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OF CHARACTERISTIC AT LEAST 5

MICHAEL ASCHBACHER

The following characterization is obtained:

THEOREM. Let G be a finite group generated by a con-
jugacy class D of subgroups of prime order p = 5, such that
for any choice of distinct A and B in D, the subgroup generated
by A and B is isomorphic to Z, X Z,, Ly(p™) or SLy(p™), where
m depends on A and B. Assume G has no nontrivial solvable
normal subgroup. Then G is isomorphic to Sp.(¢) or U,(q)
for some power g of p.

A much larger class of groups satisfies the analogous property
for p = 2 or 3, including many of the sporatic simple groups. The
classification for p = 2 appears in [3]. The classification for p = 3 is
incomplete, but a partial solution appears in [4].

For the most part the proof here mimics that in the papers
mentioned above. The exception comes in handling certain degenerate
cases. This is accomplished in § 4 by first showing a minimal counter
example possesses a doubly transitive permutation representation, and
then utilizing numerous results on doubly transitive groups.

1. Notation. In general G is a finite group and D a G invariant
collection of subgroups generating G. G acts on D by conjugation with
this representation denoted by G”. If a<Z D is a set of imprimitivity
for this action we define

D,={Bea’:[a,p]l =1,a + B}

at ={a} U D,

A, =af — at

V.= {Bea’ a+t = B}

W, = {Bea®. D, = D}

Df ={B:BepeD,}.

For Q= a’, &7 (Q) is the graph with point set 2 and edges (a’,

a') where a?e D,». <Z(Q) is the geometry with point set 2 and block
set {8+ NQ: Be Q). For a, Be R the line through & and B in < (Q) is

axg = " NnY

realngine
axp is singular if ge D, and hyperbolic otherwise.
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A triangle is a triple (4, B, C) with Ae D, Ce D,, and Be A, N A,.

If G is a permutation group on a set 2,4 < 2 and X & G, then
X,, X(4) is the pointwise, global stabilizer of 4 in X respectively.
X! = X(4)/X, with induced permutation representation. F(X) is the
set of fixed points of X.

0.(G) is the largest normal solvable subgroup of G.

All groups are finite.

2. Locally D-simple groups. Let G be a finite group and D a
collection of subgroups of G such that D° = D. Represent G as a
permutation group on G by conjugation. G is said to be D-simple if
G is generated by any G invariant subset of D. G is locally D-simple
if D generates G and for any A and B in D either [A, B] =1 or
(A, B) is generated by A<+®, « is a set of tmprimitivity for G” if
ana’” =g for ge G — Nya), and @ # a = &) N D # D.

LemmA 2.1. Let G be locally D-simple and 4 a G invariant
subset of D. Then

(1) If H is a D-subgroup of G then H is locally (H N D)-simple.

(2) If a is a homomorphism of G then Ga s locally Da-simple.

(8) Let "' =<4 ND. Then [I',D—TI]=1.

(4) If G* is transitive then {4)* is transitive.

(5) If DN Z(G) is empty and G = {4 for some orbit 4 of G, then
G 1s D-simple.

Proof. (1) and (2) are straightforward. Let H = {4). Then H <
G. Let AcI',BeD — I" and assume [A4, B] = 1. Let X = (A, B).
Then X = (A*) < H so Bel', contradicting the choice of B. There-
fore, (3) holds.

Assume G* is transitive. Let K = (D — I'y. Then by (3) G is
the central product of H and K so for Aed, 4= A" = A™" = A",
Thus (4) holds.

Finally assume G* is transitive, G = {4) and Z(G) N D is empty.
Suppose 2 is an orbit of G” with K=<{(2>= G. Thenas G={IH, 4N K
is empty, so by (8),[4,2] = 1. Thus 2 is centralized by G, a con-
tradiction. Thus (5) holds.

LEMMA 2.2. Let G be locally D-simple and ¢ a set of imprimitivity
for G°. Then

(1) If Aea,Bea’ + a and [A, B] = 1, then Ja, a’] = 1.

(2) <a® s locally {a)“-simple.

Proof. (1) A= Afca® soa” = a. Thus 2.1.3 applied to {«, B)
implies [, B] = 1. But now the same argument shows [a?, C] = 1 for
each Cina. (2) Let H = {a) + K = {a’), and X = {H, K). Assume
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[H,K]+1and let Aca,Bea’. Thenby (1),[4,B]+#1so Be {A“4Py <
(H*». Thus X = {H*).

LEMMA 2.3. Let G be locally D-simple with G® transitive, and
A abelian. Then

(1) Either V, or W, equals {A}.

(2) V, and W, are sets of imprimitivity for G°.

(3) Vv, ={V.} and Wy, = (W.}.

Proof. Straightforward.

LEMMA 2.4. Let G be locally D-simple with G° transitive and
2 (D) connected. Let A€ D. Then A is contained in a unique maximal
set of imprimitivity & of G and {(D}> is D}-stmple.

Proof. Let H = <D,>, 7w an orbit of H of maximal length on D,,
4= (ny — ZKxd)) N D, I’ = Np(d) and o« = {I" — 4> N D. As =2(D)
is connected, |w|>1, so 4 is nonempty. We will show « has the
properties claimed in the conclusion of the lemma.

By 2.1.8, [a, 4] = 1. By 2.1.4 {(z) is transitive on #. Thus trans-
itivity of G? and maximality of || imply 7 is an orbit of <{D;) on
D,, for Bea. Therefore B < I'.

Suppose BeanNa’+a. Then 4 B* =17 =a° 4°. Now ()
is transitive on 7 so either t S 4 or r S a’. If 7 & 4° then 4 &
{m) S {4, so 4 = 4° and therefore @ = a’, a contradiction. Thus
TS a’ so 4= (n)y S {a’) and therefore 4 & a.

SoI'caya’, Further /1S, soar =C &I forCe 4°. Thus I'=
a U a’. From the last remark of the second paragraph it follows that
I" is a component of = (D), contradicting the hypothesis that <= (D)
is connected.

It follows that « is a set of imprimitivity for G°. By 2.2.1, D} =
D, —a =4 — a. By construction, Z({4)) N 4 is empty, so D} =
and by 2.1.5, {4) is 4-simple.

Finally let @ be a set of imprimitivity for G containing A. 4
centralizes A, so 4 normalizes 8. If Be BN 4 then as K = {4) is 4-
simple, 4 & (B*) < (B*) = {B). Thus 4 S B. As N,(p) is transitive
on B,a & D<= g for aeD,. Thus A* < B, and transitivity of
N,(R)? implies g is a component of <7 (D), contradicting the hypothesis
that =7 (D) is connected.

So 8N 4 is empty and by 2.1.3, [B, 4] = 1. Thus g & Ny(4) —

= a. Thus a is maximal as claimed.

Lemmas 2.6 and 2.7 are from §2 of [4]. 2.6 is a slight generaliza-
tion of its counterpart, but the same proof goes through.
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LEMMA 2.6. Let G be locally Q-simple, let 4 = Q, and let H be
a 2-subgroup of G. Assume

(i) H takes the edge set of = (A) onto the edge set of = (Q)
under conjugation.

(ii) There exists a partition A = YA, of A such that if a* e A for
some a e A;, he H, then there exists r € Ny(4;) with a* = a.
Let G be a second group satisfying the hypothesis of G for which there
exists a permutation isomorphism T of H? H? and an isomorphism S
of 2(4) and = (A) such that

(iii) T restricted to Ny(4;) commutes with S and Ny(a)T = Nz(aS)
for each a e A.
Then S extends to an isomorphism of <= (D) and < (D).

A triangle in D is a triple (4, B, C) with Ae D,CeD,, and Be
A, NA, D is locally conjugate in G if for A, Be D, A is conjugate
to Bin (A, B), or [A,B] = 1.

LEMMA 2.7. Let Q be locally conjugate in G with G* primitive
and < (2) connected. Assume

*) If (o, B,7) is a triangle and X = {a, B, 7>, then BN XCS
B(aLnX> and &= (BJ_ n X)a.
Then {a*) is transitive on A, and G° is rank 3.

3. p-transvections. Let G be a finite group, p a prime. A set
of p-transvections of G is a G invariant collection D of subgroups
generating G such that for any A, Be D,|A| = p and (A, B) is the
homomorphic image of a subgroup of SL.(p"), with n and the image
depending on A and B.

If p =2 then D is a set of odd transpositions. Groups generated
by odd transpositions have been classified [3]; they include the sporatic
simple groups discovered by Fischer plus many infinite classes of simple
groups. Conway’s sporatic simple group -1 is generated by 3-transvec-
tions, as is the Hall-Janko group and Suzuki’s sporatic simple group.

LEMMA 3.1. Let D be a set of p-transvections of G,p > 2, and
let M= 0.G). Then

(1) G s locally D-simple

(2) If G is a p-group then G 1is abelian

(3) If G= M s not a p-group then p = 3 and G s a {2, 3} group

(4) If p > 3 then M/O,(G) = Z(G/O,(G)).

(5) Let M=1. Then G is a simple unless p =3 and G =
PG U,,(2).

Proof. Let A,BeD,[A,B]+1. Set X=<{A,B). Then X is
isomorphic to SL,(p™) or L.,(»") unless p = 8 and X = SL,(5) or L,(5).
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This implies (1) and (2). If G = M then as L.(g) is simple for ¢ > 8,
X must be isomorphic to SL,(3) or A,. Therefore, 4.1 of [4] yields (8).

Assume p > 3. To prove (4) we may assume O,(G) = 1. Let @
be a minimal normal subgroup of G contained in M. Then Q is a ¢-sub-
group for some prime q # p. If A centralizes @ then Q is in the center
of G = (D), so we can assume [A4, @] # 1. But then (4% < AQis a
solvable D-subgroup whose order is divisible by g, contradicting (3).

Finally assume M = 1 and let H be a minimal normal subgroup
of G. If AL H and x¢c H then (A, A®) has a normal subgroup of
index p, so either A*e A* or (A, A*) = SL,(3) or A,. If A" = A*
then [H, A] is a normal abelian subgroup of H, so [H, A] = 1. Thus
H is centralized by G = (D>, a contradiction. Therefore, if A £ H,
then [4] implies AH = PGU,,(2). PGU,(2) is normal in AutU,(2) so
G = C,(H)HA. By induction on |G|, G/H = C,(H)A = Z, or PGU,,(2).
But now [4] implies the latter case does not occur.

So we can take A < H. So G = (D) = H is simple.

The proof of the following lemma is due to David Wales.

LEMMA 3.2. Let G = L,(q) or SL,(q), q = p™ odd, with Sylow p-
subgroup P. Assume G acts irreducibly on a n-dimensional vector
space over GF(p), such that n = 2 dim C,(P) and P acts semiregularly
on V — Cy(P). Then G = SL,(q), n = 2m, and G acts in its natural
representation on V.

Proof. Let B be a basis of V, and GF(r) the splitting field for the
representation of G on V. Extend the action of G to a vector space
W over GF(r) with basis B. W is the sum of k absolutely irreducible
G-invariant subspaces W; of W. By inspection of the irreducible repre-
sentations of SL,(gq) (e.g. §30, [7]), dim C; (P) = 1 for all .. Thus as
n = 2dim C,(P) and P acts semiregularly on V' — C,(P), dim C, (P) =
2. Again by inspection of the representations of SL.,(q9),q=17,G =
SL.,(q), and G acts in its natural fashion on W,. Further G"* 1 <
i<k, are the m equivalent representations obtained from G"¢ by
Aut GF(q). Thus n = 2m and G acts in its natural fashion on V.

LeEMMA 3.3. Let D be a class of p-transvections of G, p odd,
with G/O.(G) = L,(q). Let M = O,(G), Ae D, m = |AY| and Z = Z(G).
Assume O (G)/M = Z(G/M). Then for some Be D, G = MX where X =
(A4, B) = SLy(q), Z = [A*, M]N[B*, M}, M = [A, M][B, M], | M|Z| = m*
where m = |AY|, Z = C,(x) for any p'-element of X, and [M, B8] is
transitive on A™.

Proof. As G/O.(G) = L,(q) there exists Be D with X = {4, B) =
L.q) or SL,(q). Let a = A*NX, and 2 = a*. Let K = [[.[¥, B].
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By 3.1, [M, a] is elementary abelian, G = {[M, a], X)> normalizes K
and [A, M/K]=1. So M= K. As X? is doubly transitive, Z, =
(M, al N [M, g] = [M, ] N[M,d] for all pairs («, B), (A, §) from 2. So
as [M, «] is abelian, Z, < Z. Thus we can assume Z, = 1. Therefore,
M is elementary abelian. A is in m groups {4, C», Cec B, so there
are m® total D-subgroups isomorphic to L,(q) or SL,(q). Set G = G/Z.
Z = Cy(X), so m* = | X% = |M| = |[M,«a][M, 8]|. On the other hand
m =|A"| < |[M, a]|, som = |[M, a]|, M= [M, a][M, 8], and A" = A"-7,
Lemma 3.2 implies X = SL,(q) and Cy(x) = 1 for all p’-elements x ¢ X.
So it suffices to show Z = 1. Let <(u) = Z(X). Then M = Z[M, u],
so DE X[M,u]1G. Thus Z = 1.

LEMMA 3.4. Let D be a class of p-transvections of G, p odd, with
M = 0,(G), X a D-subgroup with X/Z(X) = U,(q), and G = MX. Let
Z=2(G,AcM and m = |AM|. Then Z < [A*, M] and | M/Z| = m’.

Proof. Let X=<{A4;,1Zi13),A=A,leta;= AN Xand 2 =
a’. Set Z, = [a, M] N [, M]. As X? is doubly transitive Z, =[5,
M N[y, M] for B,veQ. [a, M] is abelian so G = (X, A”) centralizes
Z,. Thus we can assume Z, = 1.

Set N =TI, [M, «]. By 3.3, [M, ] < [Ma}[M, e;], so N is
normalized by G = {«,, a,, s, M). A centralizes M/N, so M = N.
As Z, =1, M is abelian. Let » be the involution in {«, @, and v
the involution in {a,, @,>. We may assume [u,v] = 1. M= C,(u) x
[M, u] and by 3.3, Cy(uw) = Cy(a)) N Cyle) and [M, u] = [M, a,][ M, v,].
Therefore, C,(u) N Cy(v) = Z and as X has one class of involutions,
ICy(w)|Z} = | M|Z| = |Cy(w))Z]|m*. So |M|/Z| = m? and as | M| = m?,
Z=1. Thatis Z = Z, < [A, M].

4, Groups with <7 (D) disconnected. This section consists of a
proof of the following theorem:

THEOREM 4.1. Let D be a conjugacy class of p-transvections, p =
5, of the group G. Assume (D) is disconnected and O.(G) = 1.
Then G = L,(q) or U,(q) for some power q of p.

Throughout § 4, G is a counterexample of minimal order to
Theorem 4.1. For AeD let A be the component of <7 (D) containing
A. Let D be the set of components. Write A~ B if 4, Be D and
(A, B) is isomorphic to L,(p) or SL,(p). For A + B define

I'ys=1{Cecd: A~ E ~ C for some Ec B} .
Now for A # B, A ~ B if and only if AU B* = BU A”. Thusif A~
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B then X = {5 I"y7) acts on I" = AU B“f order p +1, so ¥ =
gy =AY, and X=<(Y,B) ={A4,B)X,. By 3.1, X, = 0.(X) and
Y is a p-group. Further for fixed B # A4, the sets ",z C € A, parti-
tion A.

Let m = |I",3|, and let » be the number of classes ",z in A. If
m > 1 then applying 3.3 to X we have that (4, B) contains a central
involution u = (4, B), and w centralizes only A in I",z.

Let Ce A. {C, B) contains E e I',;5and v = u(E, B) is in the center
of {C, BY. Indeed v = u(C, F) where C~ FeBN<{C,B). As v cen-
tralizes a unique member of 7", and I',3 each member C, of I
determines a distinet member E, of I",3 N <C, BY). Thus m = ||
for all Ce A. Further u = w(C,, F) for some C,el'ys F,el'»z. So
Cpy(u) intersects each ",z in A in a unique member. Set K = {Cp(u)>
and H = (K, A). Minimality of G implies K = SL,(q) for some power
g of p. So the set 4 of components of & (D) containing an element
of Cp(u) has order ¢ + 1 and Q = {(C5(u))> acts regularly on 4 — {4]}.

Now there are m’ involutions u(A4,, B.), 4, € "4, B, € I"5z, and m?
pairs (A4, C), C,el'y5, with u(A,, B, centralizing at most one pair.
It follows there exists u with A, CeQ. So as Q is abelian, (A4) is
abelian. Notice that if m =1 then A = I",3 N {C, B), so again [A4,
C] = 1, and {A) is abelian. Therefore:

LEMMA 4.2. {(A) is abelian.

Let {c) = Ce A. We have shown there is an <{e) = E € C5(u) N ["¢3,
and we can choose ¢ such that B°= B°. Thus as {(A) is abelian, B* =
B?®=PB%=PB% so Hactson 4= AU B? and H= KH,=KO,(H) by 3.1.

Summarizing:

LemmaA 4.3. (1) If m > 1 then (A, B) contains a central _imiolu-
tion u. (2) If (A, B) contains a central involution w then {A, B) =
H = {Cp(u)>0,(H) with {Cp(uw)> = SL,(q) for some power q of p.

Let J = Ny(4), I = C,(A). For X< G let F(X) be the set of
points in D fixed by X.

LEMMA 4.4. Assume v is an involution in the center of <A, B).
Then

(i) If v is an involution in the center of <A, C> with [u, v] = 1,
then u = v.

(i) J = OWJ)C,(w).

Proof. Set H = {Cp(w)>. Let v be as in (i). Then v acts on H
and fixes A. There are q + 1 members of D intersecting H, and
g +1 is even, by 4.3. Thus v fixes a second member E = A of D
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with ENH # @. As H = SL,(q), v centralizes an element E of E.
Thus <u) = Z({(A4, E)) = {v), yielding (i). (i) and Glauberman’s Z*-
theorem imply (ii).

LEMMA 4.5. Assume m(A,B) =1 with A~ B. Let xc{A, B)
fix A and B. Then

(1) B = B(A) is the unique element of B with A ~ B.

(2) 2 acts as scalar multiplication in GF(p) on Q = (A).

(3) Assume yeJ has scalar action on Q and fizes B. Then y
has the same action on {B) and if |aI/I| > 2 then F(x) = {A, B}.

(4) If (A, C) = Ly(p") or SL,(p"), n odd, for all Ce B, then {4,
B) = Ly(q) or SLyq).

(5) If p =5 and {4, C) = L,(p") or SL,(p"), n even, for some
C c B then there exists y with |Iy/I| = 4 inducing scalar action on Q
and {B).

(6) m(A,C) =1 for all C # A.

Proof. (1) is just a restatement of m(4, B) = 1. Let Ce A. (C,
B) contains an element A, of D centralizing C with A, ~ B. Thus by
(1), A, = A(B)= A. Soxze (A, B) <{C, B) and thus has the same action
on C as on A. This yields (2). Notice that (2) implies J = IC,(x).

Assume yeJ is as in the hypothesis of (8). Then for Cc A,y
fixes C and therefore B(C). So y acts on {C, B) with scalar action
on BN<C,B). So y acts on B as on A.

Assume y has order r" for some prime r,r dividing p — 1, and
CeF(y) — {A, B}. Suppose first that m(4, C) > 1. Then by 4.3, K =
(A, CY) = HM where H = (Cp(uw))>, u = u(4A, C), and M = O,(K). y
fixes A so y fixes I'y; for A~ C. As |I';5| is a power of p and p =
1 mod », x fixes a point C of I";5. As this holds for each Ac A, we
can assume & normalizes H. Thus with 4.3, F(yu) = {4, C} and [y,
u] = 1. Now J = IC,(y), so [M,y] = MNI=[A, M] by 3.3. So if
y acts by scalar multiplication on C, then [M, y] < [4, M] N [C, M] =
Z(K) by 3.3, so that y centralizes M/Z(K). But y does not even
centralize [A, M]/Z(K). So y does not have scalar action on C.

Set £ = B*. y has scalar action on E and B, so as above m(E,
B) =1. (E,B) = SL,(q) or Lyq) so there exists an involution ¢ with
cyele (K, B) inverting y mod C(B). Thus ut € N(B) inverts y mod C(B),
while N(B) = C(B)C(y). 8o |yC(B)/C(B)| = |yl/y| < 2. o

Assume |ylI/y|> 2. Then as above m(F, F') =1 for all £, F € F(y)
and C,(y) fixes F(y) pointwise. Now if z is an element centralizing
A, B, and y then F(z) = (Cp(2)) N D and minimality of G implies F(z) N
F(y) = {A, B}. Thus z moves C,s0 z = 1. Now there exists an involu-
tion ¢ with cycle (4, B) inverting y modulo C(4) N C(B). Thus y* =
y~'. Similarly there exists s with cycle (B, C) inverting y. So ts
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moves A to C and centralizes v, a contradiction. Thus we have shown
3).

Assume the hypothesis of (4). Let Ec A, and C = B(E). Then
for ac@N<CA,C),{adcA. So A= {a):aecQ}. Let 4=AyU B
Clearly @ normalizes 4. Further for E = {(e) € A, B°’?» = A U B<Z-»ne),
so as A = {{a): a € @%, B normalizes 4. Thus X = (4, B) normalizes
4. Further X* is 2-transitive with @’ <1 X3 and regular on 4 — {4]}.
Therefore, a result [11] of Kantor and Seitz implies X? = L,(g). This
yields (4).

Assume the hypothesis of (5). Then there exists y € (4, C) with
|yI/I| = 4 inducing scalar action on Q@ N {4, C) and (B) N <4, C). By
(2), = »* inverts @ and {B), so orbits of x on A have order at most
two. Suppose (4,, A,) is such an orbit. Let B, = B(4,) and set X =
{4,, B,>. Then y normalizes X with x inverting @ N X, so y induces
scalar action on @ N X and fixes A4,, a contradiction. Thus y fixes A
pointwise and induces scalar action on Q. This yields (5).

It remains to show (6). Assume m(A4, C) > 1 and let u = u(4, C).
By 4.4,J = 0(J)C,(w). As J = IC,(y), [w,y] =< 0(I). Thus some con-
jugate v of u centralizes y. Now if p > 5 or p=5 and {4, E) = L,5") or
SL,(5"), n even, for some E € B, then we can choose y with | Iy/I| > 2.
So by 38), F(y) = {A,B}). As [v,y] =1 and v fixes A, v fixes B. So
v centralizes some Be B, and by 4.3, as m(4, B) = 1,ve I. But this
is impossible as u ¢ I.

It follows from (4) that (A, B) = L,(q) or SL,q) with ¢ = p*, n
odd. So A = {{a):aec@). But by 4.3, (A,C)> = H = {Cp(u))0,(H)
with O,(H) == Z(H). Thus there exists a € @* N O,(H) with<a) ¢ 4, a
contradiction.

LEMMA 4.6. m(A, B) = 1 for all B = A.

Proof. Assume not. Then by 4.5.6, m(A, B) > 1 for all B = A.
Let w = w(4, B),v = u(A4, C). By 4.4, u is conjugate to v under J,
so J takes C to a point of F(u). But by 4.3 and 4.4, C,(u)"™ is
2-transitive. Thus J is transitive on D — {4}. Let K = (4, B), H =
{Cpr(w)y and M = O,(K). Let 2 = Uxns Co(u*). Suppose w € u’ inverts
1= xef. Then wu* inverts x while by 4.4, wu* has odd order. So
X=[Q,u]=<Q—-—2>=<MNQ by 33. But X<IJ,J is transitive
on D — {4} and M N Q fixes B, so X fixes D pointwise, contradicting
3.1.5.

LEMMA 4.7. (1) There exists a prime r such that for all B + A,
J = INy(R) for some r-group with F(R) = {4, B}.
(2) G”* is doubly transitive.
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Proof. (1) implies that there exists a prime = such that for any
B + A, a Sylow r-subgroup of G+3 fixes only two points. This implies
G” is doubly transitive. So it suffices to proof (1). But unless p = 5
there exists a prime 7 dividing » — 1 and an r-element y< (4, B)
fixing A and B with |Iy/I| > 2. So 4.5 implies (1) unless p = 5 and
(A, By = H= L,(5") or SLy(5"), n odd. As 5" = |Q| = |[{(A)], this holds
for all B = A.

Suppose « is an involution in I and let (C, E) be a cycle in % and
X =(C,Ey. As u does not centralize X, acts fixed point free on
XND, so as n is odd, w induces an outer automorphism in PGL.(5")
on X, and thus there exists a 2-element y € X inducing scalar action
in GF(5) on (C) and (E) with %® not centralizing (C)>. Thus by 4.5,
|F(y)| = 2, so |D| = m is even.

Assume m is odd. Then I has odd order. Let x be the involution
in {(A,B)NJ. By 4.5, J= IC,(x). But as m is odd J contains a
Sylow 2-subgroup of G, so the Z*-theorem contradicts O.(G) = 1.
Therefore, m is even.

If a Sylow 2-subgroup of G5z fixes exactly two points for every
B + A, then G” is doubly transitive. So choose B such that a Sylow
group of G5 fixes more than two points. Then H = (A, B) = L,(5"),
C,(H) has odd order and the involution x ¢ Hyz fixes three or more
points. Suppose y* = & for some ye G. If (C,E) is a cycle of y in
F(z) then y normalizes X = (C, E) so as y* =  and = is odd, y fixes
two points in X N D, which must be C and E. This is a contradiction,
so # is not rooted in this manner.

Suppose I has odd order. Then by 4.5, J = IC,(y) for any involution
yelA,C> and any C = A. So yea’. Let u be an involution. We
may assume % has cycle (4, B). So % normalizes H, and as I has odd
order and « is not rooted in {u, HY, w € H. Thus u € 2°. Thus G has one
class of involutions, so as « is not rooted, a Sylow 2-subgroup of G is
elementary abelian. Walter’s classification of such groups [13] implies
G = L,(5"), a contradiction. So I has even order. Thus x centralizes
some involution w e I; as |D| is even, there exists R e F(z) N F(u) —
(4}; minimality of G implies (C5(un)) = L.(5"), SLy5" or U(5"), so
F(x) N F(u) = {A, R}.

Consider C,(x)"*'. Arguments such as in 4.5.3 and in the last
paragraph show that nontrivial elements of C(x)"* fix at most two
points. Let (C,E) be a cycle of w in F(x). We have shown z is
rooted modulo C(C) N C(E), while x is not rooted. So C(C) N C(E) has
even order and there exists an involution » e C(x)"*, fixing C and E,
and centralizing u. v acts on F(x) N F(u)={A, R}. Let L=C%5. L
acts semiregularly on F(x) — {4, R} and C.(v) acts on F(v) N F(z) =
(C, E}, so vy = Cy(u). So a Sylow 2-subgroup S of (L,v) = L* is
semidihedral or dihedral, and there are one or two classes of involu-
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tions in L* — L, respectively. But if Te F(x) — {4, R} let t be the
involution in C(x)"* fixing T and T* and centralizing u. Then te
vi,1=1 or 2, one of the (at most) two classes of involutions in L* —
L. So L takes F(t) N F(x) = {T, T*} to F(x) N F(v;). Thus L has one
orbit, or two orbits of equal length, on F(x) — {4, R}, for S semidihedral
or dihedral, respectively. It now follows easily that C(x)"*® is 2-
transitive. But J and therefore C,(x) cannot take B to R as there
is no involution in I fixing B. This last contradiction completes the
proof of 4.7.
Set L = G5, H= {4, B, K = C,(H), and Q = <A).

LEMMA 4.8. (1) J=IL and K + 1.
(2) H = Lyq) or SLyq)-

Proof. By 4.7.1 there exists a prime r such that a Sylow »-
subgroup R of L fixes only A and B, and J = IN,(R). N,(R) acts
on F(R) = {A,B}; so N(R)< L. If K=INL =1 then I is regular
on D — {4} by 4.7.2, so [11] implies G = L,(q) or Uy(q). Thus K = 1.
Minimality of G implies H = {Cp(K)> = SL,(q) or Lq).

LeMMA 4.9. Suppose x € L* with |Cy(x)| = ¢, > 1. Then {Cph(x)) =
Ly(q0), SLy(go) or Uy(q) and [F(x)| = ¢, + 1 or g5 + 1.

_ Proof. Minimality of G yields_the desired form for {C,(x)y. If
C € F(x) then [z, C] = 1 where C = C(4), Ae Cy(x). Thus |F(2)|=q,+
1or ¢+ 1.

LEMMA 4.10. Set n = |D|. Then (n — 1, |K|) is a power of p.

Proof. Let r be a prime divisor of | K|, and R a Sylow r-subgroup
of K. By 4.9, F(R)y=q + 1 or ¢ + 1, so if r # p then a Sylow -
subgroup R, of N,(R) fixes a second point B of F(R); that is R, = R.
So R is Sylow in I and # does not divide » — 1 = |I: K|.

LEMMA 4.11. |D|=n is even. If u is an involution then n =
|F(w)| mod 4. |L| is even.

Proof. Results of Bender on doubly transitive groups [5.6] imply
L has even order. By 3.1, G is simple, so any involution % must act
as an even permutation on D. Thus n = |F(u)| mod 4. If n is odd,
2-elements fix an odd number of points. So by 4.8 and 4.9, | K| and
|L/HK | are odd. And by 4.5.3, |HN L|+ 0mod 4. As L has even
order, |[HN L| = |L| = 2mod 4. Thus p = ¢ = 5mod 8. Let u be the
involution in HN L, and S a u-invariant Sylow 2-subgroup of I. As
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n is odd and J = IL, S{u) is Sylow in G. As G has no subgroup of
index two, S = 1. Let s be an involution in S, and (B, C) a cycle in
s. Then s normalizes X = (B, C) and as |F(s)| = 1, s acts fixed point
free on DN X. So as p=¢q =5mod8, (s, X) = PGL,(q) and there
exists y € (s, X)> of order 4 inducing scalar multiplication on (B> and
fixing B and C. By 4.5.3, |F(y)| = 2, contradicting = odd.

LemMA 4.12. If J = O(I)L then J = O (1)L, where w 1is the set
of primes dividing n — 1. Also O(K) # 1, and O(I) is not nilpotent.

Proof. Set P= O.(I). If P+ O(I) let R/P be minimal normal
in J/P,R < O(I). R/P is an r-group for some prime » and by a
Frattini argument, J = PN,(R,) where R, is a Sylow »-subgroup of
R contained in K. By 4.9, N,(R) = LP, where |P,| = q or ¢*, and
P, <A Ny(R,). Thus PP,<1J, so P, < Pand J = PL. Results of Kantor
and Seitz on doubly transitive groups [11, 12] imply P is not nilpotent
or regular on D — {A}. Thus 1 PN L = PN K = O,(K) by 4.10.

LEMMA 4.13. Let X & L fiz 3 or more points of D. Then C,(X)"™
is doubly transitive.

Proof. It suffices to show there exists a prime 7 such that a
Sylow r-subgroup of C,(X) fixes only A and B. Thus with 4.5 we
can assume ¢ = 5™ with m > 1 odd. Thus there is an r-element 1 =
yeHNL,r> 2, and as m is odd v is not inverted in J/I by 4.8.
Thus arguing as in 4.5, F(y) = <4, B>. [y, X] = 1 unless Cy(X) = 1,
in which case 4.9 implies C.(X)"'® is doubly transitive.

LEMMA 4.14. Assume ¢q = — 1mod 4 and 2 is an involution in
L inverting Q with |F(x)| > 2. Then |F(x)| = q + 1.

Proof. As ¢ = — 1mod4, ¢ is an odd power of p, so no element
in HN L is inverted in J/I. Thus if ye HN L with |y| > 2 then
|F(y)| = 2. Therefore, with 4.9 and 4.13, Cy(x)"*® is a Zaussenhaus
group. So Cux)"*™ has a normal subgroup isomorphic to L.(m), of
index at most two, with |F(»)| = m + 1. Now if m = 1 mod4 then
by 4.9 and 4.11, K has odd order, and {(x) is Sylow in L, so that
|C(x)"*| is odd, contradicting m = 1mod 4. So m = — 1 mod 4. Thus
C.(x)"* is cyclic and inverted by any te C,(x) with cycle (4, B). As
we can choose te H, and [K, t] = 1, it follows that |Cx(z)| = ¢ < 2.
Further e(m — 1)/2 = |C(x)"*| = ¢e|HN L| = &(qg — 1)/2, so m = q.

LEMMA 4.15. Suppose u is an involution in Z*(L) fizing 3 or
more points. Then we Z*(J).
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Proof. weZ*(L)so u*NCr(u)={u}. Now 4.13 implies u® N L = u*.
Further as |D| is even, if v is a conjugate of u in J centralizing u
then we can assume ve L, soveu’ N Cy(u) = u* N Cy(u) = {u}. Thus
by the Z*-theorem, u e Z*(J).

LEMMA 4.16. If H= L,(q) then HN D = F(X) forany 1 # X< K.

Proof. If F(X) = HN D then by 4.9, H < {C(X)) = Ui(g), so
H = SL,(q).

LEMMA 4.17. Assume w is an involution in L fixing m + 1 =3
points, let ¢ = | L: C(u)| and let e be the number of conjugates of u
with cycle (A, B). Then |D| — 1 = m(m + le/c + m.

Proof. Let 2 be the set of pairs (v, @) where vewu® and a is a
cycle in v. Then |u?|(n —m —1)/2 = |2| = n(n — 1)¢/2 where n= |D|.
Further by 4.18, |u?| = n(n — )e/m(m + 1).

LEMMA 4.18. (1) Let S be a 2-group such that Cy(S) = 1. Then
S has rank at most one.
(2) J=O0U)L.

Proof. Suppose 1= <uy) = HN L. Then by 4.15, uwe Z*(I), so
J = O(I)L. Define P= 0O I) as in 4.12, and assume S has 2-rank at
least two. Then P = []s Cx(s), while by 4.9, Cp(s) is a p-group for
seS% Thus P is a p-group, contradicting 4.12.

So HN L =1 and by 4.16, N,(H) = QK is strongly embedded in
I. As Q=<0() and [K, HN L] = 1, Bender’s classification of groups
with a strongly embedded subgroup [6] implies J = O(I)N,(H N L).
By 4.5, augmented by arguments such as in 4.13 for the case ¢ = 57,
modd, N,(HN L)= L. Now arguing as above, S has 2-rank at most
one.

Define P = O,(I) as in 4.12. Set P, = O,(K). P, 1Dby 4.12 and
4.18.

LEMMA 4.19. (1) F(X)=HND for 1L X< P,

(2) HNhK=1.

(3) Assume u ts an involution in K and let veu® have cycle
(4, B). Let P, be a {u,v) invariant Sylow p-group of O(K). Then
[v, P] = P, and [u, P] =+ 1.

Proof. Assume 1# X < P, with F(X)# HND. Then Y =
{Cp(X)) = Uyg) by 4.9. So HN K = {uy # 1. Further as N (X)X
is a p’-group, X = P,. Let (C, E) be a cycle in w and v e u® fix C and
E. Then [u,v] =1 so v acts on {Cp(u)>) = H and thus also on P,
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v induces an automorphism on Y = U,(q) and therefore fixes points
A,e F(P). So Cec(A, A <Y and therefore F(P,) = D, a contradic-
tion. This yields (1).

Assume 1 # {u) = HN K. Then in particular [u, P] = 1. Let
v e u® have cycle (4, B). v acts on P,and F(v) N F(x) = F(v) N F(u) =
@ for we P{. Thus Cp(v) acts fixed point free on F(v) of order q +
1, so Cp(v) = 1. Define e and ¢ as in 4.17. It follows that ¢ = 1 and
e=0 mod p. So by 4.17, |D| — 1 = q[(q + 1)e/c + 1] = ¢ mod pg. So
P,Q is Sylow in P and w centralizes P,Q, and inverts a Hall p’-group
P, of P. Thus P = P, x (P,Q) is nilpotent, contradicting 4.12. This
yields (2).

Assume the hypothesis of (3) and define ¢ and e as in 4.17. Arguing
as above, [v, P] = P,, so p divides e. By 4.18, L = O(K)C,(u), so if
[P, w] =1, then p does not divide ¢. But then arguing as above we
have a contradiction.

LEMMA 4.20. ¢ = 1 mod 4.

Proof. Assume ¢ = — 1 mod4. By 4.9, 4.10, and 4.14, Cy(%) is
a p-group for any involution x € L, while by 4.12, P is not a p-group.
Thus L has 2-rank one. Suppose K has odd order. By 4.11, L has
even order so there exists an involution ¢ L and <{«) is Sylow in J.
If |F(x)| = 2, then by 4.11, n = |D| = 2 mod 4, and [2] implies G =
Ly(q). Thus by 4.14, |F(x)| = ¢ + 1. Let v be a conjugate of 2 with
cycle (A, B). We may choose v = t or tx where t ¢ H. By 4.16, F(P,) =
HND, so |[F(PYNF@)|=0or 2. Thus if Cpv) #1 then 1=gq +
1= |F(z)] =0 or 2 mod p, so v inverts P,. Thus v = tx, and x inverts
P,. Define ¢ and ¢ as in 4.17. Then e = (¢ — 1)¢/2, so by 4.17, n —
1 = q(¢* + 1)/2. In particular QP, is Sylow in P and inverted by .
As |F(z)] = ¢ + 1, « inverts an z-invariant Sylow r-subgroup of P
for » # P, with 4.10. Thus z inverts P, and P is abelian, contradicting
4.12.

So K contains an involution . Let v e u® have cycle (4, B), with
[v,u] =1. As HN K =1 and v acts fixed point free on F(u) = HN
D,v=1t or ut where teH. By 4.19 [v,P] =1, so v = ut. Thus
defining ¢ and ¢ as in 4.17, e = (¢ — 1)¢/2, so by 4.17, n — 1 = q[(q +
Defec + 1] = q(¢* + 1)/2. Let R be a <u)(HN L) invariant r-Sylow
group of P, where r # p. Then {u)(H N L) acts semiregularly on R,
|R|] > q. As a p'-Hall group of P has order (¢* + 1)/2, (¢* + 1)/2 is a
prime power. Thus ¢ is a prime (e.g. Lemma 3.1, [1]). P, acts semi-
regularly on D — F(P,) of order q(¢* + 1)/2 — q = q(¢* — 1)2, so | P)| =
g. Thus Q = Cy(u) £ Z(P), or [P,u] is a Hall p’-group of P. In
either event P is nilpotent, contradicting 4.12.
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LemMmA 4.21. | K| is odd.

Proof. Assume K has even order and let 4 be an involution in
K and v a conjugate of wu, centralizing u, with cycle (4, B). By
4.1, [v, P] = P, and [u, P]#1. 8o Cp(uv)#1, |F(uv)| = 0 mod p and
uv¢u®. So by 4.11 and 4.18, uvex® or (ux)® where xe H. Now
[, P] =1 so |F(x)] =2 mod p. Thus uve (ux)® and as |F(uv)| =0
mod p and |F(P) N F(ux)| = 2, Cp(ux) = Cp(u) =1. So Q= Cp(u),
yielding a contradiction as in 4.20.

LEMMA 4.22. L has 2-rank one.

Proof. Assume not. Then as |K| is odd by 4.21, there exists an
involution z € HN L and an involution w e L with |[Cy(u)| = r, q¢ = 7%,
and Q = Cy(u) x Cy(ux). Notice P = Cp(x)Co(t)Cr(ux) = Cp(x)Q. Set
m + 1= |F(z)|. As P, acts semi-regularly on F(x) — {4, B}, m=1
mod p. Let P, be a subgroup of C,(x) maximal with respect to being
normal in C,(x) and semiregular on F(x) — {4}. Let M/P, be a minimal
subgroup of C,(x)/P, contained in Cp(x). By 4.10, M/P, is a p-group
and as P, is semi-regular on F(x) — {4} of order m = 1 mod p, P, is
a p’-group. Thus M = P,(P,N M) = P,M, and C;(z) = P.(N(M) N
C,(®)) = P,C,(x) as F(x) NF(M,) ={A,B}). So |P,J=m and P, =<
QCp(x) = P. Thus P,Q is regular on D — {A}. As u inverts P, P,Q
is nilpotent and thus contained in Fit (P), the Fitting subgroup of P.
So Fit (P) is transitive on D — {4} and nilpotent, contradicting 4.12.

LEMMA 4.23. |D| = 2 mod 4.

Proof. Assume not. Let x be the involution in H N L. By 4.11,
|F(x)| = 0 mod 4. As in 4.14, Cy(x)"** is a Zassenhaus group and ¢
inverts L7 where t€ H has cycle (A4, B). But [t,P] =1 and P, =
Pre . g contradiction.

4.22 and 4.23 together with [2] imply G = L.(¢) or U,(q). Thus
the proof of Theorem 4.1 is complete.

5. Examples.

Hypothesis 5.1. Let V be a 2m dimensional space over GF(q), q
a power of the odd prime p, with nondegenerate skew symmetric
bilinear form (,). For we V¥ the transvection u* determined by u is
the map

u*: ey — (& + (x, wyu)
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considered as a projective transformation of V. Let D = {{u*):ue V¥
and G = {D).

G is the 2m dimensional projective symplectic group SP,,(q) over
GF(q).

LeMMA 5.2. Assume hypothesis 5.1. Let A = {a*) and B = {b*)
lie in D with [A,B]l +#1. Set L = {(D,N Dgy. Then

(1) D s a class of p-transvections of G.

(2) L/Z(L) = SP,,_.(q) for m > 1.

Proof. Let {¢*)> = CeD. Then [A, C] =1 if and only if (a, c) =
0. So (,) restricted to <a,bd) is a nondegenerate skew symmetric
bilinear form and therefore (A4, B) is a homomorphic image of a sub-
group of SL,(g). This yields (1). Similarly L acts as a symplectic
group on {a, by* yielding (2).

Hypothesis 5.3. Let V be a n-dimensional vector space over GF(q?)
with nondegenerate semibilinear form (,). For nonsingular vector u
let u* be the tramsvection determined by w considered as a projective
transformation of V. Let D = {u*: (u, w) = 0}, and G = {D).

G is the n dimensional projective special unitary groups, U,(q).

LEMMA 5.4. Assume hypothesis 5.3. Let A = {a*) and B = {(b*)
lie in D with [A,B]l + 1. Set L = (D, N Dg) then

(1) D s a class of p-transvections of G.

(2) L/Z(L) 2U,_(q) for n = 4.

(3) G contains a unique class of D-subgroups K¢ with K/Z(K) =
U'/L—I(Q)‘

Proof. The proofs of (1) and (2) are as in 5.2. Assume K is a
D-subgroup of G with K/Z(K) =U,_,(g). As [a*,¢*] =1 if and only
if (@,¢) = 0, (u: u*> e KN D) is a nonsingular hyperplane of V pre-
served by K. As G is transitive on such hyperplanes, (3) follows.

6. Proof of main theorem. For the remainder of this paper
G is a counter example of minimal order to the main theorem. Lemma
3.1 implies:

LEMMA 6.1. G s simple.

Theorem 4.1 implies:
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LEMMA 6.2. = (D) is connected.

Let AeD. By 2.4, A is contained in a unique maximal set of
imprimitivity @ of G*. Set H = {(D,», M = O,(H), and 2 = a’. By
2.4, H is D#-simple. Minimality of G implies H/M = Sp,(q) or U,k(q),
for some power ¢ of p.

LeEmMA 6.3. Let BeD, veD;NA, Setl'=D,ND, and L =
I™>. Then LM = H, M # Z(H) and axB = {a} U B".

Proof. Let Bep. H/M = Sp,(q) or U,(q) has Vg as a set of
imprimitivity on D}M/M, so {B> is abelian. Set K =<D, NI, H, =
{Dsy, and M, = O..(H).

Assume n = 4. Then by 5.2 and 5.4, KM,/M, = U,_,(q) or Sp,_.(q).
Suppose L is not D-simple. Then by 2.1, L is the central product
of two D-subgroups L;. Let Be L,. K is D-simple, so K = L,. Thus
B8 =B*NL, so 2(L;N D) is disconnected. Thus L/O.(L) = L,(q) X
L,(q) or Uy(q) x U,(q). As Ui(q) contains no D-subgroup of the latter
type, that case is eliminated. As g= B*NL,B8=B*NDi Now
let Cev with X = (4, C)> = SL,(q), and 2 € X fix & and v with |z| = 4.
x centralizes L and normalizes H. Suppose L # {Cpx(x)> =Y. Then
there exists 6 € A, N Y. Minimality of G implies &7 (Y N D) is connected
so we can choose 6 e D, for some 0 & L. Let Z={\,0). As 7,0¢€
D,, Z]0,(Z) = SLy(q). So as [x,6] = 1, we get [z, \] = 1, a contradic-
tion. So L =Y and as = induces an automorphism on H/M = Sp.(q)
or U(g) with Y/O.(Y) = L,(q) x L,(q), this automorphism has order
two. As|z| > 2,1+ &’ centralizes H/M. As [2*, B* N D] =1, [H, &7,
so (&%) = Z(X) and X = SL,5). But now Cp(2*) is a component of
=2 (D), contradicting 6.2.

So L is D-simple. Therefore, minimality of G implies L/O.(L) =
H/M and O (K) = M\NK + Z(K). AsD,N(a*p) = {B}, a*B = {a} U Bg".

Thus we may assume n < 3. Suppose X = {4, E) = SL,(q) for
EeD}. Then we may choose Cev N X. Let (u) = Z(X). Thenwue
(4,C), so [u,L] =1. wu acts on H/M and centralizes B, so J =
{Cp*(u)y contains a D-subgroup isomorphic to SL,(g,) for some g,
dividing gq. Let <v) be the center of that subgroup. If J == L then
considering <{J, X), minimality of G yields a contradiction. SoJ = L
and [v, X] = 1. (Cpx(v)) = X, = SLy(q), so arguing on v in place of
u we get X, = Land ¢q,=¢q. If H= LM thenas D, D,, M + Z(H),
and as above a*g = {a} U 8”. So we may assume H/M = U,(g). Define
x as above with wed{z). [z,L] =1 and z acts on H/M = U,(qg), so
as 2 < |z| divides ¢ — 1, w € {x) centralizes H/M, contradicting LM == H.

So X does not exist. Thus H = L.,q). Claim g = B*N D} =
a*B — {a}. For if not g S {a*B — {a, B}) whereas a £ {a*g — {a, 5}).
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Choose 1 =+ x e H, fixing a and . « acts on H and centralizes g, so
[, H]| = 1. Let EcD} — L and Ce~. The action of z on <C, E)
yields a contradiction.

LEMMA 6.4. Let (a,7, B) be a triangle in 2. Then there exists
o with a, B, and v in D,.

Proof. Claim < (2) has diameter two. For if not aBvd be a
chain with d(a, 0) = 8. Let H, = <D,>, M, = O.(H), " = D, N D, and
L ={I"y. Then by 6.3, H = LM, so 6M, = oM, for some cel.
Thus o€ D, N D,, contradicting d(a, 6) = 3. Thus < (Q) has diameter
two, so if (a,v, B) is a triangle, by 6.3, LM = H. So again there
exists e " with oM = gM. «, 3, and v are in D,.

LEMMA 6.5. Let ve A,. Then {a,v) = SL)(q) and |{a)]| = q.

Proof. Set X =<a,v). By 6.4, there exists ge D, N D,. Let
H,=<{D;), M, = O_(H). Suppose A + Ecawith A= Emod M,. Then
A = <a), E = {¢) with ¢ = ae*e M,. Thus % fixes every singular line
B*0 = {B} U 0"+ through B. As H < Cy(x) is transitive on D,, « fixes
all singular lines through any geD,. Let o€ 4,. By 6.3, there are
distinct singular lines Bfo, 7 =1, 2, with 8; € D,. Then % fixes (8f0) N
(BF0) = {o}. Thus & fixes 2 pointwise. But this contradicts 6.1.

So [{ay| = |[a)M/M| = q by 6.3. By 6.3, X/0,(X) = SL,(g), so
[Ka) | = g, 0,(X) = 1.

LEMMA 6.6. 2 is locally conjugate in G, {a‘) is transitive on A,
and G° is rank 3.

Proof. By 6.5, 2 is locally conjugate in G. Therefore, to show
{a*) is transitive on A, and thus that G? is rank 3, it suffices to
show (*) of 2.7. But if («, 7, B) is a triangle in 2, set X = {a, ", ).
Then by 6.3, X/0,(X) = SL,(¢) with a* N X = a®'®. So 3.3 yields (*).

Following the notation of D. Higman let &k = |D,|,l = |A.|, N =
|D, N Dg| for BeD,, and ¢ = |D,ND,| for ye A,. Let m = |B"|.
[10] implies:

LemMMA 6.7, [ = k(k — ) — 1)/¢t and either
(1) k=land p= N+ 1)/2=Fk/2 or
(2) d*=(— )+ 4k — ) is a square and d divides 2k + (A —

Wk +1).

LEmMMA 6.8. O.(L) = Z(L).
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Proof. Assume not. Then there exists xe€ O.(L) = L N M with
B* # B. By 6.5, 8+ B, so gfe(@*B8) N D, = {B}, a contradiction.

LEMMA 6.9. a*y =<{a,Y) N2 has order q + 1. If H/M = U,q)
then m = q°.

Proof. Assume n = 4. Then a hyperbolic line 86 in <& (I') is as
claimed. But g*0 & g0 while clearly (g, 0> N 2 & B*d. Next assume
n = 2. Then by 6.3, D, N D, =B,y N2 for B,0e D, N D,, and D; N
D; =, Yy N 2, so a*7 is as claimed. Finally assume H/M = Uy (q).
Let Z = Z(a*)). Z acts semiregularly on a*y — {a}. So if |a*v| =
g+ 1 then |Z|=gq. If |a*v|# q + 1 then a*y = D; N D,, for g,de
D, N D,. Sol|a*y|= ¢ and Ny(a*7)*" acts as a subgroup of Aut (U,(g)).
But by 3.4, Z is elementary abelian, while an elementary subgroup
of Aut (Us(g)) acting semiregularly on ¢® letters has order at most q.
Further |a*7| — 1 = | Nywy(@*7)| = |Cuas(L)| = |Z| = q¢ by 3.4. So
la*y| = q + 1.

Finally = |I'| = ¢+ 1, » = m — 1, and k£ = um by 6.3 and 6.8.
Thus by 6.7, ¢*m* = [, while by 6.6, I = [{a*): N.;,(7)| = | M{a)| =
qm® by 3.4. Thus m = ¢

LeEmMMA 6.10. If H/M = L,(q) then m = q or ¢°*. If H/M = Sp,(q)
or U,(g), n = 3, then m = q or ¢* respectively.

Proof. Assume H/M = L,(q). Then p=q+ 1, k = tm and \ =
m— 1. So by 6.7, I = m?q and g+ N =m + q divides 2k + (A —
Wk +1) = —2(¢ — 1)g mod (m + q). By 3.3, an element of order
q — 1 in L acts semiregularly on ([4, M]/Z)%* of order m — 1, so q¢ —
1 divides m — 1. Thus ¢ divides m = ¢"**. So ¢" + 1 divides 2(¢>* — 1)
and therefore » < 1. That is m = ¢q or ¢*.

So with 6.9 we can assume n = 4. Therefore, singular lines in
L have order g or ¢* respectively. Thus as a*B = {a} U B these lines
are also lines in G.

LemMmA 6.11. H/M =U,(Q) and m = ¢

Proof. If not gt =X+ 2, so Z(Q) is a symmetric block design.
Further all lines have order ¢ + 1. Thus a result of Dembowski and
Wager [8] implies <#(2) is (» + 1)-dimensional projective space over
GF(q). As G is generated by the set of elations of <Z(2) commuting
with the symplectic polarity a « a', G = Sp,4(q).

The case n» = 2 must be treated differently since in this case the
existence of D-subgroups isomorphic to U,(¢) are not assured. The
following lemma treats this special case.
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LEMMA 6.12. n = 8.

Proof. Assume n = 2. Let B,del’, and set X = L;. We first
determine the fixed point sets of elements of L.

If 2 e{pB)* then F(z) = g'. If ve X — Z(L), then F(x) = {B, 0} U
a*y. For if o € F(zx) is not as claimed, then by 3.3, 6 € 4,. @ normalizes
{0, @)y = SL,(q) and centralizes «, so x centralizes g. Thus a similar
argument on (o, 8> and {o,0) shows ceD,ND; =a*. If (&)=
Z(L) then F(x) = I U («*Y). For arguing as above F(x) = C,(x), and
minimality of G implies (Cy(x)>/Z({Cy(x)>) = L.(q) X L.(q); that is C,(x) =
I"U (a*v). Finally let ze L act fixed point free on I". As above
F(z) = Cy(x) and as D, N Cy(x) is empty, {Co(x)> = Y. = SL.(q) or
Us(g). And if Y = U/(qg) then Y is doubly transitive so xze<{D,N D,)
for oe F(x) — {a}. Thus x is in ¢* distinct conjugate of L in H.
However, with 3.3, C,(x) = {a), so there are m’q(q — 1)/2 conjugates
of <z) in H. On the other hand there are m? conjugates of L, each
containing q(q¢ — 1)/2 conjugates of (), so {x) is in a unique conjugate
of L. So F(x) = a*v.

Let G = U(q), let D be the class of subgroups generated by trans-
vections in G, let @ consists of the members of D whose center is a
given singular point of the associated projective space, and let 2 =
a®. Let Ye A; and L = (D:N D;>. The discussion above implies L“
is permutation isomorphic to L°.

Lemma 6.3 implies that every ¢ in  — (a*B) appears in a unique
D, Bea*p. Set K = Lg, and let t € L have cycle (5, 6). Let 37 BF
be a partition of a*g with 8, = @ and B, = B. Set 4, = (8 — (@*B)HU
{8}, and 4 = UA;. Then L maps the edge set of <7 (A1) onto the edge
set of <7 (Q), except for edges in & (a*p).

Let T be permutation isomorphism of L and L, and let 5 = gT.
Let BE” be orbits of KT on @*B and define [ as above with respect to
these B;. There exists an isomorphism S of < (4) and <7 (/1) such that S
restricted to & (4,) commutes with T restricted to N, (4;) and Nz(oS) =
(N, (0))T for 0 € A. For o € A, there exists ¢ € 4; with Nz(3) = (N,(6))T
from the discussion above, so S can be defined in the obvious manner.
So we can apply 2.6 to show < (2) = < (?) and thus G = G, if we
show condition (ii) of 2.6 is satisfied.

Clearly (ii) holds on 4,. Suppose ¢, 0" € 4,,x€ L. Claim ¢® = ¢* for
yeK. As L = KU KtK we can assume = t. Thus ¢°e€ D, N D, =
a*y, so o =o¢' is fixed by t. But K = N, (4)), so (ii) holds here.
Suppose 0, 6" e 4;, 1 = 2. We consider the case || = ¢* — 1; the case
|o"] = q(¢* — 1) is analogous. Now (8> = N (4,) and ¢* = |4; N Uw D.|
in ¢ orbits of length ¢ under {(8). These are the points in orbits of
length ¢* — 1 under L. Let # be the set of edges (BY, w) with ye L
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and |w*| = ¢* — 1. Let N be the number of orbits of L on §. Then
9@ — YN = [(B;, )" |N = |0| = | Bi1¢" = (¢ — D¢*, so N=gq. Thus
(8;, 0°) = (B;, ®") for some we A, ye{B). That is condition (ii) holds
on A;.
This completes the proof of 6.12.
A unitary (a, B,7) in 2 is a triple with ge A, and
vye N 4;.

dea*s

LEmMMA 6.13. If (a, B,7) is a unitary triple then {a, B, V)| Z(«,
B, V) = Uy(a).

Proof. We can choose a unitary triple (8., B, 8:;) in H. Set X =
{By, By By As HIM =U,q), X/Z(X) =U,(q). If n =3 we can count
the number of unitary triples and the number of such triples central-
izing some € 2. These two numbers are equal. So assume # = 4,
and let (o,, 0;, o)) be a unitary triple. Choose geD, N D,. If g,¢
D, set B = a. If not let a*p be a singular line in D, N D,,. By 6.3,
we can assume « € D,. Thus as above we are through.

Let («, v, ) be a unitary triple in D,. Set J = <D, N I.

LeEmMmA 6.14. J/Z(J) = U,_.(q).

Proof. If n =38, {a,v,0) = D, N D, for suitable 6 A; and J =
{B*c). If m =4, J has width one and a counting argument shows
|JNR|=¢+ 1. Thus by minimality of G, J/Z(J) = U(q). Finally
if n > 4, then arguing as in 6.3, J is transitive on J N D and <{D; N
J>/0.({Dp)) = U,_s(q), so minimality of G implies the desired result.

LEMMA 6.15. Let 6 = I" U 6" and K = {8). Then K = SU,,.(q)
and 2 = 6 U oF.

Proof. Claim 6° = 4. Clearly L normalizes 6, so it suffices to
show & normalizes 8. Let o€/l N A4,. Then (o, d) = SLy(q), so o’ =
0° < #. Thus I = 6. Using the fact that 6.15 is true in U,..(q), one
can check that

L = J( {o,* o))

where & is the set of lines in L — J. Thus it suffices to show X N
Q < 0 when X = {0, 0,,6)>. But if (5, 0,,6) is unitary, 6.13 implies
XN =o0*,U " < g and if (0,, 9, 0,) is a triangle then X/0,(X) =
SLy(q) and 3.3 yields the same equality.

So ¢/ =6. aeld, so K+G. Y=LD:n6 ={D;NTI,0), so
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Y/0.(Y)=U,_.(9). [L,al]=1 and d€d,, so I'=D,N6. Arguing
as above 6 U a¥ is self normalizing, so 2 = dUa*.

Let Z = Z(K). Z fixes 6 pointwise and K < Cy(Z) is transitive on
2 — 0, so Z does not fix a. |SU,.()|/|SU.(¢)] = |a¥| = | K: Ng(a)|
and LZ/Z = SU,(q), so |Z] = (n+ 1,qg). Considering the covering
group of U,;.(q) we get K = SU,.,(q)-

Put K and D; in the roles of H and 4 in 2.6. Then 6.15 and
5.4 together with 2.6 imply G = U, ..(9).

This completes the proof of the main theorem.
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