A \rangle$, π an orbit of H of maximal length on D_A , $\Delta = (\langle \pi \rangle - Z(\langle \pi \rangle)) \cap D$, $\Gamma = N_D(\Delta)$ and $\alpha = \langle \Gamma - \Delta \rangle \cap D$. As $\mathscr{D}(D)$ is connected, $|\pi| > 1$, so Δ is nonempty. We will show α has the properties claimed in the conclusion of the lemma.

By 2.1.3, $[\alpha, \Delta] = 1$. By 2.1.4 $\langle \pi \rangle$ is transitive on π . Thus transitivity of G^D and maximality of $|\pi|$ imply π is an orbit of $\langle D_B \rangle$ on D_B , for $B \in \alpha$. Therefore $B^\perp \subseteq \Gamma$.

Suppose $B \in \alpha \cap \alpha^g \neq \alpha$. Then $\Delta \subseteq B^{\perp} \subseteq \Gamma^g = \alpha^g \cup \Delta^g$. Now $\langle \pi \rangle$ is transitive on π so either $\pi \subseteq \Delta^g$ or $\pi \subseteq \alpha^g$. If $\pi \subseteq \Delta^g$ then $\Delta \subseteq \langle \pi \rangle \subseteq \langle \Delta^g \rangle$, so $\Delta = \Delta^g$ and therefore $\alpha = \alpha^g$, a contradiction. Thus $\pi \subseteq \alpha^g$, so $\Delta \subseteq \langle \pi \rangle \subseteq \langle \alpha^g \rangle$ and therefore $\Delta \subseteq \alpha^g$.

So $\Gamma \subseteq \alpha \cup \alpha^g$. Further $\Delta^g \subseteq \alpha$, so $\alpha^g \subseteq C^\perp \subseteq \Gamma$ for $C \in \Delta^g$. Thus $\Gamma = \alpha \cup \alpha^g$. From the last remark of the second paragraph it follows that Γ is a component of $\mathcal{D}(D)$, contradicting the hypothesis that $\mathcal{D}(D)$ is connected.

It follows that α is a set of imprimitivity for $G^{\mathcal{D}}$. By 2.2.1, $D_{\alpha}^* = D_{\mathcal{A}} - \alpha = \Delta - \alpha$. By construction, $Z(\langle \Delta \rangle) \cap \Delta$ is empty, so $D_{\alpha}^* = \Delta$ and by 2.1.5, $\langle \Delta \rangle$ is Δ -simple.

Finally let β be a set of imprimitivity for G containing A. Δ centralizes A, so Δ normalizes β . If $B \in \beta \cap \Delta$ then as $K = \langle \Delta \rangle$ is Δ -simple, $\Delta \subseteq \langle B^K \rangle \subseteq \langle \beta^K \rangle = \langle \beta \rangle$. Thus $\Delta \subseteq \beta$. As $N_G(\beta)$ is transitive on β , $\alpha \subseteq D_{\alpha^g} \subseteq \beta$ for $\alpha^g \in D_\alpha$. Thus $A^{\perp} \subseteq \beta$, and transitivity of $N_G(\beta)^{\beta}$ implies β is a component of $\mathcal{D}(D)$, contradicting the hypothesis that $\mathcal{D}(D)$ is connected.

So $\beta \cap \Delta$ is empty and by 2.1.3, $[\beta, \Delta] = 1$. Thus $\beta \subseteq N_D(\Delta) - \Delta = \alpha$. Thus α is maximal as claimed.

Lemmas 2.6 and 2.7 are from §2 of [4]. 2.6 is a slight generalization of its counterpart, but the same proof goes through.

LEMMA 2.6. Let G be locally Ω -simple, let $\Lambda \subseteq \Omega$, and let H be a Ω -subgroup of G. Assume

- (i) H takes the edge set of $\mathcal{D}(\Lambda)$ onto the edge set of $\mathcal{D}(\Omega)$ under conjugation.
- (ii) There exists a partition $\Lambda = \Sigma \Lambda_i$ of Λ such that if $\alpha^h \in \Lambda$ for some $\alpha \in \Lambda_i$, $h \in H$, then there exists $r \in N_H(\Lambda_i)$ with $\alpha^h = \alpha^r$. Let \overline{G} be a second group satisfying the hypothesis of G for which there exists a permutation isomorphism T of H^g \overline{H}^g and an isomorphism S of $\mathcal{D}(\Lambda)$ and $\mathcal{D}(\overline{\Lambda})$ such that
- (iii) Trestricted to $N_H(\Lambda_i)$ commutes with S and $N_H(\alpha)T=N_{\overline{H}}(\alpha S)$ for each $\alpha\in\Lambda$.

Then S extends to an isomorphism of $\mathcal{D}(D)$ and $\mathcal{D}(\bar{D})$.

A triangle in D is a triple (A, B, C) with $A \in D$, $C \in D_A$, and $B \in A_A \cap A_C$. D is locally conjugate in G if for $A, B \in D$, A is conjugate to B in $\langle A, B \rangle$, or $[A, B] = \bot$.

Lemma 2.7. Let Ω be locally conjugate in G with G^2 primitive and $\mathscr{D}(\Omega)$ connected. Assume

- (*) If (α, β, γ) is a triangle and $X = \langle \alpha, \beta, \gamma \rangle$, then $\beta^{\perp} \cap X \subseteq \beta^{\langle \alpha^{\perp} \cap X \rangle}$ and $\beta^{\gamma} \subseteq (\beta^{\perp} \cap X)^{\alpha}$.
- Then $\langle \alpha^{\perp} \rangle$ is transitive on A_{α} and G^{α} is rank 3.
- 3. p-transvections. Let G be a finite group, p a prime. A set of p-transvections of G is a G invariant collection D of subgroups generating G such that for any A, $B \in D$, |A| = p and $\langle A, B \rangle$ is the homomorphic image of a subgroup of $SL_2(p^n)$, with n and the image depending on A and B.

If p=2 then D is a set of odd transpositions. Groups generated by odd transpositions have been classified [3]; they include the sporatic simple groups discovered by Fischer plus many infinite classes of simple groups. Conway's sporatic simple group $\cdot 1$ is generated by 3-transvections, as is the Hall-Janko group and Suzuki's sporatic simple group.

LEMMA 3.1. Let D be a set of p-transvections of G, p>2, and let $M=O_{\infty}(G)$. Then

- (1) G is locally D-simple
- (2) If G is a p-group then G is abelian
- (3) If G = M is not a p-group then p = 3 and G is a $\{2, 3\}$ group
- (4) If p > 3 then $M/O_p(G) = Z(G/O_p(G))$.
- (5) Let M=1. Then G is a simple unless p=3 and $G\cong PGU_{3n}(2)$.

Proof. Let $A, B \in D$, $[A, B] \neq 1$. Set $X = \langle A, B \rangle$. Then X is isomorphic to $SL_2(p^n)$ or $L_2(p^n)$ unless p = 3 and $X \cong SL_2(5)$ or $L_2(5)$.

This implies (1) and (2). If G = M then as $L_2(q)$ is simple for q > 3, X must be isomorphic to $SL_2(3)$ or A_4 . Therefore, 4.1 of [4] yields (3).

Assume p > 3. To prove (4) we may assume $O_p(G) = 1$. Let Q be a minimal normal subgroup of G contained in M. Then Q is a q-subgroup for some prime $q \neq p$. If A centralizes Q then Q is in the center of $G = \langle D \rangle$, so we can assume $[A, Q] \neq 1$. But then $\langle A^q \rangle \leq AQ$ is a solvable D-subgroup whose order is divisible by q, contradicting (3).

Finally assume M=1 and let H be a minimal normal subgroup of G. If $A \leq H$ and $x \in H$ then $\langle A, A^x \rangle$ has a normal subgroup of index p, so either $A^x \in A^\perp$ or $\langle A, A^x \rangle \cong SL_2(3)$ or A_4 . If $A^H \subseteq A^\perp$ then [H, A] is a normal abelian subgroup of H, so [H, A] = 1. Thus H is centralized by $G = \langle D \rangle$, a contradiction. Therefore, if $A \leq H$, then [4] implies $AH \cong PGU_{3n}(2)$. $PGU_m(2)$ is normal in $AutU_m(2)$ so $G = C_G(H)HA$. By induction on |G|, $G/H \cong C_G(H)A \cong Z_p$ or $PGU_{3m}(2)$. But now [4] implies the latter case does not occur.

So we can take $A \leq H$. So $G = \langle D \rangle = H$ is simple. The proof of the following lemma is due to David Wales.

LEMMA 3.2. Let $G \cong L_2(q)$ or $SL_2(q)$, $q = p^m$ odd, with Sylow p-subgroup P. Assume G acts irreducibly on a n-dimensional vector space over GF(p), such that $n = 2 \dim C_v(P)$ and P acts semiregularly on $V - C_v(P)$. Then $G \cong SL_2(q)$, n = 2m, and G acts in its natural representation on V.

Proof. Let B be a basis of V, and GF(r) the splitting field for the representation of G on V. Extend the action of G to a vector space W over GF(r) with basis B. W is the sum of k absolutely irreducible G-invariant subspaces W_i of W. By inspection of the irreducible representations of $SL_2(q)$ (e.g. §30, [7]), dim $C_{W_i}(P) = 1$ for all i. Thus as $n = 2 \dim C_v(P)$ and P acts semiregularly on $V - C_v(P)$, dim $C_{W_i}(P) = 2$. Again by inspection of the representations of $SL_2(q)$, q = r, $G \cong SL_2(q)$, and G acts in its natural fashion on W_1 . Further G^{W_i} , $1 \le i \le k$, are the m equivalent representations obtained from G^{W_i} by Aut GF(q). Thus n = 2m and G acts in its natural fashion on V.

LEMMA 3.3. Let D be a class of p-transvections of G, p odd, with $G/O_{\infty}(G)\cong L_2(q)$. Let $M=O_p(G)$, $A\in D$, $m=|A^M|$ and Z=Z(G). Assume $O_{\infty}(G)/M=Z(G/M)$. Then for some $B\in D$, G=MX where $X=\langle A,B\rangle\cong SL_2(q)$, $Z=[A^\perp,M]\cap [B^\perp,M]$, M=[A,M][B,M], $|M/Z|=m^2$ where $m=|A^M|$, $Z=C_M(x)$ for any p'-element of X, and $[M,\beta]$ is transitive on A^M .

Proof. As $G/O_{\infty}(G)\cong L_2(q)$ there exists $B\in D$ with $X=\langle A,B\rangle\cong L_2(q)$ or $SL_2(q)$. Let $\alpha=A^{\perp}\cap X$, and $\Omega=\alpha^{\times}$. Let $K=\prod_{\sigma}[M,\beta]$.

By 3.1, $[M, \alpha]$ is elementary abelian, $G = \langle [M, \alpha], X \rangle$ normalizes K and [A, M/K] = 1. So M = K. As X^{ϱ} is doubly transitive, $Z_{\varrho} = [M, \alpha] \cap [M, \beta] = [M, \gamma] \cap [M, \delta]$ for all pairs (α, β) , (λ, δ) from Ω . So as $[M, \alpha]$ is abelian, $Z_{\varrho} \leq Z$. Thus we can assume $Z_{\varrho} = 1$. Therefore, M is elementary abelian. A is in m groups $\langle A, C \rangle$, $C \in B^{n}$, so there are m^{ϱ} total D-subgroups isomorphic to $L_{\varrho}(q)$ or $SL_{\varrho}(q)$. Set $\overline{G} = G/Z$. $Z = C_{M}(X)$, so $m^{\varrho} \geq |\overline{X}^{\overline{\varrho}}| = |\overline{M}| \geq |[\overline{M}, \alpha][\overline{M}, \beta]|$. On the other hand $m = |A^{\overline{n}}| \leq |[\overline{M}, \alpha]|$, so $m = |[\overline{M}, \alpha]|$, $\overline{M} = [\overline{M}, \alpha][\overline{M}, \beta]$, and $A^{\overline{n}} = A^{[\overline{N}, \beta]}$. Lemma 3.2 implies $\overline{X} \cong SL_{\varrho}(q)$ and $C_{\overline{n}}(x) = 1$ for all p'-elements $x \in X$. So it suffices to show Z = 1. Let $\langle u \rangle = Z(X)$. Then M = Z[M, u], so $D \subseteq X[M, u] \leq G$. Thus Z = 1.

LEMMA 3.4. Let D be a class of p-transvections of G, p odd, with $M = O_p(G)$, X a D-subgroup with $X/Z(X) \cong U_3(q)$, and G = MX. Let Z = Z(G), $A \in M$ and m = |AM|. Then $Z \subseteq [A^{\perp}, M]$ and $|M/Z| = m^3$.

Proof. Let $X = \langle A_i, 1 \leq i \leq 3 \rangle$, $A = A_i$, let $\alpha_i = A_i^{\perp} \cap X$ and $\Omega = \alpha^x$. Set $Z_0 = [\alpha, M] \cap [\alpha_2, M]$. As X^2 is doubly transitive $Z_0 = [\beta, M] \cap [\gamma, M]$ for $\beta, \gamma \in \Omega$. $[\alpha, M]$ is abelian so $G = \langle X, A^y \rangle$ centralizes Z_0 . Thus we can assume $Z_0 = 1$.

Set $N=\prod_{i=1}^3 [M,\alpha_i]$. By 3.3, $[M,\alpha_i]^{\alpha_j} \leq [M\alpha_i][M,\alpha_j]$, so N is normalized by $G=\langle \alpha_1,\alpha_2,\alpha_3,M\rangle$. A centralizes M/N, so M=N. As $Z_0=1$, M is abelian. Let u be the involution in $\langle \alpha_1,\alpha_2\rangle$ and v the involution in $\langle \alpha_2,\alpha_3\rangle$. We may assume [u,v]=1. $M=C_M(u)\times [M,u]$ and by 3.3, $C_M(u)=C_M(\alpha_1)\cap C_M(\alpha_2)$ and $[M,u]=[M,\alpha_1][M,\alpha_2]$. Therefore, $C_M(u)\cap C_M(v)=Z$ and as X has one class of involutions, $|C_M(u)/Z|^3=|M/Z|=|C_M(u)/Z|m^2$. So $|M/Z|=m^3$, and as $|M|\leq m^3$, Z=1. That is $Z=Z_0\leq [A,M]$.

4. Groups with $\mathcal{D}(D)$ disconnected. This section consists of a proof of the following theorem:

Theorem 4.1. Let D be a conjugacy class of p-transvections, $p \geq 5$, of the group G. Assume $\mathcal{D}(D)$ is disconnected and $O_{\infty}(G) = 1$. Then $G \cong L_2(q)$ or $U_3(q)$ for some power q of p.

Throughout § 4, G is a counterexample of minimal order to Theorem 4.1. For $A \in D$ let \overline{A} be the component of $\mathcal{D}(D)$ containing A. Let \overline{D} be the set of components. Write $A \sim B$ if $A, B \in D$ and $\langle A, B \rangle$ is isomorphic to $L_2(p)$ or $SL_2(p)$. For $\overline{A} \neq \overline{B}$ define

$$arGamma_{{}^A\overline{B}} = \{C \in \overline{A} \colon A \sim E \sim C \text{ for some } E \in \overline{B}\}$$
 .

Now for $\bar{A}\neq \bar{B},\, A\sim B$ if and only if $\bar{A}\cup \bar{B}^{\scriptscriptstyle A}=\bar{B}\cup \bar{A}^{\scriptscriptstyle B}$. Thus if $A\sim$

B then $X=\langle \Gamma_{A\overline{B}}, \Gamma_{B\overline{A}} \rangle$ acts on $\Gamma=\overline{A}\cup \overline{B}^{A}$ of order p+1, so $Y=\langle \Gamma_{A\overline{B}} \rangle=A\,Y_{\Gamma}$ and $X=\langle Y,B \rangle=\langle A,B \rangle X_{\Gamma}$. By 3.1, $X_{\Gamma}=0_{\infty}(X)$ and Y is a p-group. Further for fixed $\overline{B}\neq \overline{A}$, the sets $\Gamma_{C\overline{B}}$, $C\in \overline{A}$, partition \overline{A} .

Let $m = |\Gamma_{A\overline{B}}|$, and let n be the number of classes $\Gamma_{c\overline{B}}$ in \overline{A} . If m > 1 then applying 3.3 to X we have that $\langle A, B \rangle$ contains a central involution u = u(A, B), and u centralizes only A in $\Gamma_{A\overline{B}}$.

Let $C \in \overline{A}$. $\langle C, B \rangle$ contains $E \in \Gamma_{A\overline{B}}$ and v = u(E, B) is in the center of $\langle C, B \rangle$. Indeed v = u(C, F) where $C \sim F \in \overline{B} \cap \langle C, B \rangle$. As v centralizes a unique member of $\Gamma_{A\overline{B}}$ and $\Gamma_{C\overline{B}}$, each member C_1 of $\Gamma_{C\overline{B}}$ determines a distinct member E_1 of $\Gamma_{A\overline{B}} \cap \langle C_1, B \rangle$. Thus $m = |\Gamma_{C\overline{B}}|$ for all $C \in \overline{A}$. Further $u = u(C_1, F_1)$ for some $C_1 \in \Gamma_{C\overline{B}}$, $F_1 \in \Gamma_{F\overline{A}}$. So $C_D(u)$ intersects each $\Gamma_{C\overline{B}}$ in \overline{A} in a unique member. Set $K = \langle C_D(u) \rangle$ and $H = \langle K, \overline{A} \rangle$. Minimality of G implies $K \cong SL_2(q)$ for some power q of p. So the set Δ of components of $\mathscr{D}(D)$ containing an element of $C_D(u)$ has order q + 1 and $Q = \langle C_{\overline{A}}(u) \rangle$ acts regularly on $\Delta - \{\overline{A}\}$.

Now there are m^2 involutions $u(A_1, B_1)$, $A_1 \in \Gamma_{A\overline{B}}$, $B_1 \in \Gamma_{B\overline{A}}$, and m^2 pairs (A_1, C_1) , $C_1 \in \Gamma_{C\overline{B}}$, with $u(A_1, B_1)$ centralizing at most one pair. It follows there exists u with $A, C \in Q$. So as Q is abelian, $\langle \overline{A} \rangle$ is abelian. Notice that if m = 1 then $A = \Gamma_{A\overline{B}} \cap \langle C, B \rangle$, so again [A, C] = 1, and $\langle \overline{A} \rangle$ is abelian. Therefore:

LEMMA 4.2. $\langle \bar{A} \rangle$ is abelian.

Let $\langle c \rangle = C \in \overline{A}$. We have shown there is an $\langle e \rangle = E \in C_{\overline{A}}(u) \cap \Gamma_{C\overline{B}}$, and we can choose e such that $\overline{B}^e = \overline{B}^e$. Thus as $\langle \overline{A} \rangle$ is abelian, $\overline{B}^{?e} = \overline{B}^{eQ} = \overline{B}^{eQ} = \overline{B}^{Q}$, so H acts on $\Delta = \overline{A} \cup \overline{B}^{Q}$, and $H = KH_{\Delta} = KO_{p}(H)$ by 3.1. Summarizing:

LEMMA 4.3. (1) If m > 1 then $\langle A, B \rangle$ contains a central involution u. (2) If $\langle A, B \rangle$ contains a central involution u then $\langle \bar{A}, \bar{B} \rangle = H = \langle C_D(u) \rangle 0_p(H)$ with $\langle C_D(u) \rangle \cong SL_2(q)$ for some power q of p.

Let $J=N_{G}(\bar{A}),\,I=C_{G}(\bar{A}).$ For $X\subseteq G$ let F(X) be the set of points in \bar{D} fixed by X.

Lemma 4.4. Assume u is an involution in the center of $\langle A, B \rangle$. Then

- (i) If v is an involution in the center of $\langle A, C \rangle$ with [u, v] = 1, then u = v.
 - (ii) $J = O(J)C_J(u)$.

Proof. Set $H=\langle C_D(u)\rangle$. Let v be as in (i). Then v acts on H and fixes \bar{A} . There are q+1 members of \bar{D} intersecting H, and q+1 is even, by 4.3. Thus v fixes a second member $\bar{E}\neq \bar{A}$ of \bar{D}

with $\overline{E} \cap H \neq \emptyset$. As $H \cong SL_2(q)$, v centralizes an element E of \overline{E} . Thus $\langle u \rangle = Z(\langle A, E \rangle) = \langle v \rangle$, yielding (i). (i) and Glauberman's Z^* -theorem imply (ii).

LEMMA 4.5. Assume $m(\bar{A}, \bar{B}) = 1$ with $A \sim B$. Let $x \in \langle A, B \rangle$ fix \bar{A} and \bar{B} . Then

- (1) $B = \overline{B}(A)$ is the unique element of \overline{B} with $A \sim B$.
- (2) x acts as scalar multiplication in GF(p) on $Q = \langle \overline{A} \rangle$.
- (3) Assume $y \in J$ has scalar action on Q and fixes \bar{B} . Then y has the same action on $\langle \bar{B} \rangle$ and if |xI/I| > 2 then $F(x) = \{\bar{A}, \bar{B}\}$.
- (4) If $\langle A,C \rangle \cong L_2(p^n)$ or $SL_2(p^n), n$ odd, for all $C \in \bar{B}$, then $\langle \bar{A}, \bar{B} \rangle \cong L_2(q)$ or $SL_2(q)$.
- (5) If p=5 and $\langle A,C\rangle\cong L_2(p^n)$ or $SL_2(p^n)$, n even, for some $C\in \bar{B}$ then there exists y with |Iy/I|=4 inducing scalar action on Q and $\langle \bar{B}\rangle$.
 - (6) $m(\bar{A}, \bar{C}) = 1$ for all $\bar{C} \neq \bar{A}$.

Proof. (1) is just a restatement of $m(\bar{A}, \bar{B}) = 1$. Let $C \in \bar{A}$. $\langle C, B \rangle$ contains an element A_1 of D centralizing C with $A_1 \sim B$. Thus by (1), $A_1 = \bar{A}(B) = A$. So $x \in \langle A, B \rangle \leq \langle C, B \rangle$ and thus has the same action on C as on A. This yields (2). Notice that (2) implies $J = IC_J(x)$.

Assume $y \in J$ is as in the hypothesis of (3). Then for $C \in \overline{A}$, y fixes C and therefore $\overline{B}(C)$. So y acts on $\langle C, B \rangle$ with scalar action on $\overline{B} \cap \langle C, B \rangle$. So y acts on \overline{B} as on \overline{A} .

Assume y has order r^* for some prime r, r dividing p-1, and $\overline{C} \in F(y) - \{\overline{A}, \overline{B}\}$. Suppose first that $m(\overline{A}, \overline{C}) > 1$. Then by 4.3, $K = \langle \overline{A}, \overline{C} \rangle = HM$ where $H = \langle C_D(u) \rangle$, u = u(A, C), and $M = O_p(K)$. y fixes A so y fixes $\Gamma_{C\overline{A}}$ for $A \sim C$. As $|\Gamma_{C\overline{A}}|$ is a power of p and $p \equiv 1 \mod r$, x fixes a point C of $\Gamma_{C\overline{A}}$. As this holds for each $A \in \overline{A}$, we can assume x normalizes H. Thus with 4.3, $F(yu) = \{\overline{A}, \overline{C}\}$ and [y, u] = 1. Now $J = IC_J(y)$, so $[M, y] \leq M \cap I = [A, M]$ by 3.3. So if y acts by scalar multiplication on \overline{C} , then $[M, y] \leq [A, M] \cap [C, M] = Z(K)$ by 3.3, so that y centralizes M/Z(K). But y does not even centralize [A, M]/Z(K). So y does not have scalar action on \overline{C} .

Set $\overline{E} = \overline{B}^u$. y has scalar action on \overline{E} and \overline{B} , so as above $m(\overline{E}, \overline{B}) = 1$. $\langle E, B \rangle \cong SL_2(q)$ or $L_2(q)$ so there exists an involution t with cycle $(\overline{E}, \overline{B})$ inverting $y \mod C(\overline{B})$. Thus $ut \in N(\overline{B})$ inverts $y \mod C(\overline{B})$, while $N(\overline{B}) = C(\overline{B})C(y)$. So $|yC(\overline{B})/C(\overline{B})| = |yI/y| \leq 2$.

Assume |yI/y| > 2. Then as above $m(\bar{E}, \bar{F}) = 1$ for all $\bar{E}, \bar{F} \in F(y)$ and $C_G(y)$ fixes F(y) pointwise. Now if z is an element centralizing \bar{A}, \bar{B} , and y then $F(z) = \langle C_D(z) \rangle \cap \bar{D}$ and minimality of G implies $F(z) \cap F(y) = \{\bar{A}, \bar{B}\}$. Thus z moves \bar{C} , so z = 1. Now there exists an involution t with cycle (\bar{A}, \bar{B}) inverting y modulo $C(\bar{A}) \cap C(\bar{B})$. Thus $y^t = y^{-1}$. Similarly there exists s with cycle (\bar{B}, \bar{C}) inverting y. So ts

moves \bar{A} to \bar{C} and centralizes y, a contradiction. Thus we have shown (3).

Assume the hypothesis of (4). Let $E \in \overline{A}$, and $C = \overline{B}(E)$. Then for $\alpha \in Q^{\sharp} \cap \langle A, C \rangle$, $\langle a \rangle \in \overline{A}$. So $\overline{A} = \{\langle a \rangle : a \in Q^{\sharp}\}$. Let $\Delta = \overline{A} \cup \overline{B}^{Q}$. Clearly Q normalizes Δ . Further for $E = \langle e \rangle \in \overline{A}$, $\overline{B}^{eB} \subseteq \overline{A} \cup \overline{B}^{(\langle E, B \rangle \cap Q)}$, so as $\overline{A} = \{\langle a \rangle : a \in Q^{\sharp}\}$, B normalizes Δ . Thus $X = \langle \overline{A}, \overline{B} \rangle$ normalizes Δ . Further X^{\sharp} is 2-transitive with $Q^{\sharp} \subseteq X_{\overline{A}}^{\sharp}$ and regular on $\Delta = \{\overline{A}\}$. Therefore, a result [11] of Kantor and Seitz implies $X^{\sharp} \cong L_{2}(q)$. This yields (4).

Assume the hypothesis of (5). Then there exists $y \in \langle A, C \rangle$ with |yI/I| = 4 inducing scalar action on $Q \cap \langle A, C \rangle$ and $\langle \overline{B} \rangle \cap \langle A, C \rangle$. By (2), $x = y^2$ inverts Q and $\langle \overline{B} \rangle$, so orbits of x on \overline{A} have order at most two. Suppose (A_1, A_2) is such an orbit. Let $B_2 = \overline{B}(A_2)$ and set $X = \langle A_1, B_2 \rangle$. Then y normalizes X with x inverting $Q \cap X$, so y induces scalar action on $Q \cap X$ and fixes A_1 , a contradiction. Thus y fixes \overline{A} pointwise and induces scalar action on Q. This yields (5).

It remains to show (6). Assume $m(\bar{A}, \bar{C}) > 1$ and let u = u(A, C). By 4.4, $J = 0(J)C_J(u)$. As $J = IC_J(y)$, $[u, y] \leq 0(I)$. Thus some conjugate v of u centralizes y. Now if p > 5 or p = 5 and $\langle A, E \rangle \cong L_2(5^n)$ or $SL_2(5^n)$, n even, for some $E \in \bar{B}$, then we can choose y with |Iy/I| > 2. So by (3), $F(y) = \{\bar{A}, \bar{B}\}$. As [v, y] = 1 and v fixes \bar{A} , v fixes \bar{B} . So v centralizes some $B \in \bar{B}$, and by 4.3, as $m(\bar{A}, \bar{B}) = 1$, $v \in I$. But this is impossible as $u \notin I$.

It follows from (4) that $\langle \bar{A}, \bar{B} \rangle \cong L_2(q)$ or $SL_2(q)$ with $q = p^*, n$ odd. So $\bar{A} = \{\langle a \rangle \colon a \in Q^\sharp\}$. But by 4.3, $\langle \bar{A}, \bar{C} \rangle = H = \langle C_D(u) \rangle O_p(H)$ with $O_p(H) \neq Z(H)$. Thus there exists $a \in Q^\sharp \cap O_p(H)$ with $\langle a \rangle \notin \bar{A}$, a contradiction.

LEMMA 4.6. $m(\bar{A}, \bar{B}) = 1$ for all $\bar{B} \neq \bar{A}$.

Proof. Assume not. Then by 4.5.6, $m(\bar{A}, \bar{B}) > 1$ for all $\bar{B} \neq \bar{A}$. Let u = u(A, B), v = u(A, C). By 4.4, u is conjugate to v under J, so J takes \bar{C} to a point of F(u). But by 4.3 and 4.4, $C_G(u)^{F(u)}$ is 2-transitive. Thus J is transitive on $\bar{D} - \{\bar{A}\}$. Let $K = \langle \bar{A}, \bar{B} \rangle$, $H = \langle C_D(u) \rangle$ and $M = O_p(K)$. Let $\Omega = \bigcup_{K \cap J} C_Q(u^k)$. Suppose $w \in u^J$ inverts $1 \neq x \in \Omega$. Then wu^k inverts x while by 4.4, wu^k has odd order. So $X = [Q, u^J] \leq \langle Q - \Omega \rangle \leq M \cap Q$ by 3.3. But $X \leq J$, J is transitive on $\bar{D} - \{\bar{A}\}$ and $M \cap Q$ fixes \bar{B} , so X fixes \bar{D} pointwise, contradicting 3.1.5.

LEMMA 4.7. (1) There exists a prime r such that for all $\bar{B} \neq \bar{A}$, $J = IN_L(R)$ for some r-group with $F(R) = \{\bar{A}, \bar{B}\}$. (2) $\bar{G}^{\bar{D}}$ is doubly transitive.

Proof. (1) implies that there exists a prime r such that for any $\bar{B} \neq \bar{A}$, a Sylow r-subgroup of $G_{\bar{A}\bar{B}}$ fixes only two points. This implies $G^{\bar{D}}$ is doubly transitive. So it suffices to proof (1). But unless p=5 there exists a prime r dividing p-1 and an r-element $y \in \langle A, B \rangle$ fixing \bar{A} and \bar{B} with |Iy/I| > 2. So 4.5 implies (1) unless p=5 and $\langle \bar{A}, \bar{B} \rangle = H \cong L_2(5^n)$ or $SL_2(5^n)$, n odd. As $5^n = |Q| = |\langle \bar{A} \rangle|$, this holds for all $\bar{B} \neq \bar{A}$.

Suppose u is an involution in I and let (\bar{C}, \bar{E}) be a cycle in u and $X = \langle \bar{C}, \bar{E} \rangle$. As u does not centralize X, u acts fixed point free on $X \cap \bar{D}$, so as n is odd, u induces an outer automorphism in $PGL_2(5^n)$ on X, and thus there exists a 2-element $y \in X$ inducing scalar action in GF(5) on $\langle \bar{C} \rangle$ and $\langle \bar{E} \rangle$ with y^2 not centralizing $\langle \bar{C} \rangle$. Thus by 4.5, |F(y)| = 2, so $|\bar{D}| = m$ is even.

Assume m is odd. Then I has odd order. Let x be the involution in $\langle A,B\rangle\cap J$. By 4.5, $J=IC_J(x)$. But as m is odd J contains a Sylow 2-subgroup of G, so the Z^* -theorem contradicts $O_{\infty}(G)=1$. Therefore, m is even.

If a Sylow 2-subgroup of $G_{\overline{A}\overline{B}}$ fixes exactly two points for every $\overline{B} \neq \overline{A}$, then G^D is doubly transitive. So choose \overline{B} such that a Sylow group of $G_{\overline{A}\overline{B}}$ fixes more than two points. Then $H = \langle \overline{A}, \overline{B} \rangle \cong L_2(5^n)$, $C_J(H)$ has odd order and the involution $x \in H_{\overline{A}\overline{B}}$ fixes three or more points. Suppose $y^2 = x$ for some $y \in G$. If $(\overline{C}, \overline{E})$ is a cycle of y in F(x) then y normalizes $X = \langle \overline{C}, \overline{E} \rangle$ so as $y^2 = x$ and n is odd, y fixes two points in $X \cap \overline{D}$, which must be \overline{C} and \overline{E} . This is a contradiction, so x is not rooted in this manner.

Suppose I has odd order. Then by 4.5, $J = IC_J(y)$ for any involution $y \in \langle \bar{A}, \bar{C} \rangle$ and any $\bar{C} \neq \bar{A}$. So $y \in x^I$. Let u be an involution. We may assume u has cycle (\bar{A}, \bar{B}) . So u normalizes H, and as I has odd order and x is not rooted in $\langle u, H \rangle$, $u \in H$. Thus $u \in x^G$. Thus G has one class of involutions, so as x is not rooted, a Sylow 2-subgroup of G is elementary abelian. Walter's classification of such groups [13] implies $G \cong L_2(5^n)$, a contradiction. So I has even order. Thus x centralizes some involution $u \in I$; as $|\bar{D}|$ is even, there exists $\bar{R} \in F(x) \cap F(u) - \{\bar{A}\}$; minimality of G implies $\langle C_{\bar{D}}(u) \rangle \cong L_2(5^n)$, $SL_2(5^n)$ or $U_3(5^n)$, so $F(x) \cap F(u) = \{\bar{A}, \bar{R}\}$.

Consider $C_G(x)^{F(x)}$. Arguments such as in 4.5.3 and in the last paragraph show that nontrivial elements of $C(x)^{F(x)}$ fix at most two points. Let (\bar{C}, \bar{E}) be a cycle of u in F(x). We have shown x is rooted modulo $C(\bar{C}) \cap C(\bar{E})$, while x is not rooted. So $C(\bar{C}) \cap C(\bar{E})$ has even order and there exists an involution $v \in C(x)^{F(x)}$, fixing \bar{C} and \bar{E} , and centralizing u. v acts on $F(x) \cap F(u) = \{\bar{A}, \bar{R}\}$. Let $L = C_{\bar{A}}^{F(x)}$. L acts semiregularly on $F(x) - \{\bar{A}, \bar{R}\}$ and $C_L(v)$ acts on $F(v) \cap F(x) = \{\bar{C}, \bar{E}\}$, so $\langle v \rangle = C_L(u)$. So a Sylow 2-subgroup S of $\langle L, v \rangle = L^*$ is semidihedral or dihedral, and there are one or two classes of involu-

tions in L^*-L , respectively. But if $\overline{T} \in F(x) - \{\overline{A}, \overline{R}\}$ let t be the involution in $C(x)^{F(x)}$ fixing \overline{T} and \overline{T}^u and centralizing u. Then $t \in v_i^L$, i=1 or 2, one of the (at most) two classes of involutions in L^*-L . So L takes $F(t) \cap F(x) = \{\overline{T}, T^u\}$ to $F(x) \cap F(v_i)$. Thus L has one orbit, or two orbits of equal length, on $F(x) - \{\overline{A}, \overline{R}\}$, for S semidihedral or dihedral, respectively. It now follows easily that $C(x)^{F(x)}$ is 2-transitive. But J and therefore $C_J(x)$ cannot take \overline{B} to \overline{R} as there is no involution in I fixing \overline{B} . This last contradiction completes the proof of 4.7.

Set
$$L = G_{\overline{AB}}$$
, $H = \langle \overline{A}, \overline{B} \rangle$, $K = C_G(H)$, and $Q = \langle \overline{A} \rangle$.

LEMMA 4.8. (1) J=IL and $K \neq 1$. (2) $H \cong L_2(q)$ or $SL_2(q)$.

Proof. By 4.7.1 there exists a prime r such that a Sylow r-subgroup R of L fixes only \bar{A} and \bar{B} , and $J=IN_J(R)$. $N_J(R)$ acts on $F(R)=\{\bar{A},\bar{B}\}$; so $N_J(R) \leq L$. If $K=I\cap L=1$ then I is regular on $\bar{D}-\{\bar{A}\}$ by 4.7.2, so [11] implies $G\cong L_2(q)$ or $U_3(q)$. Thus $K\neq 1$. Minimality of G implies $H=\langle C_D(K)\rangle\cong SL_2(q)$ or $L_2(q)$.

LEMMA 4.9. Suppose $x\in L^\sharp$ with $|C_{\scriptscriptstyle Q}(x)|=q_{\scriptscriptstyle 0}>1$. Then $\langle C_{\scriptscriptstyle D}(x)\rangle\cong L_{\scriptscriptstyle 2}(q_{\scriptscriptstyle 0})$, $SL_{\scriptscriptstyle 2}(q_{\scriptscriptstyle 0})$ or $U_{\scriptscriptstyle 3}(q_{\scriptscriptstyle 0})$ and $|F(x)|=q_{\scriptscriptstyle 0}+1$ or $q_{\scriptscriptstyle 0}^3+1$.

Proof. Minimality of G yields the desired form for $\langle C_D(x) \rangle$. If $\bar{C} \in F(x)$ then [x, C] = 1 where $C = \bar{C}(A)$, $A \in C_{\overline{A}}(x)$. Thus $|F(x)| = q_0 + 1$ or $q_0^3 + 1$.

LEMMA 4.10. Set $n = |\bar{D}|$. Then (n-1, |K|) is a power of p.

Proof. Let r be a prime divisor of |K|, and R a Sylow r-subgroup of K. By 4.9, F(R) = q + 1 or $q^3 + 1$, so if $r \neq p$ then a Sylow r-subgroup R_1 of $N_I(R)$ fixes a second point \bar{B} of F(R); that is $R_1 = R$. So R is Sylow in I and r does not divide n - 1 = |I| K|.

LEMMA 4.11. $|\bar{D}| = n$ is even. If u is an involution then $n \equiv |F(u)| \mod 4$. |L| is even.

Proof. Results of Bender on doubly transitive groups [5.6] imply L has even order. By 3.1, G is simple, so any involution u must act as an even permutation on \bar{D} . Thus $n \equiv |F(u)| \mod 4$. If n is odd, 2-elements fix an odd number of points. So by 4.8 and 4.9, |K| and |L/HK| are odd. And by 4.5.3, $|H \cap L| \neq 0 \mod 4$. As L has even order, $|H \cap L| \equiv |L| \equiv 2 \mod 4$. Thus $p \equiv q \equiv 5 \mod 8$. Let u be the involution in $H \cap L$, and S a u-invariant Sylow 2-subgroup of I. As

n is odd and J=IL, $S\langle u\rangle$ is Sylow in G. As G has no subgroup of index two, $S\neq 1$. Let s be an involution in S, and (\bar{B},\bar{C}) a cycle in s. Then s normalizes $X=\langle \bar{B},\bar{C}\rangle$ and as |F(s)|=1, s acts fixed point free on $\bar{D}\cap X$. So as $p\equiv q\equiv 5 \mod 8$, $\langle s,X\rangle\cong PGL_2(q)$ and there exists $y\in \langle s,X\rangle$ of order 4 inducing scalar multiplication on $\langle \bar{B}\rangle$ and fixing \bar{B} and \bar{C} . By 4.5.3, |F(y)|=2, contradicting n odd.

LEMMA 4.12. If J = O(I)L then $J = O_{\pi}(I)L$, where π is the set of primes dividing n-1. Also $O_{\pi}(K) \neq 1$, and $O_{\pi}(I)$ is not nilpotent.

Proof. Set $P=O_{\pi}(I)$. If $P\neq O(I)$ let R/P be minimal normal in J/P, R< O(I). R/P is an r-group for some prime r and by a Frattini argument, $J=PN_J(R_1)$ where R_1 is a Sylow r-subgroup of R contained in K. By 4.9, $N_J(R_1)=LP_1$ where $|P_1|=q$ or q^3 , and $P_1 \leq N_J(R_1)$. Thus $PP_1 \leq J$, so $P_1 \leq P$ and J=PL. Results of Kantor and Seitz on doubly transitive groups [11, 12] imply P is not nilpotent or regular on $\bar{D}-\{\bar{A}\}$. Thus $1\neq P\cap L=P\cap K=O_r(K)$ by 4.10.

LEMMA 4.13. Let $X \subseteq L$ fix 3 or more points of \overline{D} . Then $C_G(X)^{F(X)}$ is doubly transitive.

Proof. It suffices to show there exists a prime r such that a Sylow r-subgroup of $C_L(X)$ fixes only \bar{A} and \bar{B} . Thus with 4.5 we can assume $q=5^m$ with m>1 odd. Thus there is an r-element $1\neq y\in H\cap L, r>2$, and as m is odd y is not inverted in J/I by 4.8. Thus arguing as in 4.5, $F(y)=\langle \bar{A},\bar{B}\rangle$. [y,X]=1 unless $C_Q(X)\neq 1$, in which case 4.9 implies $C_G(X)^{F(X)}$ is doubly transitive.

LEMMA 4.14. Assume $q \equiv -1 \mod 4$ and x is an involution in L inverting Q with |F(x)| > 2. Then |F(x)| = q + 1.

Proof. As $q \equiv -1 \mod 4$, q is an odd power of p, so no element in $H \cap L$ is inverted in J/I. Thus if $y \in H \cap L$ with |y| > 2 then |F(y)| = 2. Therefore, with 4.9 and 4.13, $C_G(x)^{F(x)}$ is a Zaussenhaus group. So $C_G(x)^{F(x)}$ has a normal subgroup isomorphic to $L_2(m)$, of index at most two, with |F(x)| = m + 1. Now if $m \equiv 1 \mod 4$ then by 4.9 and 4.11, K has odd order, and $\langle x \rangle$ is Sylow in L, so that $|C_L(x)^{F(x)}|$ is odd, contradicting $m \equiv 1 \mod 4$. So $m \equiv -1 \mod 4$. Thus $C_L(x)^{F(x)}$ is cyclic and inverted by any $t \in C_G(x)$ with cycle (\bar{A}, \bar{B}) . As we can choose $t \in H$, and [K, t] = 1, it follows that $|C_K(x)| = \varepsilon \leq 2$. Further $\varepsilon(m-1)/2 = |C_L(x)^{F(x)}| = \varepsilon |H \cap L| = \varepsilon(q-1)/2$, so m = q.

LEMMA 4.15. Suppose u is an involution in $Z^*(L)$ fixing 3 or more points. Then $u \in Z^*(J)$.

Proof. $u \in Z^*(L)$ so $u^L \cap C_L(u) = \{u\}$. Now 4.13 implies $u^G \cap L = u^L$. Further as $|\bar{D}|$ is even, if v is a conjugate of u in J centralizing u then we can assume $v \in L$, so $v \in u^G \cap C_L(u) = u^L \cap C_L(u) = \{u\}$. Thus by the Z^* -theorem, $u \in Z^*(J)$.

LEMMA 4.16. If $H\cong L_2(q)$ then $H\cap \bar{D}=F(X)$ for any $1\neq X\leqq K$.

Proof. If $F(X) \neq H \cap \bar{D}$ then by 4.9, $H \leqq \langle C_{\scriptscriptstyle D}(X) \rangle \cong U_{\scriptscriptstyle 3}(q)$, so $H \cong SL_2(q)$.

LEMMA 4.17. Assume u is an involution in L fixing $m+1 \ge 3$ points, let $c = |L: C_L(u)|$ and let e be the number of conjugates of u with cycle (\bar{A}, \bar{B}) . Then |D| - 1 = m(m+1)e/c + m.

Proof. Let Ω be the set of pairs (v, α) where $v \in u^{\sigma}$ and α is a cycle in v. Then $|u^{\sigma}|(n-m-1)/2 = |\Omega| = n(n-1)e/2$ where $n = |\bar{D}|$. Further by 4.13, $|u^{\sigma}| = n(n-1)c/m(m+1)$.

LEMMA 4.18. (1) Let S be a 2-group such that $C_{\mathbb{Q}}(S) \neq 1$. Then S has rank at most one.

(2)
$$J = O(I)L$$
.

Proof. Suppose $1 \neq \langle u \rangle = H \cap L$. Then by 4.15, $u \in Z^*(I)$, so J = O(I)L. Define $P = O_{\pi}(I)$ as in 4.12, and assume S has 2-rank at least two. Then $P = \prod_{S^{\sharp}} C_P(s)$, while by 4.9, $C_P(s)$ is a p-group for $s \in S^{\sharp}$. Thus P is a p-group, contradicting 4.12.

So $H \cap L = 1$ and by 4.16, $N_I(H) = QK$ is strongly embedded in I. As $Q \leq O(I)$ and $[K, H \cap L] = 1$, Bender's classification of groups with a strongly embedded subgroup [6] implies $J = O(I)N_J(H \cap L)$. By 4.5, augmented by arguments such as in 4.13 for the case $q = 5^m$, m odd, $N_J(H \cap L) = L$. Now arguing as above, S has 2-rank at most one.

Define $P=O_{\pi}(I)$ as in 4.12. Set $P_{\scriptscriptstyle 0}=O_{\scriptscriptstyle p}(K)$. $P_{\scriptscriptstyle 0}\neq 1$ by 4.12 and 4.18.

LEMMA 4.19. (1) $F(X) = H \cap \overline{D}$ for $1 \neq X \leq P_0$.

- (2) $H \cap K = 1$.
- (3) Assume u is an involution in K and let $v \in u^{\sigma}$ have cycle $(\overline{A}, \overline{B})$. Let P_1 be a $\langle u, v \rangle$ invariant Sylow p-group of O(K). Then $[v, P_1] = P_1$ and $[u, P_1] \neq 1$.

Proof. Assume $1 \neq X \leq P_0$ with $F(X) \neq H \cap D$. Then $Y = \langle C_D(X) \rangle \cong U_3(q)$ by 4.9. So $H \cap K = \langle u \rangle \neq 1$. Further as $N_K(X)^{F(X)}$ is a p'-group, $X = P_0$. Let (\bar{C}, \bar{E}) be a cycle in u and $v \in u^c$ fix \bar{C} and \bar{E} . Then [u, v] = 1 so v acts on $\langle C_D(u) \rangle = H$ and thus also on P_0 .

v induces an automorphism on $Y \cong U_3(q)$ and therefore fixes points $\overline{A}_i \in F(P_0)$. So $\overline{C} \in \langle \overline{A}_1, \overline{A}_2 \rangle \subseteq Y$ and therefore $F(P_0) = \overline{D}$, a contradiction. This yields (1).

Assume $1 \neq \langle u \rangle = H \cap K$. Then in particular $[u, P_0] = 1$. Let $v \in u^c$ have cycle (\bar{A}, \bar{B}) . v acts on P_0 and $F(v) \cap F(x) = F(v) \cap F(u) = <math>\emptyset$ for $x \in P_0^*$. Thus $C_{P_0}(v)$ acts fixed point free on F(v) of order q+1, so $C_{P_0}(v)=1$. Define e and c as in 4.17. It follows that c=1 and $e\equiv 0 \mod p$. So by 4.17, $|\bar{D}|-1=q[(q+1)e/c+1]\equiv q \mod pq$. So P_0Q is Sylow in P and u centralizes P_0Q , and inverts a Hall p'-group P_1 of P. Thus $P=P_1\times (P_0Q)$ is nilpotent, contradicting 4.12. This yields (2).

Assume the hypothesis of (3) and define c and e as in 4.17. Arguing as above, $[v, P_1] = P_1$, so p divides e. By 4.18, $L = O(K)C_L(u)$, so if $[P_1, u] = 1$, then p does not divide c. But then arguing as above we have a contradiction.

LEMMA 4.20. $q \equiv 1 \mod 4$.

Proof. Assume $q\equiv -1 \mod 4$. By 4.9, 4.10, and 4.14, $C_P(x)$ is a p-group for any involution $x\in L$, while by 4.12, P is not a p-group. Thus L has 2-rank one. Suppose K has odd order. By 4.11, L has even order so there exists an involution $x\in L$ and $\langle x\rangle$ is Sylow in J. If |F(x)|=2, then by 4.11, $n=|\bar{D}|\equiv 2 \mod 4$, and [2] implies $G\cong L_2(q)$. Thus by 4.14, |F(x)|=q+1. Let v be a conjugate of x with cycle (\bar{A},\bar{B}) . We may choose v=t or tx where $t\in H$. By 4.16, $F(P_0)=H\cap \bar{D}$, so $|F(P_0)\cap F(v)|=0$ or 2. Thus if $C_{P_0}(v)\neq 1$ then $1\equiv q+1=|F(x)|\equiv 0$ or $1\leq 1\leq n$ or $1\leq n\leq n$. Thus $1\leq n\leq n$ inverts $1\leq n\leq n$. Define $1\leq n\leq n$ and $1\leq n\leq n$ inverts $1\leq n\leq n$ and $1\leq n\leq n$ in $1\leq n\leq n$. As $1\leq n\leq n$ in $1\leq n\leq n$ inverts an $1\leq n\leq n$ inverted by $1\leq n\leq n$ inverted by 1

So K contains an involution u. Let $v \in u^c$ have cycle (A, B), with [v, u] = 1. As $H \cap K = 1$ and v acts fixed point free on $F(u) = H \cap \overline{D}$, v = t or ut where $t \in H$. By 4.19 $[v, P_0] \neq 1$, so v = ut. Thus defining e and c as in 4.17, e = (q - 1)c/2, so by 4.17, $n - 1 = q[(q + 1)e/c + 1] = q(q^2 + 1)/2$. Let R be a $\langle u \rangle (H \cap L)$ invariant r-Sylow group of P, where $r \neq p$. Then $\langle u \rangle (H \cap L)$ acts semiregularly on R, |R| > q. As a p'-Hall group of P has order $(q^2 + 1)/2$, $(q^2 + 1)/2$ is a prime power. Thus q is a prime (e.g. Lemma 3.1, [1]). P_0 acts semiregularly on $\overline{D} - F(P_0)$ of order $q(q^2 + 1)/2 - q = q(q^2 - 1)2$, so $|P_0| = q$. Thus $Q = C_P(u) \leq Z(P)$, or [P, u] is a Hall p'-group of P. In either event P is nilpotent, contradicting 4.12.

LEMMA 4.21. |K| is odd.

Proof. Assume K has even order and let u be an involution in K and v a conjugate of u, centralizing u, with cycle (\bar{A}, \bar{B}) . By 4.1, $[v, P_1] = P_1$ and $[u, P_1] \neq 1$. So $C_{P_1}(uv) \neq 1$, $|F(uv)| \equiv 0 \mod p$ and $uv \notin u^G$. So by 4.11 and 4.18, $uv \in x^G$ or $(ux)^G$ where $x \in H$. Now $[x, P_0] = 1$ so $|F(x)| \equiv 2 \mod p$. Thus $uv \in (ux)^G$ and as $|F(uv)| \equiv 0 \mod p$ and $|F(P_0) \cap F(ux)| = 2$, $C_{P_0}(ux) = C_{P_0}(u) = 1$. So $Q = C_P(u)$, yielding a contradiction as in 4.20.

LEMMA 4.22. L has 2-rank one.

Proof. Assume not. Then as |K| is odd by 4.21, there exists an involution $x \in H \cap L$ and an involution $u \in L$ with $|C_Q(u)| = r$, $q = r^2$, and $Q = C_Q(u) \times C_Q(ux)$. Notice $P = C_P(x)C_P(u)C_P(ux) = C_P(x)Q$. Set m+1=|F(x)|. As P_0 acts semi-regularly on $F(x)-\{\bar{A},\bar{B}\}$, $m\equiv 1$ mod p. Let P_2 be a subgroup of $C_P(x)$ maximal with respect to being normal in $C_J(x)$ and semiregular on $F(x)-\{\bar{A}\}$. Let M/P_2 be a minimal subgroup of $C_J(x)/P_2$ contained in $C_P(x)$. By 4.10, M/P_2 is a p-group and as P_2 is semi-regular on $F(x)-\{\bar{A}\}$ of order $m\equiv 1 \mod p$, P_2 is a p-group. Thus $M=P_2(P_0\cap M)=P_2M_0$ and $C_J(x)=P_2(N(M_0)\cap C_J(x))=P_2C_L(x)$ as $F(x)\cap F(M_0)=\{\bar{A},\bar{B}\}$. So $|P_2|=m$ and $P_2\leqq QC_P(x)=P$. Thus P_2Q is regular on $\bar{D}-\{\bar{A}\}$. As u inverts P_2 , P_2Q is nilpotent and thus contained in Fit (P), the Fitting subgroup of P. So Fit (P) is transitive on $\bar{D}-\{\bar{A}\}$ and nilpotent, contradicting 4.12.

Lemma 4.23. $|\bar{D}| \equiv 2 \mod 4$.

Proof. Assume not. Let x be the involution in $H\cap L$. By 4.11, $|F(x)|\equiv 0 \mod 4$. As in 4.14, $C_G(x)^{F(x)}$ is a Zassenhaus group and t inverts $L^{F(x)}$ where $t\in H$ has cycle (\bar{A},\bar{B}) . But $[t,P_0]=1$ and $P_0\cong P_0^{F(x)}$, a contradiction.

4.22 and 4.23 together with [2] imply $G \cong L_2(q)$ or $U_3(q)$. Thus the proof of Theorem 4.1 is complete.

5. Examples.

Hypothesis 5.1. Let V be a 2m dimensional space over GF(q), q a power of the odd prime p, with nondegenerate skew symmetric bilinear form (,). For $u \in V^*$ the transvection u^* determined by u is the map

$$u^*:\langle x\rangle \longrightarrow \langle x+(x,u)u\rangle$$

considered as a projective transformation of V. Let $D = \{\langle u^* \rangle : u \in V^* \}$ and $G = \langle D \rangle$.

G is the 2m dimensional projective symplectic group $SP_{2m}(q)$ over GF(q).

LEMMA 5.2. Assume hypothesis 5.1. Let $A = \langle a^* \rangle$ and $B = \langle b^* \rangle$ lie in D with $[A, B] \neq 1$. Set $L = \langle D_A \cap D_B \rangle$. Then

- (1) D is a class of p-transvections of G.
- (2) $L/Z(L) \cong SP_{2m-2}(q) \text{ for } m > 1.$

Proof. Let $\langle c^* \rangle = C \in D$. Then [A, C] = 1 if and only if (a, c) = 0. So (,) restricted to $\langle a, b \rangle$ is a nondegenerate skew symmetric bilinear form and therefore $\langle A, B \rangle$ is a homomorphic image of a subgroup of $SL_2(q)$. This yields (1). Similarly L acts as a symplectic group on $\langle a, b \rangle^{\perp}$ yielding (2).

Hypothesis 5.3. Let V be a n-dimensional vector space over $GF(q^2)$ with nondegenerate semibilinear form (,). For nonsingular vector u let u^* be the transvection determined by u considered as a projective transformation of V. Let $D = \{u^*: (u, u) = 0\}$, and $G = \langle D \rangle$.

G is the n dimensional projective special unitary groups, $U_n(q)$.

LEMMA 5.4. Assume hypothesis 5.3. Let $A = \langle a^* \rangle$ and $B = \langle b^* \rangle$ lie in D with $[A, B] \neq 1$. Set $L = \langle D_A \cap D_B \rangle$ then

- (1) D is a class of p-transvections of G.
- (2) $L/Z(L) \cong U_{n-2}(q)$ for $n \ge 4$.
- (3) G contains a unique class of D-subgroups K^{G} with $K/Z(K)\cong U_{n-1}(q)$.

Proof. The proofs of (1) and (2) are as in 5.2. Assume K is a D-subgroup of G with $K/Z(K) \cong U_{n-1}(q)$. As $[a^*, c^*] = 1$ if and only if (a, c) = 0, $\langle u : \langle u^* \rangle \in K \cap D \rangle$ is a nonsingular hyperplane of V preserved by K. As G is transitive on such hyperplanes, (3) follows.

6. Proof of main theorem. For the remainder of this paper G is a counter example of minimal order to the main theorem. Lemma 3.1 implies:

LEMMA 6.1. G is simple.

Theorem 4.1 implies:

LEMMA 6.2. $\mathcal{D}(D)$ is connected.

Let $A \in D$. By 2.4, A is contained in a unique maximal set of imprimitivity α of G^p . Set $H = \langle D_\alpha \rangle$, $M = O_\infty(H)$, and $\Omega = \alpha^c$. By 2.4, H is D_α^* -simple. Minimality of G implies $H/M \cong Sp_n(q)$ or $U_n(q)$, for some power q of p.

LEMMA 6.3. Let $\beta \in D_{\alpha}$, $\gamma \in D_{\beta} \cap A_{\alpha}$. Set $\Gamma = D_{\alpha} \cap D_{\gamma}$ and $L = \langle \Gamma \rangle$. Then LM = H, $M \neq Z(H)$ and $\alpha *\beta = \{\alpha\} \cup \beta^{M}$.

Proof. Let $B \in \beta$. $H/M \cong Sp_n(q)$ or $U_n(q)$ has $V_{BM/M}$ as a set of imprimitivity on D_α^*M/M , so $\langle \beta \rangle$ is abelian. Set $K = \langle D_\beta \cap \Gamma \rangle$, $H_1 = \langle D_\beta \rangle$, and $M_1 = O_\infty(H_1)$.

Assume $n \geq 4$. Then by 5.2 and 5.4, $KM_1/M_1 \cong U_{n-2}(q)$ or $Sp_{n-2}(q)$. Suppose L is not D-simple. Then by 2.1, L is the central product of two D-subgroups L_i . Let $B \in L_1$. K is D-simple, so $K = L_2$. Thus $\beta=B^{\perp}\cap L_1$, so $\mathscr{D}(L_i\cap D)$ is disconnected. Thus $L/O_{\infty}(L)\cong L_2(q)\times I$ $L_2(q)$ or $U_3(q) \times U_3(q)$. As $U_5(q)$ contains no D-subgroup of the latter type, that case is eliminated. As $\beta=B^{\scriptscriptstyle \perp}\cap L_{\scriptscriptstyle \rm l},\, \beta=B^{\scriptscriptstyle \perp}\cap D_{\scriptscriptstyle \alpha}^*.$ Now let $C \in \gamma$ with $X = \langle A, C \rangle \cong SL_2(q)$, and $x \in X$ fix α and γ with $|x| \ge 4$. x centralizes L and normalizes H. Suppose $L \neq \langle C_{D_{\alpha}^*}(x) \rangle = Y$. Then there exists $\delta \in A_{\tau} \cap Y$. Minimality of G implies $\mathcal{D}(Y \cap D)$ is connected so we can choose $\delta \in D_{\sigma}$ for some $\sigma \subseteq L$. Let $Z = \langle \lambda, \delta \rangle$. As $\gamma, \delta \in$ $D_{\sigma}, Z/O_{\sigma}(Z) \cong SL_{2}(q)$. So as $[x, \delta] = 1$, we get $[x, \lambda] = 1$, a contradiction. So L = Y and as x induces an automorphism on $H/M \cong Sp_4(q)$ or $U_4(q)$ with $Y/O_{\infty}(Y) \cong L_2(q) \times L_2(q)$, this automorphism has order two. As |x| > 2, $1 \neq x^2$ centralizes H/M. As $[x^2, B^{\perp} \cap D_a^*] = 1$, $[H, x^2]$, so $\langle x^2 \rangle = Z(X)$ and $X \cong SL_2(5)$. But now $C_D(x^2)$ is a component of $\mathcal{D}(D)$, contradicting 6.2.

So L is D-simple. Therefore, minimality of G implies $L/O_{\infty}(L) \cong H/M$ and $O_{\infty}(K) = M_1 \cap K \neq Z(K)$. As $D_7 \cap (\alpha^*\beta) = \{\beta\}$, $\alpha^*\beta = \{\alpha\} \cup \beta^M$.

Thus we may assume $n \leq 3$. Suppose $X = \langle A, E \rangle \cong SL_2(q)$ for $E \in D_{\beta}^*$. Then we may choose $C \in \gamma \cap X$. Let $\langle u \rangle = Z(X)$. Then $u \in \langle A, C \rangle$, so [u, L] = 1. u acts on H/M and centralizes β , so $J = \langle C_{D_{\alpha}^*}(u) \rangle$ contains a D-subgroup isomorphic to $SL_2(q_0)$ for some q_0 dividing q. Let $\langle v \rangle$ be the center of that subgroup. If $J \neq L$ then considering $\langle J, X \rangle$, minimality of G yields a contradiction. So J = L and [v, X] = 1. $\langle C_{D_{\alpha}^*}(v) \rangle = X_0 \cong SL_2(q)$, so arguing on v in place of u we get $X_0 = L$ and $q_0 = q$. If H = LM then as $D_{\alpha} \neq D_{\gamma}$, $M \neq Z(H)$, and as above $\alpha^*\beta = \{\alpha\} \cup \beta^M$. So we may assume $H/M \cong U_3(q)$. Define x as above with $u \in \langle x \rangle$. [x, L] = 1 and x acts on $H/M \cong U_3(q)$, so as 2 < |x| divides q - 1, $u \in \langle x \rangle$ centralizes H/M, contradicting $LM \neq H$.

So X does not exist. Thus $H \cong L_2(q)$. Claim $\beta = B^{\perp} \cap D_{\alpha}^* = \alpha^*\beta - \{\alpha\}$. For if not $\beta \subseteq \langle \alpha^*\beta - \{\alpha, \beta\} \rangle$ whereas $\alpha \not\subseteq \langle \alpha^*\beta - \{\alpha, \beta\} \rangle$.

Choose $1 \neq x \in H_1$ fixing α and λ . x acts on H and centralizes β , so [x, H] = 1. Let $E \in D^*_{\alpha} - L$ and $C \in \gamma$. The action of x on $\langle C, E \rangle$ yields a contradiction.

LEMMA 6.4. Let (α, γ, β) be a triangle in Ω . Then there exists σ with α, β , and γ in D_{σ} .

Proof. Claim $\mathscr{D}(\Omega)$ has diameter two. For if not $\alpha\beta\gamma\delta$ be a chain with $d(\alpha, \delta) = 3$. Let $H_1 = \langle D_{\gamma} \rangle$, $M_1 = O_{\infty}(H_1)$, $\Gamma = D_{\alpha} \cap D_{\gamma}$ and $L = \langle \Gamma \rangle$. Then by 6.3, $H_1 = LM_1$, so $\delta M_1 = \sigma M_1$ for some $\sigma \in \Gamma$. Thus $\sigma \in D_{\alpha} \cap D_{\delta}$, contradicting $d(\alpha, \delta) = 3$. Thus $\mathscr{D}(\Omega)$ has diameter two, so if (α, γ, β) is a triangle, by 6.3, LM = H. So again there exists $\sigma \in \Gamma$ with $\sigma M = \beta M$. α, β , and γ are in D_{σ} .

LEMMA 6.5. Let $\gamma \in A_{\alpha}$. Then $\langle \alpha, \gamma \rangle \cong SL_2(q)$ and $|\langle \alpha \rangle| = q$.

Proof. Set $X=\langle \alpha,\gamma\rangle$. By 6.4, there exists $\beta\in D_\alpha\cap D_7$. Let $H_1=\langle D_\beta\rangle$, $M_1=O_\infty(H)$. Suppose $A\neq E\in\alpha$ with $A\equiv E \bmod M_1$. Then $A=\langle a\rangle$, $E=\langle e\rangle$ with $x=ae^{-1}\in M_1$. Thus x fixes every singular line $\beta^*\delta=\{\beta\}\cup\delta^{M_1}$ through β . As $H\leq C_G(x)$ is transitive on D_α , x fixes all singular lines through any $\beta\in D_\alpha$. Let $\sigma\in A_\alpha$. By 6.3, there are distinct singular lines $\beta_i^*\sigma$, i=1,2, with $\beta_i\in D_\alpha$. Then x fixes $(\beta_1^*\sigma)\cap (\beta_2^*\sigma)=\{\sigma\}$. Thus x fixes Ω pointwise. But this contradicts 6.1.

So $|\langle \alpha \rangle| = |\langle \alpha \rangle M/M| = q$ by 6.3. By 6.3, $X/O_p(X) \cong SL_2(q)$, so $|\langle \alpha \rangle| = q$, $O_p(X) = 1$.

LEMMA 6.6. Ω is locally conjugate in G, $\langle \alpha^{\perp} \rangle$ is transitive on A_{α} , and G^{α} is rank 3.

Proof. By 6.5, Ω is locally conjugate in G. Therefore, to show $\langle \alpha^{\perp} \rangle$ is transitive on A_{α} and thus that G^{α} is rank 3, it suffices to show (*) of 2.7. But if (α, γ, β) is a triangle in Ω , set $X = \langle \alpha, \gamma, \beta \rangle$. Then by 6.3, $X/O_p(X) \cong SL_2(q)$ with $\alpha^{\perp} \cap X = \alpha^{O_p(X)}$. So 3.3 yields (*).

Following the notation of D. Higman let $k=|D_{\alpha}|, l=|A_{\alpha}|, \lambda=|D_{\alpha}\cap D_{\beta}|$ for $\beta\in D_{\alpha}$, and $\mu=|D_{\alpha}\cap D_{\gamma}|$ for $\gamma\in A_{\alpha}$. Let $m=|\beta^{M}|$. [10] implies:

LEMMA 6.7. $l = k(k - \lambda - 1)/\mu$ and either

- (1) $k = l \text{ and } \mu = (\lambda + 1)/2 = k/2 \text{ or }$
- (2) $d^2 = (\lambda \mu)^2 + 4(k \mu)$ is a square and d divides $2k + (\lambda \mu)(k + l)$.

LEMMA 6.8. $O_{\infty}(L) = Z(L)$.

Proof. Assume not. Then there exists $x \in O_{\infty}(L) = L \cap M$ with $B^x \neq B$. By 6.5, $\beta^x \neq \beta$, so $\beta^x \in (\alpha^*\beta) \cap D_{\gamma} = \{\beta\}$, a contradiction.

LEMMA 6.9. $\alpha^*\gamma=\langle \alpha,\gamma\rangle\cap\Omega$ has order q+1. If $H/M\cong U_3(q)$ then $m=q^2$.

Proof. Assume $n \geq 4$. Then a hyperbolic line $\beta\delta$ in $\mathscr{B}(\Gamma)$ is as claimed. But $\beta^*\delta \subseteq \beta\delta$ while clearly $\langle \beta, \delta \rangle \cap \Omega \subseteq \beta^*\delta$. Next assume n=2. Then by 6.3, $D_{\alpha} \cap D_{\gamma} = \langle \beta, \delta \rangle \cap \Omega$ for $\beta, \delta \in D_{\alpha} \cap D_{\gamma}$, and $D_{\beta} \cap D_{\delta} = \langle \alpha, \gamma \rangle \cap \Omega$, so $\alpha^*\gamma$ is as claimed. Finally assume $H/M \cong U_3(q)$. Let $Z = Z(\langle \alpha^{\perp} \rangle)$. Z acts semiregularly on $\alpha^*\gamma - \{\alpha\}$. So if $|\alpha^*\gamma| = q+1$ then |Z| = q. If $|\alpha^*\gamma| \neq q+1$ then $\alpha^*\gamma = D_{\beta} \cap D_{\delta}$, for $\beta, \delta \in D_{\alpha} \cap D_{\gamma}$. So $|\alpha^*\gamma| = q^3$ and $N_G(\alpha^*\gamma)^{\alpha^*\gamma}$ acts as a subgroup of Aut $(U_3(q))$. But by 3.4, Z is elementary abelian, while an elementary subgroup of Aut $(U_3(q))$ acting semiregularly on q^3 letters has order at most q. Further $|\alpha^*\gamma| - 1 = |N_{M\langle\alpha\rangle}(\alpha^*\gamma)| = |C_{M\langle\alpha\rangle}(L)| = |Z| = q$ by 3.4. So $|\alpha^*\gamma| = q+1$.

Finally $\mu=|\varGamma|=q^s+1$, $\lambda=m-1$, and $k=\mu m$ by 6.3 and 6.8. Thus by 6.7, $q^3m^2=l$, while by 6.6, $l=|\langle\alpha^{\perp}\rangle:N_{\langle\alpha^{\perp}\rangle}(\gamma)|=|M\langle\alpha\rangle|=qm^3$ by 3.4. Thus $m=q^2$.

LEMMA 6.10. If $H/M\cong L_2(q)$ then m=q or q^2 . If $H/M\cong Sp_n(q)$ or $U_n(q)$, $n\geq 3$, then m=q or q^2 respectively.

Proof. Assume $H/M \cong L_2(q)$. Then $\mu = q+1$, $k = \mu m$ and $\lambda = m-1$. So by 6.7, $l=m^2q$ and $\mu+\lambda=m+q$ divides $2k+(\lambda-\mu)(k+l) \equiv -2(q^2-1)q \mod (m+q)$. By 3.3, an element of order q-1 in L acts semiregularly on $([A,M]/Z)^*$ of order m-1, so q-1 divides m-1. Thus q divides $m=q^{r+1}$. So q^r+1 divides $2(q^2-1)$ and therefore $r \leq 1$. That is m=q or q^2 .

So with 6.9 we can assume $n \ge 4$. Therefore, singular lines in L have order q or q^2 , respectively. Thus as $\alpha^*\beta = \{\alpha\} \cup \beta^{M}$ these lines are also lines in G.

LEMMA 6.11. $H/M \cong U_n(q)$ and $m = q^2$.

Proof. If not $\mu = \lambda + 2$, so $\mathscr{B}(\Omega)$ is a symmetric block design. Further all lines have order q+1. Thus a result of Dembowski and Wager [8] implies $\mathscr{B}(\Omega)$ is (n+1)-dimensional projective space over GF(q). As G is generated by the set of elations of $\mathscr{B}(\Omega)$ commuting with the symplectic polarity $\alpha \leftrightarrow \alpha^{\perp}$, $G \cong Sp_{n+2}(q)$.

The case n=2 must be treated differently since in this case the existence of D-subgroups isomorphic to $U_3(q)$ are not assured. The following lemma treats this special case.

Lemma 6.12. $n \ge 3$.

Proof. Assume n=2. Let β , $\delta \in \Gamma$, and set $X=L_{\beta\delta}$. We first determine the fixed point sets of elements of L.

If $x \in \langle \beta \rangle^*$ then $F(x) = \beta^{\perp}$. If $x \in X - Z(L)$, then $F(x) = \{\beta, \delta\} \cup \alpha^*\gamma$. For if $\sigma \in F(x)$ is not as claimed, then by 3.3, $\sigma \in A_{\alpha}$. x normalizes $\langle \delta, \alpha \rangle \cong SL_2(q)$ and centralizes α , so x centralizes σ . Thus a similar argument on $\langle \sigma, \beta \rangle$ and $\langle \sigma, \delta \rangle$ shows $\sigma \in D_{\beta} \cap D_{\delta} = \alpha^*\gamma$. If $\langle x \rangle = Z(L)$ then $F(x) = \Gamma \cup (\alpha^*\gamma)$. For arguing as above $F(x) = C_2(x)$, and minimality of G implies $\langle C_2(x) \rangle / Z(\langle C_2(x) \rangle) \cong L_2(q) \times L_2(q)$; that is $C_2(x) = \Gamma \cup (\alpha^*\gamma)$. Finally let $x \in L$ act fixed point free on Γ . As above $F(x) = C_2(x)$ and as $D_{\alpha} \cap C_2(x)$ is empty, $\langle C_2(x) \rangle = Y_{F(x)} \cong SL_2(q)$ or $U_3(q)$. And if $Y \cong U_3(q)$ then Y is doubly transitive so $x \in \langle D_{\alpha} \cap D_{\sigma} \rangle$ for $\sigma \in F(x) - \{\alpha\}$. Thus x is in q^2 distinct conjugate of L in H. However, with 3.3, $C_M(x) = \langle \alpha \rangle$, so there are $m^2q(q-1)/2$ conjugates of $\langle x \rangle$ in H. On the other hand there are m^2 conjugates of L, each containing L0 to L2 conjugates of L3, so L4 is in a unique conjugate of L4. So L5 is in a unique conjugate of L5. So L6 is in a unique conjugate of L6. So L7 is in L8 in a unique conjugate of L8. So L9 is in a unique conjugate of L9.

Let $\overline{G}=U_4(q)$, let \overline{D} be the class of subgroups generated by transvections in \overline{G} , let $\overline{\alpha}$ consists of the members of \overline{D} whose center is a given singular point of the associated projective space, and let $\overline{\Omega}=\overline{\alpha}^{\overline{\alpha}}$. Let $\overline{\gamma}\in A_{\overline{\alpha}}$ and $\overline{L}=\langle D_{\overline{\alpha}}\cap D_{\overline{\gamma}}\rangle$. The discussion above implies $\overline{L}^{\overline{\mu}}$ is permutation isomorphic to L^a .

Lemma 6.3 implies that every σ in $\Omega - (\alpha^*\beta)$ appears in a unique D_{β_1} , $\beta_1 \in \alpha^*\beta$. Set $K = L_{\beta}$, and let $t \in L$ have cycle (β, δ) . Let $\sum_{i=0}^{q+2} \beta_i^K$ be a partition of $\alpha^*\beta$ with $\beta_0 = \alpha$ and $\beta_1 = \beta$. Set $A_i = (\beta_i^+ - (\alpha^*\beta)) \cup \{\beta_i\}$, and $A = UA_i$. Then L maps the edge set of $\mathcal{D}(A)$ onto the edge set of $\mathcal{D}(\Omega)$, except for edges in $\mathcal{D}(\alpha^*\beta)$.

Let T be permutation isomorphism of L and \bar{L} , and let $\bar{\beta} = \beta T$. Let $\bar{\beta}_i^{KT}$ be orbits of KT on $\bar{\alpha}^*\bar{\beta}$ and define $\bar{\Lambda}$ as above with respect to these $\bar{\beta}_i$. There exists an isomorphism S of $\mathscr{D}(\Lambda)$ and $\mathscr{D}(\bar{\Lambda})$ such that S restricted to $\mathscr{D}(\Lambda_i)$ commutes with T restricted to $N_L(\Lambda_i)$ and $N_{\bar{L}}(\bar{\sigma}S) = (N_L(\bar{\sigma}))T$ for $\sigma \in \Lambda$. For $\sigma \in \Lambda_i$ there exists $\bar{\sigma} \in \bar{\Lambda}_i$ with $N_{\bar{L}}(\bar{\sigma}) = (N_L(\bar{\sigma}))T$ from the discussion above, so S can be defined in the obvious manner. So we can apply 2.6 to show $\mathscr{D}(\Omega) \cong \mathscr{D}(\bar{\Omega})$ and thus $G \cong \bar{G}$, if we show condition (ii) of 2.6 is satisfied.

Clearly (ii) holds on Λ_0 . Suppose σ , $\sigma^x \in \Lambda_1$, $x \in L$. Claim $\sigma^x = \sigma^y$ for $y \in K$. As $L = K \cup KtK$ we can assume x = t. Thus $\sigma^x \in D_\beta \cap D_\delta = \alpha^* \gamma$, so $\sigma = \sigma^t$ is fixed by t. But $K = N_L(\Lambda_1)$, so (ii) holds here. Suppose σ , $\sigma^x \in \Lambda_i$, $i \geq 2$. We consider the case $|\sigma^L| = q^2 - 1$; the case $|\sigma^L| = q(q^2 - 1)$ is analogous. Now $\langle \beta \rangle = N_L(\Lambda_i)$ and $q^2 = |\Lambda_i \cap \bigcup_{\alpha^* \gamma} D_\omega|$ in q orbits of length q under $\langle \beta \rangle$. These are the points in orbits of length $q^2 - 1$ under L. Let θ be the set of edges (β_i^y, ω) with $y \in L$

and $|\omega^L| = q^2 - 1$. Let N be the number of orbits of L on θ . Then $q(q^2 - 1)N = |(\beta_i, \sigma)^L|N = |\theta| = |\beta_i^L|q^2 = (q^2 - 1)q^2$, so N = q. Thus $(\beta_i, \sigma^x) = (\beta_i, \omega^y)$ for some $\omega \in \Lambda_i$, $y \in \langle \beta \rangle$. That is condition (ii) holds on Λ_i .

This completes the proof of 6.12.

A unitary (α, β, γ) in Ω is a triple with $\beta \in A_{\alpha}$ and

$$\gamma\inigcap_{\delta\inlpha^*eta}A_{\delta}$$
 .

LEMMA 6.13. If (α, β, γ) is a unitary triple then $\langle \alpha, \beta, \gamma \rangle / Z(\langle \alpha, \beta, \gamma \rangle) \cong U_3(q)$.

Proof. We can choose a unitary triple $(\beta_1, \beta_2, \beta_3)$ in H. Set $X = \langle \beta_1, \beta_2, \beta_3 \rangle$. As $H/M \cong U_n(q)$, $X/Z(X) \cong U_3(q)$. If n=3 we can count the number of unitary triples and the number of such triples centralizing some $\alpha \in \Omega$. These two numbers are equal. So assume $n \geq 4$, and let $(\sigma_1, \sigma_2, \sigma_3)$ be a unitary triple. Choose $\beta \in D_{\sigma_1} \cap D_{\sigma_2}$. If $\sigma_3 \in D_{\sigma}$ set $\beta = \alpha$. If not let $\alpha^*\beta$ be a singular line in $D_{\sigma_1} \cap D_{\sigma_2}$. By 6.3, we can assume $\alpha \in D_{\sigma_2}$. Thus as above we are through.

Let (α, γ, δ) be a unitary triple in D_{δ} . Set $J = \langle D_{\delta} \cap \Gamma \rangle$.

LEMMA 6.14. $J/Z(J) \cong U_{n-1}(q)$.

Proof. If n=3, $\langle \alpha, \gamma, \delta \rangle = D_{\beta} \cap D_{\sigma}$ for suitable $\sigma \in A_{\beta}$ and $J=\langle \beta^* \sigma \rangle$. If n=4, J has width one and a counting argument shows $|J \cap \Omega| = q^3 + 1$. Thus by minimality of G, $J/Z(J) \cong U_3(q)$. Finally if n>4, then arguing as in 6.3, J is transitive on $J \cap D$ and $\langle D_{\beta} \cap J \rangle /O_{\infty}(\langle D_{\beta} \rangle) \cong U_{n-3}(q)$, so minimality of G implies the desired result.

LEMMA 6.15. Let $\theta = \Gamma \cup \delta^L$ and $K = \langle \theta \rangle$. Then $K \cong SU_{n+1}(q)$ and $\Omega = \theta \cup \alpha^K$.

Proof. Claim $\theta^{\theta} = \theta$. Clearly L normalizes θ , so it suffices to show δ normalizes θ . Let $\sigma \in \Gamma \cap A_{\delta}$. Then $\langle \sigma, \delta \rangle \cong SL_{2}(q)$, so $\sigma^{\delta} = \delta^{\sigma} \subseteq \theta$. Thus $\Gamma^{\delta} \subseteq \theta$. Using the fact that 6.15 is true in $U_{n+1}(q)$, one can check that

$$L=J(igcup_{_{\mathscr{L}}}\langle\sigma_{_{1}}^{st}\sigma_{_{2}}
angle)$$

where \mathscr{L} is the set of lines in L-J. Thus it suffices to show $X \cap \Omega \subseteq \theta$ when $X = \langle \sigma_1, \sigma_2, \delta \rangle$. But if $(\sigma_1, \sigma_2, \delta)$ is unitary, 6.13 implies $X \cap \Omega = \sigma_1^* \sigma_2 \cup \delta^{\langle \sigma_1^* \sigma_2 \rangle} \subseteq \theta$ and if $(\sigma_1, \delta, \sigma_2)$ is a triangle then $X/O_p(X) \cong SL_2(q)$ and 3.3 yields the same equality.

So $\theta^{\theta} = \theta$. $\alpha \notin \theta$, so $K \neq G$. $Y = \langle D_{\beta} \cap \theta \rangle = \langle D_{\beta} \cap \Gamma, \delta \rangle$, so

 $Y/O_{\infty}(Y) \cong U_{n-1}(q)$. $[L, \alpha] = 1$ and $\delta \in A_{\alpha}$, so $\Gamma = D_{\alpha} \cap \theta$. Arguing as above $\theta \cup \alpha^{\kappa}$ is self normalizing, so $\Omega = \theta \cup \alpha^{\kappa}$.

Let Z=Z(K). Z fixes θ pointwise and $K \leq C_G(Z)$ is transitive on $\Omega-\theta$, so Z does not fix α . $|SU_{n+1}(q)|/|SU_n(q)|=|\alpha^K|=|K:N_K(\alpha)|$ and $LZ/Z \cong SU_n(q)$, so |Z|=(n+1,q). Considering the covering group of $U_{n+1}(q)$ we get $K \cong SU_{n+1}(q)$.

Put K and D_{δ} in the roles of H and Λ in 2.6. Then 6.15 and 5.4 together with 2.6 imply $G \cong U_{n+2}(q)$.

This completes the proof of the main theorem.

REFERENCES

- 1. M. Aschbacher, Doubly transitive groups in which the stabilizer of two points is abelian, J. Algebra. 18 (1971), 114-136.
- 2. ——, On doubly transitive permutation groups of degree $n \equiv 2 \mod 4$, Illinois J. Math., 16 (1972), 276-279.
- 3. ——, Finite groups generated by odd transpositions, (to appear).
- 4. M. Aschbacher and M. Hall, Jr., Groups generated by a class of elements of order 3, (to appear, J. Algebra).
- 5. H. Bender, Endliche zweifach transitive Permutationsgruppen, deren Involutionen keine Fixpunkte haben, Math. Zeitschr., 104 (1968), 175-204.
- 6. ——, Transitive Gruppen gerader Ordnung in denen jede Involution genau eineu Punkt feslast, J. Algebra, 17 (1971), 527-554.
- 7. R. Brauer and C. Nesbitt, On the modular characters of groups, Ann. of Math., 42 (1941), 556-590.
- 8 P. Dembowski and A. Wagner, Some characterizations of finite projective space, Arch. Math., 11 (1960), 465-469.
- 9. G. Glauberman, Central elements in core-free groups, J. Algebra, 4 (1966), 403-420. 10. D. Higman, Finite permutation groups of rank 3, Math. Zeitscher., 86 (1964), 145-156.
- 11. W. Kantor and G. Seitz, Finite groups having a split BN-pair of rank 1, (to appear).
- 12. ——, Some results on 2-transitive groups, Inventiones Math., 13 (1971), 125-142.
- 13. J. Walter, The characterization of groups with abelian Sylow 2-subgroups, Ann. Math., 89 (1969), 405-514.

Received February 25, 1972 and in revised form February 26, 1973.

CALIFORNIA INSTITUTE OF TECHNOLOGY