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CENTRALIZERS OF TWISTED GROUP ALGEBRAS

RoBERT C. BUSBY

Centralizers (left, right, and double) of rings and algebras
have received much attention recently, and seem likely to
become an important topic in ring theory. They have proved
quite useful in Banach algebra theory, and a good deal of
work has been done on the computation of centralizers for
various Banach algebras. In this paper we compute the left
centralizers of a twisted group algebra, a generalization of
the group algebra of locally compact group, which includes as
special cases the covariance algebras of quantum field theory,
and the group algebras of separable group extensions (ex-
plicitly given in terms of the subgroup algebra and quotient
group). We give a representation of the algebra of left cen-
tralizers of a ““locally continuous’ twisted group algebra as
an algebra of vector-valued measures with ‘‘twisted convolu-
tion”’. This result gives more than explicit computation of
centralizers. The form of the result enables us to investigate
isometric isomorphisms between twisted group algebras along
lines previously pursued for ordinary group algebras. In some
cases we get a complete description of possible isomorphism
classes in terms of orbits in a cohomology set.

Double Centralizers were first introduced by G. Hochschild in his
cohomology studies [15], and later, independently, by B. E. Johnson
in [16] (see also [17]), who was largely interested in applications to
analysis. Work on the ideal theory of algebras and Banach algebras
by Dauns and Hofmann ([6], [7]), and on extensions of C*-algebras
[1] are examples of such applications. Left centralizers are used in
the papers of Wendel on norm decreasing isomorphisms of group
algebras ([21], [22]). The latter results are especially important and
suggestive for us. Wendel showed in [21] Th. 2 that the left cen-
tralizers of a group algebra form an algebra isometrically isomorphic
with the algebra M(G) of complex valued, bounded, regular Borel
measures on G. This suggested the result given above, namely that
centralizers of a twisted group algebra should be vector-valued meas-
ures. We also show, in analogy to a result of Wendel, that the
isometric left centralizers correspond to certain measures with a one
point support. Moreover, several of our arguments take those of
Wendel as a starting point. The description of isometric isomorphisms
of group algebras given in [21] is the forerunner of our results on
classifying isometric isomorphisms of twisted group algebras, and, as
a matter of fact, is a corollary of them. The form of our results on
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left centralizers opens up the possibility of extending Greenleaf’s
work ([13]) on norm decreasing homomorphisms of group algebras to
the twisted group algebra setting (although we do not pursue the
possibility here).

In §1, we collect the needed facts about centralizers. In §2 we
give a general cohomology and extension discussion which is needed
later. Section 3 is denoted to developing and expounding the theory of
Banach algebra valued measures as we will need it. These first three
sections contain summaries of some well known results, reorganization
and extension of some lesser known material, and some new results.
Section 4 contains the main description of left centralizers on a locally
continuous twisted group algebra, as well as a discussion of double
centralizers and isometric centralizers, and §5 gives applications to
the study of isomorphisms and particular examples. It should be
noted that in the case where the object algebra is the complex numbers,
the automorphism is trivial and the coeycle is continuous, some of
the results of §5 specialize to results of Edwards and Lewis [11].

1. Centralizers on algebras. The results of this section will be
stated without proofs, except when proofs do not exist elsewhere. In
this entire paper, topological group will always mean second countable
group, and the term Banach algebra will always include the assertions
that the algebra is separable and has a norm one, two-sided, approx-
imate identity. A Banach x-algebra will be a Banach algebra with
an isometric involution. Isomorphism and representation of a Banach
algebra (group) will always mean (unless otherwise stated) isometric
(topological) isomorphism and continuous (continuous unitary) represen-
tation on a separable Hilbert space, respectively. If the algebras have
involution, isomorphism and non-degenerate will also mean =-isomor-
phism and =-representation, respectively.

Let A be a Banach algebra. A left (right) centralizer on A4 is a
bounded linear map L: A— A (R: A— A) such that if a, be 4, then
L(ab) = L(a)b (R(ab) = aR(b)). A double centralizer on A is a pair of
functions, (L, R), from A to A such that if a,be A, aL(b) = R(a)b.
Let _#(A), #%(A), #(A) be the set of left, right, and double cen-
tralizers on A, respectively.

ProposITION 1.1.

(i) If(L,R)ye #(A)then Le _#;(A) and Re _#4(4), and || L|| =
I Bl

(ii) #.(A) and _#,(A) are Banach algebras with composition as
multiplication and operator norm.

(iii) If A is a Banach =-algebra, then _# (A) is a Banach *-algebra
with operations as follows:
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(L, R)o(L;, R,) = (L.L,, R,R,);
(L, R)* = (R, L) where R'(z) = R(x*)* and L'(x) = L(z*)* ;
(L, B)|| = || Ll = || Rl .

(iv) The map from _#(A) to #;(A) which takes (L, R) to L is an
isometric monomorphism of _#(A) into _#,(A).

Proof. All these facts may be easily deduced from statements
in [16], and our assumptions on A.

There is a natural map 7, of A into _#Z7(4) given by: i,(x) = L,
where, for yc A, L(y) = 2y. If R, is similarly defined by R.(y) =
yx, then the map 1, given by i.(x) = (L,, R,) is a map into _#Z(4).

ProposiTION 1.2. (i) i, and 'Z_A are isometric algebra homomorphisms,
(ii) if A is a *-_algebra, 14 preserves involution,
(iii) 1,(A)(resp. t4(A)) 18 a left (resp. two-sided) ideal in

A (A)(resp., #(A)) .

(iv) If we regard A= #Z(A) & _,(A) by the above identifications,
then _#(A) is the idealizer of A in

A(A), e, (e #(A) | (- AU A-x) C A} .

Proof. The first three assertions are elementary. (iv) follows
from Proposition 1.1, (iv) and the fact that if A.-xc A for some x¢
#,(A), then left and right multiplication by =z provide a double
centralizer pair of actions.

In the future we will identify A with i,(4) and with 7,(4). If
acA and m = (L, R)e _#(A) then (with the above identication in
force) ma = L{a) and am = R(a).

DerFINITION 1.8. (i) The strong topology on _#;(A) is the locally
convex topology generated by the seminorms (\,; @ € A) where for m e
A (A), No(m) = [|mall.

(i) The strict topology on _#(4) is the locally convex topology
generated by the seminorms (\,; a€ A) and (p,; a € A) where 1\, is as
above and p,(m) = ||am|].

ProPOSITION 1.4. (i) A is strongly (strictly) dense in #Z.(A).#(A))
and _#,(AN A (A)) is strongly (strictly) complete.

(i) The unit ball in _#,(AN( #Z(A)) is strongly (strictly) met-
rizable and complete.

(iii) If A has involution, the group Z (A) of unitaries in

(A W*=ut=1)
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is a Polish group in the strict topology (i.e., separable, and metrizable
by a complete metric).

Proof. A proof of (i) can be deduced from [1], Propositions 8.5,
3.6. Let 4 be the set of seminorms {(x,) U (0.,)}, where a ranges over
a countable dense set in A. Then the sets {me _#Z(4)|\Mm) < ¢},
where ¢ is rational and N e 4 can easily be shown to form a base for
the unit ball in A. A similar result holds in _#;(4), and so (ii) is
true. Finally it is easily shown that the strict limit of unitaries
is unitary in _#Z'(A4), so Z/(A) is closed in _#(A), and (iii) follows.
In this paper, Z/(4) will always be assumed to have the strict
topology.

PROPOSITION 1.5. Let B be a Banach algebra which contains A
(tsometrically) as a norm closed left ideal. Suppose also:

(1) 6]l = sup, <, [[bx|] for any be B and

@) If (by);+; iszeaA net in B such that lim, ;_.. || b;a — b;a|| = 0 Va e
A, and ||b;]| £ 1V, then 3b,e B such that lim,_. b,a = b.avVaec A.
Then: (1) The function N, from A to A given by \(a) = ba is in
#(A),vbe B and

(2) The map A, which takes b to N, s an isomorphism of B
onto _7;(4).

Proof. (1) is trivial, as is the fact that 4 is homomorphism.
Condition (i) shows that 4 is isometric. To show 4 is onto, choose
me _#,(A). By the linearity of 4, we may assume |[|m|| = 1. Now
it is not hard to show that if (¢;);.; is an approximate identity (always
two-sided, norm-one) in A, and b; = me;, then lim,_.. b; = m (strongly).
Also (b;);.; satisfies Condition (ii) above and so lim,.. b,a = ba for
some be B and all ae A. Then m = )\, and 4 is onto.

ProrosiTION 1.6.
(i) If ¢ is an isomorphism between Banach algebras (resp. Banach

x-algebras) A, and A,, then ¢ uniquely extends to am isomorphism
(also denoted ¢) between _#1(A) and _7Zi(A,) (resp. .7 (A) and _#Z(A,)).
(ii) ¢ induces a homeomorphism from Z/(A)) onmto Z/ (A,) (each
with the strict topology).
(iii) If 7 is a representation of the Banach (resp. Banach*) algebra
A on H, then © extends uniquely to a representation of _#,(A) (resp.
A (A)) on H. The extended representation is also denoted .

Proof. (i) and (iii) can be found in [16], and (ii) is straight
forward.
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Our final result on centralizers is a technical result which will be
needed in §4. We first prove a lemma.

LEMMA 1.7. Let A be a Banach algebra and me _#;(A). Then
if (€)ic; 18 an approximate identity in A;

[ml] = lim [{me;]| .

Proof.
[[m]| =Ii}llgllmall
= sup [lim || me,a|]] < hlﬂ[Slllp || me;all]
[lafl=1 4—oo 41— |lall=1

= lim || me; || < Tim || me,|| < || m]] .

COROLLARY 1.8. If me _#,(A) and Yace A,

[[mall = [[m]| ||a]l, then ||mn]|| = ||m]|| ||n]| Vre_2z(A4) .
Proof. ||mn| = lim,..||(mn)e;|| ((¢;);c; an approximate identity
in A)
= lim || m(ne) |

= l|m| lim | e = [|ml]| |n]| .

ProposITION 1.9. Suppose that m, ne _,(A) for some Bamnach
algebra A, and for all a,be A, ||ma + nb|| = ||m| ||al] + |[n]] |b]].
Then n =0 or m = 0.

Proof. As in Corollary 1.8 we can show that if r, s € _#;(A), then
[lmr + ns|| = [|m]| ||r]] + ||=]] ||s|]l. Thus the above norm equality
holds in _#;(A). Let n# 0. If ¢, and ¢, are complex constants, we
have (letting » = ¢,;n and s = ¢,)

llezmn + el = |ef [[m]] [[n]] + [el [l = (.| [Im]] + |e)l =],

which implies that

llezm + a.f| = || [Im]] + [e]
Similarly
llesm®n + comn + en|| = ||m(e;mn + e,n) + e,nl|
= |[m]| llesmn + en|] + |e,] | n]] = |e] [[m]f* [[n]]

+ el [[m]] lIn]l + lel [[n]l,
which implies that
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llesm? + exm + ¢, = || |m|[* + |e.] [[m]] + |e.] .
By induction we can show that if ¢, -- -, ¢, are complex constants then
lleam™™ + «ov +eom + el = lea] [[m|"™ + ++« + |e:] [[m]] + [e.] .

In particular if » and ¢ are polynomials with complex coefficients
then || p(m)-q(m) ]| = || p(m)|| ||g(m) ||. Let B be the (commutative) Banach
subalgebra of _#;(A) generated by m and I. Since polynomials in
m are norm dense in B, ||bb,|| = ||b,]] ||b.]| for all b, b, in B. If be
B, the spectral radius of b = lim,_..|[6"|]' = ||b]||, and so if X is the
maximal ideal space of B, the Gelfand map b— b of B into C(X) is
isometric. Now for each be B, let S(b) = {xe X | |b(x)| = ||b]]}. Then
S(b) is a nonempty compact subset of X for all b in B. If there are
elements b, ---, b, in B such that M, S(b;) = ¢, then for any ¢ X 3¢
with |bi(x)| < ||b;]. This means that ||b; «-- b,|| = max,., |b.(x) ---
b.(x)] < ||b;]| -+~ ||b,]l, which is a contradiction. The collection (S(b))s. 5
thus has the finite intersection property and so [),.; S(b) contains a
point 2, We must have ||b]] = lg(xo)l vbe B. If m = 0 and ¢ = wi(x,) #
0, let b = ¢=m. Then b)) = 1and B(wy) = (b)) = 1, s0 (B — b)(xs) =
0 and ||b* — b|| = 0. We finally see that 0 = ||b* — b|| = ||¢™*m* —
cmll = |e|”? ||m| + je|™*|]m]| so ||m]|| = 0. This contradiction proves
that m = 0.

2. Cohomology considerations. Throughout this section, G will
be a fixed topological group.

DEFINITION 2.1. (a) Let A be a topological group (resp. Banach
x-algebra) and .7 (4) the group of automorphisms of A. .7 (A) will
always have the pointwise convergence topology. A cohomology pair
(also called twisting pair) for the pair (G, 4) is a pair (T, &) where T: G—
¥ (A) and a: G x G — A (resp. ZZ(4)) are such that:

(i) T and a are Borel measurable,

(i) T(@)a(y, »)a(z, yz) = ax, y)a(zy, 2) = B, y, 2) for all z,y,z
in G (T(x) extended to % (A) is used here if A is a Banach =-algebra),

(iii) [T(x)T(y)ala(z, y) = a(z, y)(T(xy)a) for all x,y in G, ac A.

(iv) a(x,e) = ale,y) = Iforx, yin G where ¢ and I are respective
identities in G and A (resp. Z (4)).

(b) We say that (T, @) is a locally continuous pair if (i) T is
continuous in a neighborhood N of e, and the map (%, a) — T(x)a is
continuous from N x A— A. Also « is continuous on N x N,

(ii) For each z in G there is a neighborhood N, of e such that
B@™, ¥, x) is continuous in ¥ for y in N,.

We remark that we could have given an analogous definition of
continuous at the identity (where N and all N, are replaced by {e}),
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and that this and the above definitions are essentially those of Calabi
[5].

Also notice that if A is a Banach =x-algebra and (T, ) is a
cohomology pair for (G, A), then (7T, ) is also a cohomology pair for
(G, ZZ(A)) (recall that T extends to _#Z(4)> A). The only non
obvious part of this assertion is contained in the following lemma.

LEMMA 2.2. If A is a Banach *-algebra, (T, &) is a cohomology
pair for (G, A), and m € _# (A), then the function f(x) = T(x)m ts Borel
from G to _Z(A), the latter with the strict topology.

Proof. Let ae A. Then the function z— T(x)™* @ is norm bounded
and Borel, and since A is separable, this function is the uniform limit
of functions 37, %z, *@., where the B, are disjoint Borel setsin G, a, € 4,
and ;, is the characteristic function of B,. Now x— T(2)(37-. 15,(m-a))
is clearly Borel from G to A and thus so is the function

& — T(@)(m(T(x)"a)) = (T@)m)a .

This completes the proof.

It can be similarly proved that if (7, @) is locally continuous for
(G, A), then (extended) it is also locally continuous for (G, Z (4)).

Again let A be a topological group (Banach x-algebra). We let
Z¥@G, A) be the set of all locally continuous cohomology pairs for (G, A).
Let F(G, A) be the set of all functions from G to A (resp. % (4)) which
are Borel measurable and continuous in a neighborhood of the identity.
Then F(G, A) is a group under pointwise multiplication and acts on
Z*(@G, A) as follows:

If ¢ = (T, @) e Z%G, A) and pe F(G, A)

then

p-t = (T,, a,) € ZXG, A)
where

T,(w)a = p)(T(x)a)p(x)™
and

a,(x, y) = p@)(T(@)p(y)a(x, y)p(Ey)™

for all 2,y in G and a in A.

LEMMA 2.3. The above action defines F(G, A) as a transformation
group of Z¥G, A).
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Proof. It is not hard to show that if p, ¢ € F(G, A), t € Z*G, A4),
then p-(¢-7) = (pg)-z. The fact that p.7 is in Z*(G, A) follows from
the continuity of p in a neighborhood of ¢, and straightforward
calculations.

The resulting orbit space Z*(G, A)/F(G, A) is called the 2-cohomo-
logy set of (G, A), and denoted H*G, A).

Let C(A) be the center of A (resp. Z7(4)). If (T, o) = te€ Z¥G, A)
is given, then it is not hard to show that the stability subgroup
F_ of F(G, A) at 7 is the set of functions p in F(G, A) such that p
has values in C(4), and p@)(T(x)p(y))p(xy)™ = I. F. is an abelian
group denoted Z'(G, C(4)), the Borel, locally continuous 1-cocycles of
G with respect to T, having values in C(A).

We remark that if A is abelian then Z*(G, A) is the disjoint union
of the usual cocycle groups ZX(G, A), and H*G, A) is just the disjoint
union of the cohomology groups HZ(G, A), where T ranges over the
continuous homomorphisms of G into .9(A4), and all cochains are
Borel and locally continuous.

Now let G, and G, be locally compact groups and A,, A, topological
groups (Banach *-algebras). Let ¢: G, — G, and v: A, — A, be isomor-
phisms, and ¢ = (T, @) € Z*(G,, A,). Let s = (¢, 7) and define the pair
st = (T,, a,) by:

T(@)(a) = 7' [T(s(x))(va))]
and
ax, y) = v (a(p(x), (y))) (where if A is a Banach x-algebra, 7!
is canonically extended to .7 (A4,)).

LEMMA 2.4. (i) s-teZ¥ G, A)
(i) if 7, and T,€ Z(Gy, Ay) and [7,] = [7.] in HXG,, A) ([z] re-
presents the equivalence class of t) then

[s-7] = [s:7:] in HYG, A) .
Proof. The computations involved in (i) are straightforward, as
are the measurability and continuity properties. If s = (¢, 7) in (ii)

and z, = p-7, for pe F(G,, A,), then it is easily shown that ¢-(s-7)) =
(s-7,) where ge F(G,, A,) is given by: ¢(x) = v"'p(s(x)).

COROLLARY 2.5. Z(G, A) = 7 (G) x .7 (4A) acts as a transforma-
tion group on HXG, A) with action as given above.

Now let A be a (not necessarily topological) group and ¢ = (7, «@)
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be a pair satisfying (ii), (iii), and (iv) of Definition 2.1 a. We then
call = an algebraic cohomology pair for (G, A). Let B. be the group
A x G with multiplication (a,, g.)°(as, g,) = (@, T(g.)(a)a(g,, g2), 9.9:). Let
i.(a) = (a, 0) and 7 (a, g) = g define maps from A to B. and B. to G
respectively. Then, as is well known, 0 — A4 "> B.—~» G —0 is an
exact sequence of groups, Whiph we denote by E.. We say that two
exact sequences F,: 0 A%, B -G 0 (k =1, 2) are isomor-
phic if there are maps v: A— A, 8: B,— B,, , ¢: G — G, all algebraic
isomorphisms, making the following diagram commutative:

0— A B G—s0
rJ( . ﬁl . lsﬁ
0— A2, B =, G—0.

The triple (v, B, ¢) is called an isomorphism of E, with E,. If vand
¢ are each the respective identity maps on A and G, we say that E,
and FE, are equivalent, and write E, = E,. For a given exact sequence
E, we let [E] denote the equivalence class containing E, and we
denote the set of equivalence classes of such exact sequences (for
fixed A and G) by Ext (G, 4). It is well known that the correspondence
7 —[E.] is a bijection from the set of algebraic cohomology pairs for
(G, A) to Ext (G, A).

Now suppose that A is a topological group. In each exact sequence

E:0— A" z

B G 0, require that B be a topological group
and ¢ and 7 be continuous. By topological isomorphism (or equivalence)
of two such sequences, we mean an isomorphism (or equivalence) (v, 83, ¢)
with all three maps homomorphisms. Let Ext (G, A) be the resulting
set of topological equivalence classes, and let Ext (G, 4) c Ext (G, 4)

be the classes of those sequences E:0— A . B-Z» G—0 in which
7 has a Borel right inverse, continuous in a neighborhood of the
identity (it is easily seen that this property depends only on the equiv-
alence class of a sequence).

PROPOSITION 2.6. (Calabi). If A is a topological group, and e
Z¥G, A), then B. may be given a topology in such a way that E. is a
topological sequence, and [E.]e Ext (G, A). The map t—|[E] is a
bijection between Z*G, A) and Ext (G, A).

Proof. See [5].

ProrosITION 2.7. Let t,€ Z*(G,, Ay, k= 1,2. (A, topological
groups.) Then K. 1is isomorphic with E., if and only if [r,] = [z.],
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wmn H¥G,, A,) for some pair s = (¢, 7); where v: A, — A,, 6: G, — G, are
isomorphisms.

Proof. Suppose that E. = E.,. There are isomorphisms 7: 4, —
A,, B: B.,, — B.,, ¢: G, — G, making the following diagram commutative:

0— 4B TG 50

ool
0—4,—— B,— G,— 0.

72

Tzg Ty
We recall that, as sets, B, = 4, x G, (k = 1,2), and we define

a map p: G, — A, by the equation:

Ble, 9) = (p(9), #(9)) -

Let {=7v"'p. Then (e F(G, A,), and a computation, using the multi-
plicativity of 4 and the definition of multiplication in B, and B,
shows that { gives an equivalence between 7, and s-7,, thus if s = (g, 7),
[z] = s:[z].

Conversely if [7,] = s-[z.] for s = (4, ¥) as above, then 1 (e F(G,,
A)) such that 7z, = {-(s-7;). If we then define g: B, — B., by:

Bla, ©) = (v(al(®)), 4(v)) »

and use the definitions of s-z, and {-(s-7,), we can show that gis an
algebraic isomorphism. The local continuity of { shows that g is
continuous at the identity, and thus everywhere. This map, with ¢
and 7, impliments an isomorphism of E. with E.,. We omit the
computations.

3. Vector valued measures. We begin with a discussion of
vector valued measures as developed in [8]. We will use the second
countability assumptions we have made to simplify certain points and
we will make some slight changes in definitions. Throughout this
section, G is a fixed locally compact group. Let B(G) be the o-algebra
of Borel sets in G and X be a separable Banach space.

DEFINITION 38.1. A regular Borel measure on G with values in
X is a map m: B(G) — X such that:

(i) m(Uz B) = 32, m(B;) (in norm) for every sequence (B;),<i<.
of mutually disjoint sets in B(G).

(ii) For every € > 0 and Be B(G), 3 a compact set K B and an
open set U DB such that vB'e B(G) with KcB'cU, || m(B) —
m(B) || <.
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DEFINITION 3.2. (a) Let m be an X-valued regular Borel measure
on G. The variation of m is defined to be the positive regular Borel
measure |m| defined by |m|(B) = sup {3 ||m(B;)|]} where the supre-
mum is taken over all families (B;);.; of mutually disjoint Borel sets
contained in B.

() If [m|(G) < + =, we say that m is of bounded variation.

The above definitions are essentially those contained in Dinculeanu
[8], but his Borel measures are defined only on relatively compact Borel
sets, and he defines finite variation (not bounded variation) to mean
|m|(B) < + o for all relatively compact Borel sets B.

Suppose now £ and F are Banach spaces, and < (E, F) is the
Banach algebra of all bounded linear operators from E to F with
the usual norm and operations. Let m be a regular Borel measure on
G taking values in <~ (E, F). We will always let &/ (G, E), C.(G, E),
K(G, E) represent respectively the set of all E valued functions on
G which are Borel measurable and have finite range, the continuous
E-valued functions on G vanishing at infinity, and the continuous
E-valued functions on G with compact support. When E is the
complex numbers, C, we will suppress it in the above notation.

DEFINITION 3.3. (a) If f = 3 @), belongs to (G, E)(x
represents a characteristic function), then S fdm is by definition
G

Sym(B)-w, and |1 £, is 3ol ImI(B,) .

(b) If f:G— E, we say f is m-integrable if there is a ||+ |-
Cauchy sequence (f,)i<n<., in (G, E) which converges |m|-almost
everywhere to f.

The following list of facts can be deduced from or found in [8].
Some of them make use of the countability assumptions which we
have in force. In the future we will make free use of them without
further mention.

PROPOSITION 3.4, Let f: G— E and m be a regular Borel measure
on G with values in Z (K, F) and bounded variation [m|.
Then:

(@) If f is m-integrable and (f,)icn<e 9 @ ||+ ||, Cauchy sequence
n (G, E), converging |m|-almost everywhere to f, them sequences
(1 FallDign<es and (g f,,dm) 3 converge in R and F respectively, and
we denote the limits by Hlf"[bﬁwand S f dm. These limits are independent

of the sequence (f.)isncos
(b) The space L'(m, E) of E-valued m-integrable functions is a
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Banach space with respect to ||« ||,.. Furthermore
171k = [ Ir@ i dimi@) .

The map f— S fdm 1is comtinuous, and in fact

|{ram| < [1s@1aimi@ = 1711

(¢) felL'(m, E){=) the map x—|| f(x)|| is in L'(m|) and [ is
| m|-measurable, i.e., f~(B) is |m|-measurable for all Borel sets B in
E. Since |m| is a regular, positive Borel measure, we can (and
always will) regard L'(m, E) as the set of all Borel-measurable func-
tions f from G to E such that || f(®)]|| is |m|-integrable.

(d) If (f.) is Cauchy in L*(m, E) and converges | m|-almost every-
where to f e L'(m, E), then f, converges to f in L'(m, E). Also, if
(fa) s any sequence in L'(m, E) converging in that space to f, then
some subsequence converges to f,|m|-almost everywhere.

() The obvious extension of the Lebesgue dominated convergence
theorem holds.

(f) K(G, E) is dense in L'(m, E), and the mapping f——»g fdm
G
from K(G, E) to F is continuous when K(G, E) has the supremum
norm.

COROLLARY 3.5. Any mnorm bounded Borel measurable fumction
f from G to E is m-integrable. Also, if g is continuous, and bounded
from G to R*, and || f(x)|] < g(@)Vre G, then f is the |||, limit of
a sequence (f.)isnce 11 K(G, E) such that for all n and 2, || f.(2)]| =
g(@).

Proof. Since |m|(G) < + <o, (c) above shows that fe L'(m, E).
By (f) and (d) there is a sequence (f,) in K(G, E) converging to f
|m|-almost everywhere. If

min (1, g(@)/[[ fa(@) [))+ fa(@) | fa(x) = 0
0 | fa(@) =0,
then g,¢ K(G, E) Vn and g,(®) — f(®) |m|-almost everywhere. Since

lg.(@)|] < |g(®)], (¢) shows that g, converges to f in L'(m, E)(noting
that g is |m|-integrable).

ga(x) =

The measures described above can be characterized by the pro-
perties they exhibit as bounded linear maps from K(G, E) to F, i.e.,
we have a vector valued “Riesz representation theorem”. Let L be
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a linear map from K(G, F) to F' and let B,(G) be the relatively compact
Borel sets in G. For each SeB(G) let ||| Lgll| = sup {31 L(f)]}
where the supremum is taken over all finite families (f;) in K(G, E)
such that 3% || fi(@) || = xs(®) Vo e G.

DEFINITION 3.6. We say that a map L as above is dominated if
1 Lslll < oo VS e By(G).
This definition is due to Dinculeanu [8].

THEOREM 3.7. (Dinculeanu [8], III, §19, Theorem 2.).

There exists an isomorphism between the set of all regular Borel
measures m with values in (¥, F), satisfying the condition |m|(S) <
co VS € B,(G), and the set of dominated linear maps from K(G, E) to F.
If m is such a measure, the corresponding linear map L is given by:

L) = |, fam, feKG, B).
Furthermore, if U is open in G then [||L,||| = |m|[(U).

COROLLARY 3.8. The above correspondence restricts to a one-te-one
correspondence between the regular Borel wmeasures m of bounded
variation on G and with values in <7 (E, F), and linear maps L from
K(G, E) to F with |||Ll|l < + . We will let ||L|| = ||| Ls;!!! and
note that if L — m, then ||L|| = ||m| = |m|(G).

We now specialize to the case where A is a Banach algebra and
E=F=A. We know that _#,(4) is isometrically embedded in
F(A, A) = ¥ (A), and we will regard _~77(A) as a subset of <(4).
Both _#,(A) and K(G, A) are right A modules (if me_#(4), fe
K(G, A),a, be A, then (ma)(b) = m(ad) and (fa)(x) = (f(x)a), xe G). We
show now that the A-linear maps from K(G, A) to A are the ones of
interest.

THEOREM 3.9. The coriespondence of Theorem 8.7 restricts to
gtve a bijection between the set of all regular, 7 (A)-valued measures
of bounded variation on G and the set of right A-linear maps L from
K(G, A) to A with ||Ll| < 4 oo.

Proof. Suppose that m: B(G) — .#;(4) is a regular Borel measure
of bounded variation. If f = 3, a,%,, isin S7(G, 4), and be A4, then

Haf @dm(@)]-b = [2 m(B,)-a,lb = 3 m(B,)(a,b)
- SG<§ <anb>XBn(x))dM(x) - SG (f'b)(ﬂ?)d/]n(x) .
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This relation will hold when we pass to the limit, thus L(f) = L fdm
is right A-linear on K(G, A), and ||L|| < + co.

Conversely suppose L: K(G, A) — A is right A-linear and
|L|| < + o. We know by Corollary 3.8 that L(f) = ga F(@)dm(z), for
some &~ (A)-valued regular Borel measure m with bounded variation,
and |m|(G) = || L. ThenSG( F@)a)dm(z) = (SG F@)dm(z))a ¥ fe K(G, A)
and ce A. Now if Be B(G),be A, we can approximate by,(in || -]},
by a sequence f, in K(G, 4). It is not hard to show that (f,-a) con-
verges to bay; and the above relation on integrals holds in the limit to
give us that m(B)(ba) = Sabadem - (S bedm>a= (m(B)b)a for all a,
be A. Thus m has values in _#;(4) and we are done.

Now let A be a Banach algebra, and 7 = (T, @) € Z*(G, A). Let
(G, A) be the linear space of all regular, _#;(A)-valued, Borel
measures on G with bounded variation. _Z;(G, A) can, by the previous
result, be identified with the A-linear functions F from K(G, A) to
A with ||F|] < . It is a reasonably straightforward task to show
that if (F,) is a Cauchy sequence of such functions, ¥, converges
pointwise on K(G, A) to an A-linear map F and F has finite norm.
We omit this calculation. Thus we may regard _#;(G, A) as a Banach
space with [|m|| = [m[(G) = || L,|l, me #Z,(G, A).

Now if me _#.(G, A), xe G, we define (x-m)(S) to be T(x)(m(S))
for all Se B(G). Then

PRroOPOSITION 3.10. x-me _#(G, A) and ||z-m|| = |[m||. The proof
18 straightforward and we omit it.

If ¢, v are in _#(G, A), we define a linear function L(x, v) from
K(G, A) to A as follows:

Lz, @) = | | a@, pheida @i .

LemMmA 8.11. L(y, v) is defined and is a right A-linear function
with || L|| < co. Moreover, || L(z, v)|| < || ¢ [[v]l.

Proof. For ac A, the function (z,y) — a(zx, y)a from G X G to

A is Borel measurable. It follows easily that if he K(G, A), the

function k(x, y) = a(x, y)h(xry) is Borel measurable and norm bounded.

Thus S a(x, Yh(zy)d(z-v)(y) = g(x) exists by Corollary 3.5. Further-
G

more, separability of A and second countability of G allow us to approx-
imate k(x, y) uniformly by functions of the form 3.7, a.¥c, (%) Xp,(%)
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where C,, D, are in B(G), and a,€ A. The (z-v)-integral of such a
function in y is 3., Xe, (@) T(@w)(¥(D,))a, which is Borel measurable
by Lemma 2.2, and converges pointwise in  to g(x). Thus g(x) is
Borel measurable and since ||g(@)|] £ ||kl ||2-2]] = [|2]l- [|¥]] < oo,
Corollary 3.5 implies that L(y, v) exists. It is trivial that L(g, y) is
A-linear. We now show that ||L(g, v)|| < [|¢]] lIv]] < ee.

Choose a finite set f,, ---, f, of functions in K(G, A) such that
vee G, 3| fi(@) ]| = 1. Let fi(y) = fi(zy). Then for any fixed x, g;..(y) =
a(x, y) fi(xy) is bounded in norm by || fi(y)|| (@ continuous function)
and is Borel measurable. By Corollary 3.5, we can choose, for each
1, &, a sequence (¢7.).<n<. il K(G, A) such that ||g7.()|| = || fi(v) ]| Yy €
G, and ¢?, converges in L'(x-v) to ¢;, as n— c. Then for any =,

I Rer e o) ESESTEE

(Proposition 3.10), since

Y4
2
2=1

00| = S @I S1vye6.
A limiting argument then shows that

S LG, ) ()

= 3.1 2@, v 7nde» @ dee)|
= leisup (5| @) = el 1911

Thus
L, V) || = el ]l < + oo

DEFINITION 3.12. The z-twisted convolution p+y, of ¢ and vy is
the measure in _#,(G, A) corresponding to the functional L(z, v).

We will now prove that _#Z.(G, A) is a Banach algebra with z-
twisted convolution, for any ze Z*G, A). The only thing missing is
the fact the = is associative. We first need some Lemmas.

LEMMA 3.13. If he K(G, A), e _#/(G, A), zc G, then
2| (ran]=| @ nende-me .
Proof. Let f = 3., a2, €.5(G, A). Then
o F@de@) = 2(S wBIa) = 35 - #B) 0
~ | 2 den = | @NEdeEHE .
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The result follows by approximating - with functions in .S7(G, A).
LemMma 3.14. If he K(G, A), v, e #,(G, A), and zc G, then

[, p@de @@ = | | @-afs, )hE0deE- ) OdE-0E) -

Proof.

[, @ (@)@ = 2-[ (TEh@)d@)@) (by Lemma 3.1
= =[], | ats, O1T@hiet1ds- ) Odnce)
= ||-at, Or6OAE- ) @0 -

THEOREM 3.15. The multiplication * on _#Z;(G, A) (with respect
to some given T = (T, &)) 1s associative.

Proof. Let v, ft, ve (G, A), he K(G, A). Then [v«(1=7)](h)
I a oneo)de @@
L La(z, s)SGoz(zs, Dh(est)d(zs- 7))z £)(s)dv(z)

(by Def. 2.1-a, (ii) and (iii))

= LL“‘”’ Dh(wt)d(w-7) O d(exv) @) = [(p)=7I(R) «

SG (z-as, D)a(z, st)h(est)d(z-(s-7))()d(z- 1) (s)dv(z)

X

We thus have proved that _#.(G, 4), with multiplication *, is a
Banach algebra which we will denote _#.(G, 4; 7).

4. Centralizers on twisted group algebras,

DEFINITION 4.1. Let G be a locally compact group, A a Banach *-
algebra and = = (T, @) e Z*(G, A). Let L'(G, A;7) be the Banach
x-algebra consisting of all Bochner integrable functions from G to
A with multiplication given by:

(0@ = | FOT@ew D)at, y5)dy

and involution given by:

@) = afx, a7)*(T(@).f (@) (@)
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where 4 is the modular function for G.

The fact that this is a Banach =-algebra can be found in [4].
If feLl'(G, A;7), let L;: K(G, A) — A be given by:

L,h) = S F@h(@)ds for he K(G, 4) .
Clearly L, is linear. If a€ A then
L) = | f@t@a)ds = (| f@h@ds)a = Lk,

so L, is right A-linear. Finally if (f.).<i<. is a finite family from
K(G, A) such that vzeG,

SIA@ =1

then
12,91 = S| r@s@ds) = S0 17611
<71,
and so

LA = N1F]l < oo

PROPOSITION 4.2. The above correspondence induces a map ¢ from
LNG, A;7) to #(G, A;T) such that ¢ is an isometric monomorphism,
and ¢(L} G, 4; 7)) is a norm closed, left ideal in _#.(G, A; 7).

Proof. Let ¢, be the measure corresponding to L;. Then p,(S) =
S f(@)de vSe &£ (G). The fact that ¢ is isometric follows from [8],
S
Ch. II, §10, no. 2, and Ch. II, §10, no. 9, Th. 6.

Now if f,ge LG, A;7), and he K(G, A), an easy computation
shows that (u,«¢,)(h) = pts,(h) and so ¢ preserves product. Since
LY@, A; 7) is complete and ¢ is isometric, ¢(L'(G, 4; 7)) is norm closed.
From now on we will always identify feL'G, A;7) with g,¢
(G, A; 7).

To show that LY (G, A;7) is a left ideal in _#Z(G, 4;7), let fe
K(G, A) and me_«;. Let

@) = | (T @ D)aw, yoin@.
Since

feK(G, A), y— [T fy )]y, y~'z)
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is norm bounded and Borel measurable, thus m integrable, and so
fa(x) exists. Now

i@ lde = | || (Twraraaw, yodne |

=\ | 7@ @)lide dimi@)
=Sl llml] < + <=, 80 fue LG, 457) .
Now if ke K(G, A), then

(e = | | atw, Db@a)dy- m)@)3dm)

G

G

[ |, 170) r@aty, ayh(ve)de dmw)

g ¢ SG [T() f(y~w)]a(y, y~ @) h(x)de dm(y)
=[] 1t s law, yadn) e
= |, Fe@h@ds = 7, -

The result follows for f in L'G, 4; ) by approximating with func-
tions form K(G, A). Hence ¢(L'(G, A; 7)) is a norm closed left ideal
in (G, 4; 7).

We now propose to prove that _#;(G, A; r) satisfies the two con-
ditions of Proposition 1.5 relative to L'(G, A; 7) and so is isometrically
isomorphic with the left centralizer algebra of L(G, A; 7). This is our
main result, and the proof is quite involved, largely due to the
presence of a non-globally continuous cocycle @. Our theorem specializes
to a theorem of Wendel [21] when A = C and 7 is trivial, and our
proof begins like a vector generalization of his, but his proof uses
weak-+compactness of the measures of norm one, a property which
does not generalize at all, so we proceed in a different way. Even
in Wendel’s case, our proof specializes to a proof different from his.
We first prove some technical lemmas.

LEMMA 4.3. Let teZ¥G, A), 7z = (T, o), and let se€G. Then
there exist:

(1) a relatively compact neighborhood U(s) of s and a set M(s)
whose complement is a compact set of measure zero in G and,

(2) for each te M(s), a relatively compact neighborhood V(s, t)
of t and a Borel function p,,. G— 2 (4), both depending on s and t,
such that if (T, ;) = ., (T, @), then:
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(1) a,.(x,y) is continuous for x in U(s) and y in V(s, t),

(ii) T..:(@) is comtinuous for = im U(s) U V(s,t), (and (x, a)—
T..(x)a is continuous tn (U(s) U V(s, t)) X 4),

(iil) of ¢, t,€ M(s) them p,., (%) = p,,.,(x) Vo€ U(s), and

(iv) ee M(s) Yse@G.

This is an extremely important technical lemma quite similar to
the one proved in [2], but not a consequence of it. We will only
sketch the proof.

Proof. As in [2], Lemma 2, we note that there is a base S of
neighborhoods of ¢ consisting of sets V such that:

(a) V is open, symmetric, and relatively compact, and

(b) if n is any positive integer then the boundary of V* has Haar
measure zero.

Now we first suppose that s +# ¢, and we pick W from .&” such
that

WsWis*Wc N, WCN,N N, and s¢ W*.

Let N(s) = bd (Ws) U bd (s*W?s) which is compact and of measure
zero by hypothesis. Let M(s) be the complement of N(s), and let
te M(s).

Case 1. t¢ WsUs'W?s then t¢ Ws and tg¢s W3, and so we
can choose a symmetric neighborhood V of ¢ such that

(i) VinWs=¢

(ii) WsnNWsVt=¢

(iii) V< W (which implies Vi N WsVt = ¢ since s¢& W3(c W?)).

Notice that (iii) also implies V< N,- and sVs™'Wc N.

Since Vt, Ws, WsVt are disjoint we can define p,, as follows:
if # = wse Ws then p,.(x) = afw,s). If y= vie Vi, p,..(y) = a(v, t),
and if 2 = wsvt = (wsvs™Y)st € WsVt then p,,.(z) = a(wsvs™, st). Oth-
erwise p,; = I. Then if © = wse Ws and y = vte Vt, a somewhat
length computation shows that

(@, y) = (T(w)B(s, v, s7))a(w, svs™) T(wsvs™)[a(s, sV (s, )] -

Thus «,, is easily shown to be continuous on Ws x Vt by using
the facts V< N,—, sVs'C N, WsVs™ cC N.

We also have T, .(z) = T(w)T(s) and T..(y) = T(w)T({). Thus if
we let U(s) = Ws and V(s, t) = Vt, (i) and (ii) hold.
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Case 2. tesW?. Sinces¢ W°, WisNs*Ws=¢. If T = wsis
in W3s, let p,,.(T) = a(w, s) otherwise p,,, = I.
Now if x = wse Ws and y = s”'w'se s W?s then:

(@, y) = [Tw)T()B(s™", w', 8)* [ T(w) T(s)a(s™, s)la(w, w') ,

and the facts; W*c N,, W*C N, prove that the above is continuous
on Ws x s7*W?3. Also

T, (x) = T(w)T(s) and T,.(y) = T() -
Thus if we let U(s) = Ws and V{(s, t) = s Ws, (i) and (ii) are true.

Case 3. Finally suppose te€ Ws. Since s¢ W3, WsN WsWs = ¢.
If w = wse Ws, let p, ,(w) = a(w, s). If v = wsw's = wsw's™'s*’e WsWs,

D.,:(v) = a(wsw's™, s°. Otherwise p,, = 1.
Now suppose ¢ = ws and y = w's are both Ws. Then
a, (z, y) = (T(w)B(s, w', s))a(w, sw's™) T(wsw's™)(a(s, sT)*a(s, s)) .
Once again we have continuity due to the facts:

Wc Ny, WCN,sWs'CN,
WsWs™c N.

Finally T,,.(x) = T(w)T(s) and T..(y) = T(w")T(s), so again (i) and (ii)
hold if U(s) = Ws and V(s,t) = Ws. In all three cases, if = wse
U(s) = Ws then p,.(x) = a(w,s) regardless of ¢, so (iii) holds, and
finally (iv) holds by choice of W. Similar (but simpler) considerations
hold when s = e.

For future reference the operators h — L:(h) on K(G, A) (f in
L'(G, A)) will be denoted % — f(h).

LEMMA 4.4. Let he K(G, A),e > 0 be given. Then 3 fe K(G) =
K(@G, ), f =0, such that

I[, r@tien) — heldy] < s voe G, and | oy =1.

Proof. h is uniformly continuous on G, so there is a relatively
compact neighborhood U of e such that if ye U, ||h(xy) — h(x)]] < &.

Pick f = 0 with support in U such that g fy)dy = 1. Then
G
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|[, i) — nway
=|{, @ - nenay| < <f raray = .

LEMMA 4.5. Let s€ G and he K(G, A). Then there is a mneigh-
borhood V of e such if ye V,xe U(s),z€ G,

lla,,o(z, Yh(z) — h2)|| <e.

Proof. ec M(s) and so «,, is continuous on U(s) x V{(s, ¢). Since
a,.(x,e) = I (Case 2) for all ¢ in U(s), the result follows from the
continuity of «,,, if V< V(s, ¢) is chosen small enough (note that i (G)
is compact in A).

LEMMA 4.6. If (k.)i<n<e 18 @ Cauchy sequence in L' (G, A; 7) and
Vhe K(G, A), k.(h) — k(h), then k,—k in LG, A; 7).

Proof. The lemma is easily seen to be a consequence of the
following result: If f + 0 is in L'(G, A) then there exists an h in
K(G, A) withg f@h(x)de = f(h) = 0. We prove this general result.

Since f isanot zero in L'(G, A), there exists a compact subset
K in G such that (i) |[KNU| = 0 (|S| = Haar measure of S) implies
KNU-=¢ for every open subset U of G, (i) fo,= f|K is con-
tinuous on K and (iii) || fo(®)|| >0 on K. Take a fixed z in K.
Since f(z) = 0 there is an element ¢ in A with f(z)a = 0. Then
K, = {xe K| || f(®)a|| > 0} is a neighborhood of z in K, and so |K,|> 0.
Let @ be a real valued continuous linear functional on A with
@(f(z)a) = 1. It follows that z — @(f(x)a) is integrable on G, con-
tinuous and nonzero on K, and consequently nonzero in L*(G). Thus
there exists w e K(G) with

|, P @au@ds = | p(r@r@)de = 9| f@h@ds) =0,
with h(x) = au(x), h e K(G, A).

LEMMA 4.7. Let (e,)i<n< e an approximate identity in A, and
Tye o7 (A). Then Ty(e,) — I strongly as n— .

Proof. Letac A. Then Tye,)a = Ty(e.lT(a)]). Thus || To(e.)a —al]
= || To(e [T (@)] — T ()|l < e T5'(@)] — T5' (@) ]| — 0 as n— .

We now begin a sequence of lemmas leading to the proof that
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(G, A; 7) is isometrically isomorphic with _2Z,(L'(G, 4; 7)).
For each se G, let W(s) be a neighborhood of s such that W(s) =
U(s).

LEMMA 4.8. Let (fa)isnce be a sequence in LG, A; T) such that:

@) (f.) 1s strongly Cauchy,

®) ([ fali =1 for all n,

(¢) supp (f.) S W(s) for all n (fized s).
Then Ime _#,(G, A;7) such that:

(1) supp (m) & W(s)

(2) strong—lim,.. f, = m.
Furthermore, we have,

(3) [llm]|| = sup, {||m=f|]} where f ranges over the unit ball in
L\G, 4; 7).

Proof. Choose te M(s) and define p: G — Z (4) by;

@ — {ps,z(x) |ze W(s)
pa) = Ilwe W(s) .

Lemma 4.8, (iii) tells us that p does not depend on which ¢ e M(s) was
chosen. Let g,(x) = p(®)f,c LG, A) for all n. Now let ke K(G, A),
and € > 0 be given. By Lemmas 4.3,4.4, and 4.5, we can find an
f € K(G) such that:

(i) £20,| f@ds = 1, supp () < Vs, )

(i) || rwirey) - ranay] < ez
(iii) if xe W(s) and y e supp (f),

..o, Whay) = hay) | < S .

Let 1) = [ | f@)a.o, Dby — 1) |-
Then if
we W), |1 1@ |
= “ Saf W, (@, Yh(zy) — h@y)ldyl] + | Saf @)[hy) — h(@)]dy]|

& e _ &
TR

Let (e;),ci<. be an approximate identity in A, and Fi(z) = e, f(x).
Since p,,. is an isomorphism from L'(G, A;7) onto LG, A4;<,,), and
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D5 = P on W(s), (9,) is strongly Cauchy in L'(G, 4; 7,,) and so
(92*F)12n<w 18 morm Cauchy in LY(G, 4; 7,,,).
Thus ((g,*F;)(h)):<n<. is Cauchy in 4, and

1@ F)0) — gu0) |
=< | 10:@) ] || T (Fet) s, Do)y — 1) do

< {lou@ 11 1 @) l1d2 + | llg.@)1] | To.@)e)h(@) — h@) 1 da

Now Lemma 4.7 implies that for each x € G, lim,__.|| T%,.(x) (e;) h(x) — h(x)|| =
0 and thus the Lebesgue theorem tells us that the second integral
above tends to zero as ¢ — . Since the integrand of the first integral
above vanishes outside W(s), we see that I 4, such that if ¢ = 7, then

(") 1(gusF) () — gu(B)[| < €/6 + ¢/6 = ¢/3,

for all positive integers n.

The fact that ((9,+F;)(h))i<n<. 18 Cauchy combines with (*) to show
that there is an n, such that if n, m = n,, || g.(h) — g.(R)|| < e. Thus,
(92(R)i<n<e 18 Cauchy and converges to an element L(k)e A. The
map L: K(G, A) — A, defined in this way, is easily seen to be linear
and A-linear, and since ||g.|| < 1V¥n, it follows that ||L|| < 1. L then
corresponds to a measure 7 which clearly has support in W(s).

Now if we pass to the limit (in ») in the relation (*), we have
|| (m+F;)(h) — m(h)|| < &/3 if © = 14, (where %, depends on k). Since ||7% ||
can be approximated arbitrarily closely by sums 35, || %(k;) ||, where
e | ki(x)]| < 1 for all », the above relation shows that ||m]| can
similarly approximated from below by sums 3}i, || (m=F;)(R;)||. Thus

17| < Tim [|7«F | < [|]]

and so

%) || = sup, sz, ||+ f1]

were fe€ LY(G, A).
Let m be the measure p~-m, i.e.,

m(S) = L p-()dii(z), Se B(G) .

We will now show that (f,) converges strongly to m in _#Z (G, A4; 7).
Let te M(s) and suppose that f e K(G, A) has support in V(s, t).

Again p = p,,, on W(s), and p,,, gives an isomorphism of LG, 4;7)

with L'(G, 4; 7,,)), S0 (¢.):<n<w iS strongly Cauchy in LYG, A4;7,,).
Choose 7€ K(G) with support in U(s), so that v =1 on W(s).
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Then if
he K@, A), @ N0 = | 0@ | 10T @)ale, vy |ds

(since supp (g.) € W(s) vn), and our assumptions on v, T, &, ., and f
show that the inner integrand is zero outside U(s) x V{(s, t) and con-
tinuous on this product. The inner integral as a function of x belongs
to K(G, A) and thus the entire expression tends to

XG SG(Ts,t(x)(f(y))as,t(x, Wh(xy)dydim(z) = (mxf)(h)

* in _24(G, A;7,,)). Lemma 4.6 shows that
(gox f) —> mxf in LG, A;7,,.) .

We then apply p~* and conclude that f,xf — mxf (multiplication
in _7,/(G, 4; 7)) for all f in LY(V(s, t), A). As in Lemma 3 of [2],
we can show that finite linear combinations of functions in L'(V{(s, t),
as t varies over M(s), are dense in L'(G, A) and so f,— m strongly
in LG, A; 7). Finally, by using (**) and applying p~', we conclude
that ||m|| = sup, < {||m+f]|]} where f belongs to LG, A;7). This
completes the lemma.

At this point it might seem that we should take an arbitrary
strongly Cauchy sequence in LG, A;7) and successively restrict to
sets U(s) and use the above lemma. Unfortunately, the restriction
of a strongly Cauchy sequence to a subset (even relatively compact
open subset) need not be Cauchy. We must therefore proceed by
means of continuous partitions of unity and the following lemma.

LEMMA 4.9. Let (f,)1cn<. e a strongly Cauchy sequence in LY(G, A;7)
with || full £1 for all m. Then there is a subsequence (f})<i<..
such that for all feK(G), (f+Ffi)icice 18 stromgly Cauchy, (where
(f+f@) = f@)fu(x)).

Proof. Let (¢.),zs< be a ||+]|.. dense sequence in C.(G, A) (con-
tinuous functions vanishing at infinity). Now Proposition 3.4, d shows
that any norm Cauchy sequence in LY@, 4;7) has a subsequence
which converges a.e. Thus there is a set T(1) of Haar measure zero
and a subsequence f(n, 1),<,... of (f,) such that (f(n, 1)xg,)(x) converges
in A when ¢ T(1). By induction there are sets T(s) of measure zero
and subsequences (f(7, 8))i<nce Of (f.) such that (i) (f(n, $))i<uce IS @
subsequence of (f(n, k)),cnc. Whenever k& < s and

(ii) (f(n, s)=g,)(x) converges when x <€ T(s).

It follows in the usual way that if f, = f(n,n) and T = Uz, T(s),
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then (f,.*g.)(x) converges (in n) Vs and Vo ¢ T. Also, since (9,).zs<. iS
| - l.. dense in K(G, A), it follows easily that if » ¢ T, then (f,*g)(x) con-
verges for all g in K(G, A). Now if fe K(G),g¢c K(G, A), x¢ T, then
the function g¢g® defined by: ¢°(y) = f(xy )g(y) is in K(G, A) and so
(f*9°)(%) converges.

We have

(farg®)(z) = fn(y)[T W (yv)]aly, y'2)dy

= | FOF.ITW o Da, v 5)dy = (F-F)*9@ -

Since T has measure zero, ((f-f.)*g) converges a.e., and since these
functions are all bounded by || fll.ll¢ll. and have support contained
in supp (f)-supp (g9), the Lebesgue theorem implies that (f-f,*g) con-
verges in LYG, 4;7). Since K(G, A) is dense in LG, A; 1), we see
that (ff)izice is strongly Cauchy Vf e K(G).

‘We now come to the main result.

THEOREM 4.10. _#(G, A;T) is isometrically isomorphic with

#(LNG, A; 7)) VT e Z%(G, A) .

Proof. We will verify that the hypotheses of Proposition 1.5 hold.
Since G is second countable and paracompact, we can reduce the
covering (W(s))..s to alocally-finite, countable covering ( W(s,))1cnce- We
can then find a continuous partition of unity > F', subordinate to this

covering. Now let (f,).<n<.. Pe any strongly Cauchy sequence in L(G, A;7)
with || .|, <1 vn. By Lemma 4.9 there is a subsequence (f,)i<.<.. such
that (F- fu)isn<w is strongly Cauchy for all k. Now supp(F,-f,) < W(s,)
for all %k, and so by Lemma 4.8, there is a sequence (m,);<;<.. in
#(G, A; 7) such that supp (m,) < W(s,) and (F,- f,) converges strongly
to m, as m— co. The fact that 3o, F-f, = f. for all n implies that
> m(S) converges VS e B(G), and the resulting measure m (m(S) =
Sy my(S)) belongs to _#Z.(G, A4; 7). Finally if ge L' (G, A; 7), mxg =
S myrg = i Umy o (Fie )2 = lim, . 335, (Fy o)+ = lim, .. Furg
and so (f,) converges strongly to m. Since (f,)icm<. 1S strongly
Cauchy, m = strong—lim,_., f,. Also (**) implies that |m]| =
supy < || m=fll, f € LG, 4;7), and any m can be obtained this way,
thus Proposition 1.5 gives the result.

We now investigate the isometric left centralizers on LG, 4;7)
(recall that m is isometric if |m=f||=||m|| || fll=]|F|| Vfe LG, 4A;7)).

LEMMA 4.11. Suppose that me _#Z.(G, A;7T) is an isometric left
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centralizer, and S€ B(G). Then if n = m|S (the restriction of m to
S, t.e., (m|SYT) = m(TNSIS)) is not zero, nf||n|| is isometric.

Proof. Let T be the complement of S in G, and let p = m|T.
If p =0, then » = m and we are done. If not, then

WA= llmfll = [lnxfll + o= fll = lnll 11+ Il LA
= (Inll + [lpDIAI = [lml 1A= 1IF1 -

Thus

“H%Hf" =i 7l
and

ﬂ”g" f|=11£1

for all fe LXG, 4; 7).

Lemma 4.12. If 2e G, let 6, _#.(G, A; ) be given by: d,(h) =
h(z), h € K(G, A).
Then

(a) 9. is isometric and

(b) of m is isometric (me _#.(G, A; 7)) then 6, m 1is isometric.

Proof. (a) (0%f)(2) is easily computed to be T(x)(f(xz~'2))a(x, x7'z)
for all fe K(G, A). Then

lofll = 1Gen@ldz = | 172 = 1171

any by denseness this holds for all f in L'(G, A4; 7).
(b) is trivial.

LEMMA 4.13. Let me _#.(G, A; 7), 2, € G.

Then supp (6,,*m) = @,-supp (m).

Proof. Suppose U is an open set with UNsupp(m) = 4,9 is a
bounded Borel function from G to A with support in 2,U, and g* is
the funection such that g*(y) = g(x,y). Then supp (¢*) = «;* supp (9) <
U, and since

supp (a,+m) = supp (m), (0.,*m)(g) = |_alo, Yg@)dam)w) = 0.

This means that «,U N supp (d.,+m) =¢ and so supp (4,,+m) C @, supp(m).
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The reverse inequality is proved similarly.

The first part of the next lemma is a vector generalization of
[21], Theorem 3.

LEMMA 4.14. Let V be an open, relatively compact neighborhood
of e such that V.= V= and V2C N. Let m be an isometric measure
with support contained in V. Then m has a one point support.

Proof. Suppose that z, # %, are two points in V. Choose neigh-
borhoods W, and W, of x, and z, respectively such that W, N W, = ¢
and W;cV,4=1,2. Choose 7ve K(G) such that supp (v) c Nand v =
1 on V? and let fe K(G, A), such that supp (f) V. Then

111 = Imasl = |, (T@ s opat, vainw |

< | [Ireroiami @ = | | 15 alidedimn @)
= 11 1ml(G) = L1l [l = 171
Thus

], 1w s aaw, yoimw)| = | 1reldmi@

for almost all . These integrals vanish unless e V2 Also

[, T @ oNaw, yadma)
= | (T s m)aw, v dn)

which is continuous everywhere. Thus by continuity, the integrals
are equal at all points of V. In particular at x = e,

“ L(T(y)f ey, y)d my) " = SG Il F™)1d|m] () .

If fe K(G, A) with supp (f) CV, then let
F@) = Ty f Haw™, ¥)*]

in the above and we get:

| Faam)| = | 17@dim .

Finally we get that if f: G— A is any bounded Borel function such
that supp () V,
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[, r@anwi = 1r@idim @ .
Let a, be A and f = aXWI + bXWZ. Then

lam(W) + bm(Wy| = | [r@am@)| = 17w dimiw

= llall [m (W) + [[b]] |m[ (W) = [la|| [[m(W) Il + [[0]] [|m(Wy) ]
= llam(W,) + bm(W,)]|

and so Va,be A,
lam(W) + ba(Wa)[| = [lall [[m(W)]] + [[b]] [ m(W)]| .

By Proposition 1.7, this implies that m(W,) = 0 or m(W,) = 0. Since
Xy, ., W, w, are arbitrary, supp (m) consists of at most one point.

THEOREM 4.15. The isometric left centralizers on LY (G, A;7) are
precisely the measures 0oy, @ uy, with x,€ G and u an isometric element
wm 2 (A)Gf ke K(G, 4), (0., @ u)(h) = u- ().

Proof. Suppose that x and y # x are in supp (m), where m €
#21(G, A; T) is isometric. Choose a neighborhood V of e such that;

(i) V=V4V*CN and

(i) «VnNnyV=g¢g
and let =, p, g be respectively the normalized restrictions of m to
2V,yV,and xVUyV. Clearly p + ¢ = n, and p, g, n are all isometric
by Lemma 4.11.

Lemmas 4.12,4.13 and 4.14 imply that 6,—+p and 6,-.xg have one point
supports; thus p and ¢ have one point supports, and so n = ¢ & 0, +
d® 6, for some s, te G. By translation we may assme s = ¢, and by
Corollary 1.8 [|nm/|| = ||n||||m'|| = ||m’]|| for all m’ e _Z.(G, A; 7). We
choose any a,bc A, and let m' = a®J, + b ® d,-1. Then

lall + [l = llm'|| = [[nm/|]

= ||[ea + aT@)(D)a(t, t)] R 0, + ¢b & 0~ + da & o, ]|

= llea + dT@)®a(t, e+ [lell 1ol + [id]] el

= llell llell + [l T@®)a(, T + llell 116 + lidl] [ia]]
= (lell + llalD(lall + 161 = llall + [|?]] .

In particular, since ¥ = T(t)(b)a(t, t™") ranges over all of A as b does,
we have ||ca + ab'|| = |[¢]| |la]] + ||d]|| ||&’|| for all @ and &’ in A. By
Proposition 1.9,¢ =0 or b =0, i.e., p =0 or ¢ = 0 which is a con-
tradiction. Thus m has a one point support and equals % &) d, for
some e G and ue _(A). Let aeA and n = T(x)'a®d.. Then
lall = [|n]] = [|mn]|| = ||lua] and so % is isometric and we are done.
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We now consider the double centralizers of L'(G, 4; 7). We know
by Proposition 1.2, (iv), that _Z(L'(G, A; 7)) may be thought of as
the set of all me _~#,(G, A; 7) such that f*me LG, A;7) for all f
in that algebra. The most natural candidate for this algebra is the
set #Z(G, A; ) of measures in _#.(G, 4; 7) with values in _Z(4) =
+#(A). We cannot prove, in general, that LY(G, 4; 7) is a two-sided
ideal in _#Z (G, A; 7) or that if _Z(A) = _#.(4), then _7Z,(G, A;7) is
the double centralizer algebra of LG, A; 7) (although this is true if
A = C). The presence of the pair 7 causes serious problems which
we do not know how to overcome. We give some partial results.

DEFINITION 4.16. We say that a measure me _#Z.(G, A;7) is
decomposable if there is a ve_# (G) (the regular, complex, Borel
measures of bounded variation on G and a Borel function ¢: G —

_#/(A) such that for all ge K(G, A), m(h) = SG 9(@)h(@)dv(z).

PROPOSITION 4.17. If m is decomposable and has values in _# (A),
then fxm is in LG, A;7) for all f in LG, A; 7).

Proof. Suppose m is decomposed by (g, v) as above, and m (so

also v) has compact support. Let fe K(G, A) and ¢ = max {4(x) |z e
supp (m)} (4 = the modular function on G). Finally let k: G— A be

defined by:
kW) = |, 46) £ o) (T )g@)ate™, 2)du(a) -

Now k vanishes outside supp (f)-supp (m), and on this set ||k(y)| <
cll Fllallm|] < + =, 80 ke LG, A; 7). Nowlet he K(G,A). Then

Fm@ = | | 7@)(T@o@aw, 9hudsEdy
=1, | reT@e@aw, Hhwsdyae

1| 4@ s @a)(Tw9@), ae™, D@y
= [k@hway = k® .

Then by Lemma 4.6 f+m = ke LY(G, 4; 7).

Since K(G, A) is norm dense in L'(G, 4; 7), and measures with compact
support are norm dense in _#Z (G, 4;7), we are done.

COROLLARY 4.18. It _#Z(A) = _#.(4), and every measure in
(G, A; T) is decomposable, then # (LG, A;7)) = #Z(G, A: 7).
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The decomposable measures form a large class, and Proposition 4.17
is useful, but we do not know conditions which will guarantee that
every measure is decomposable.

ProrosiTION 4.19. The unitary double centralizers on LY(G, A; 7)
are precisely the measures u Q 6, where ue 77 (4).

Proof. Unitaries are isometric, so every unitary has the form
% Q 0, for an isometric . Since (v &) J,) is invertible, it is not hard
to see that w™* exists. Now (u ® d,)* is uniquely defined by the
equation (u ® 0,)*xf = (f**u & 0,)* for fe L' (G, A;7) and a straight-
forward computation shows that since (¥ ® 6,)* = W ® 6,)™, u =u" =
u* € Z7(A). Conversely if we are given 4 ) 0, with u € Z(4), we can
compute (u X 6,)~* to be (a(x™, 2)*T(x™)(u*) Y 6,~) and a direct com-
putation shows that f*+(u ® d,) = [(u Q 5,)"*«f]* Vfe LG, A; ), so
% & 0, is unitary.

5. Examples and applications.

ExamMpPLE 1. Let G be a locally compact group, N a closed,
normal subgroup and K the quotient group G/N. Suppose that there
is a locally continuous cross section from K to G, i.e., G is a “fibred
extension”. Then it is known (see [4]) that 3t = (T, ) € Z*(K, L(N))
so that LYG) is isomorphic with LYK, L'(N); 7). Since .Z(GQ) is
known to be isomorphic with _Z(L'(G)) ([21], Th. 2), our main
result implies that _Z(G) and _#.,(K, L'(N); ) are isometrically x
isomorphic. This means that each measure on G can be decomposed
into a measure on K with values which are measures on N, in such
a way that norm, sums, and products (convolutions) are preserved.
We note that if N above is contained in the center of G, then T (in
the pair (7, @) = 7) is trivial and our results make contact with those
of Edwards [10]. The precise relation between our results and his,
however, is not entirely clear, since the formulations are very different.
Moreover, he does not require the existence of a locally continuous
cross section, while for groups which have such a cross section, our
results are somewhat more explicit.

We consider applications of our results to isomorphisms of twisted
group algebras. Wendel has shown that if G and G’ are locally
compact groups such that L'(G) is isometrically isomorphic with L'(G),
then G is topologically isomorphic with G’. This would suggest that
if LY G, A;7) and LYG’, A’;7') are isometrically isomorphic then A
and A’ are isometrically isomorphic and G and G’ are topologically
isomorphic. This result, however, is false. In fact let G be a locally
compact group which has two normal subgroups N, N, with G/N,
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and G/N, non-isomorphic. By example one above, L'(G/N,, L\(N,); 7,) =
LY(G/N,, L)(N,); ;) but G/N,# G/N,. We can, however, classify certain
isomorphisms.

DEFINITION 5.1. Let o be an isomorphism from L'(G,, A,; 7)) onto
L(G,, A,; 7;). We say o is special if the canonical lifting of ¢ to the
left centralizer algebra takes A, onto A4,, and similarly for ¢! (note
that A is contained in _#;(L'(4, G; 7)) through the map ¢ —a ) J,).
From now on for convenience we will denote by @ the canonical lifting
of an isomorphism a from an algebra to the corresponding left cen-
tralizer algebra.

Suppose that LY(G;, A;; 7;)(i=1, 2) are two locally continuous twisted
group algebras (i.e. 7, € Z*G;, 4;),t =1,2). Then (see §2) 7; extends
to a member 7, of Z*(G,, Z (4;)), and Proposition 4.19 and the
definition of multiplication of measures show that if F::0— Z7(4,) —
B;,— G;—0 is the corresponding group extension (see §2), then
B:, is isomorphic with the group of unitary double centralizers on
LG, As; 7).

Now if o is a special isomorphism from LG, 4;;7,) onto
LY(G,, A,; 7;), then ¢ takes A, onto A, and thus Z/(4,) onto % (4,). By
Proposition 1.6 (ii) o also takes B;, isomorphically onto B;,. Thus there
is a commutative diagram:

0 — 2 (4,) — B;, G,—0
L AN
0 — 2 (4) —> B;,— G, —— 0

where 7 is the restriction of ¢ to (4, and ¢ is the induced map
(necessarily bicontinuous) from G, to G..

THEOREM 5.2. (a) LNG, A;7) and LNG,, A; 7,) are specially
iwsomorphic if and only if there are isomorphisms ¢: G, — G, and 7:
A, — A, such that if s = (8,7), [z.] = [z.]°.

(b) If the above holds and s = (¢,7) 1is as before, let p € F(G,, A)
be such that p-(s+7,) = 7,, and let c € R* be defined by the condition that
1(S) = epto(8(S))(S € B(G)), ¢; Haar measure in G;). Then o(f)(4(x)) =
cY(f(@)p(x)) defines a map of: L'(G,, A;; T,) — LY(G,, A,; T,) which is a
special isomorphism, and all such isomorphisms arise in this way.

Proof. The discussion immediately preceding this theorem shows
that if a special isomorphism o: L'(G,, A;; 7)) — L(G,, A,; 7,) exists, it
induces an isomorphism (%, 7, ¢) between E: and E:,. Proposition 2.7
then shows that [7,] = [T,]°, where § = (¢,7). Since ¥ can be con-
sidered to be the extension to %/ (4, of an isomorphism ~v: A, — A4,
(also induced by &) it follows that [z,] = [z.]°, where s = (g, V).
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Now if there is a pair s = (3, v) as above, with [z,] = [7,])5, and
if pe F(G,, A) gives the equivalence between 7, and 7}, then for f,

g in LGy, 4; %): [02()+02(0)](6@)
= o] | (PR (L@ o9 ))a6w), s )i |

2

- X (f+ D)) T:W)[(9-0) (v 0) ]y, y~)dy]

Il
Q
2

[, DO T 0 2)p0) p0) ) (005

X @iy, v n)p(@)* p@)dy |

3

= C

| 0 @i, yadype |
eH(Fr0)@p@) = 07(F150)(6()-

Also
(AL = el (7 @pe) 1)
| 15@ e = 111l since dp@) = cda) .

Finally if g € L(G,, A;; 7,) and f is defined by: f(x) = ¢™v [g9(¢(x))]p(x) 7%
then fe LY(G, A;7) and o2(f) = g. Hence o7 is an (obviously special)
isomorphism. Now it is trivial to show that o? produces (by the
process outlined at the start of this proof) the pair s. We will thus
be finished if we show that for any special isomorphism g, producing
a pair s = (¢, 7), 0 = o?, for some p. Direct computation shows that
if we let p be defined by the equation, 6(0,) = p(%)d,,,, then & and &7
will agree on measures in _#Z (G,, A,; T,) with finite support. Itis easily
seen that these are strongly dense, hence ¢ = ¢?, and we are done.

COROLLARY 5.3. The set of spectal tsomorphism classes of twisted
group algebras over (G, A) is in one-to-one correspondence with the
set of orbits in H*G, A) under the action of < (G, 4)(= ¥ (G) X
57 (A)).

These results generalize results of Wendel [21], and Edwards and
Lewis [11], as previously mentiond. It is worth remarking that our
method of proof, which involves going to associated group extensions,
gives an almost immediate proof of the continuity properties of ¢, 7,
p associated with o. This was one of the most difficult parts of the
proofs of the above mentioned special cases, and our approach seems
more natural as well as easier, even in those special cases.

We can also describe the group of special automorphisms of a
fixed algebra LG, A; 7).
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PROPOSITION 5.4. Suppose LG, A; T) is given and &, represents
the stability subgroup at [t] of Z(G, A) acting on H*G, A).

Let o7 (G, A; ) be the group of special automorphisms of L'(G, A; 7).
Then there is an exact sequence 0— Z'(G, C(A)) — 7 (G, A;7)— < .—0,
ie., (G, A;7) is an extension of &, by Z'(G, C(4)).

Proof. If 0, 0,e .7 (G, A;7), then by Theorem 5.2, there are
pairs s; = (¢;, V) € &, and p;: G—Z (4) (i = 1, 2), so that o, = o7
It is not hard to show that (0,0,)(f)(2)

= e[ (($:6) 7 (2))0:((8:6)7(2))]

(where p,(x) = p.(@)[v7'p(6.(x))]), and so .0, corresponds to the pair
(¢.&2, 717:). Thus the natural map from o7 (G, 4;7) to <, is an onto
homomorphism. If ¢? is in the kernel of this map, then p.-z = 7 and
so (see remark following Lemma 2.3) p € Z(G, C(4)).

If A is an abelian Banach algebra, the above results simplify
somewhat.

EXAMPLE 2. Suppose A is abelian. The following results follow
Jrom Corollary 5.3, Proposition 5.4. or previous remarks.

(@) If LG, A; T\, @) is specially isomorphic with L'(G, A; T,, a,)
then T, = T,.

(b) The special isomorphism classes over (G, A; T) are in one-to-
one correspondence with the orbits of H(G, A) under Z (G, A);[a)]
and [@,] are in the same orbit if and only if (g, ¥)e T (G, A) such
that a,o¢ and Yoo, are cohomologous.

() If LYG, A;7) is fixred with A abelian and v = (T, &) then the
special automorphisms of LG, A; T) are given by triples (3, v, {) where

(1) ,MeZ (G, 4) and T(H@)a(@) = 7(T()a)

(ii) & G-z (4A)

(ii) if B(x, y) is the cocycle a(p(x), s(y)) V(™ (x, y)) then B = oL, the
coboundary of C.

Up to now we have dealt only with special isomorphisms. Some
of the most interesting examples of twisted group algebras occur
when the object algebra is a C*-algebra (covariance algebras, trans-
formation group algebras, etc.). We show that for certain C*-algebras,
all isomorphisms are special, and so our previous results hold in
complete generality.

THEOREM 5.5. Let A, and A, be C*-algebras. Let o be an iso-
morphism of L'(G,, A;; t)) with LG, Ay 7,) (t;€ Z¥G;, A), 1 =1, 2).
Then o (/Z” (Al)) ERA (Az).
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Proof. By [1], 2.11, _# (A, is a C*-algebra with identity and so
by [9], 1, §1, Proposition 3, every element in _# (A4, is a complex
linear combination of at most four unitaries in Z/(4,). It is therefore
sufficient to prove that o(Z/ (4,)) € .# (A4,). Suppose u € Z (4, and v =
o) =a®d,, where a e Z(4,), x € G, ¢ # e (the identity in G;)). We
know that o(u) is unitary and so by Proposition 4.19 it must be in the
above form for some x. Choose complex numbers 3, v, 0 of modulus
one such that: (a) By + 70 =0, and (b) a(T(@)a)a(z, z) = (— B/o)I,
where I is the identity in _#(4,). Condition (b) is possible whether
or not a(T(x)a)a(z, x) is a multiple of I. Let z = 8+ vv + v. Then
(since v is unitary) z* = B + Yo' + gv7% and 2%z = | B + [Y]* + |0 +
(BY +70)v + (T8 + pv)v™ + Bov* + ppv™ = [BI + | 7] +|o + (Bo)v* +
@R (by (). Now llz*z|l = |13 + (Bo)s* + (38)v™|| = |1 + (8 +
ov)*(B + pv?)|l. On the other hand, ||z]| = ||8 + pv*|| + |7]| (since the
support of the measure v is @ # e, and ||v||=1). Thus |[z|*=
1+2||g+ ov*|| + [|B+ pv*|. Now g+ v’ = g+ p(a(T(@)a)a(z, ) Q d,,
which is clearly nonzero if #* = ¢, and if x* # e¢ the element is non-
zero by assumption (b). Thus in any case ||z|?> 1+ ||8 + ov*|]* =
l|z*z|| = ||2||* which is a contradiction. Thus x = e and ve_Z(4).
This completes the proof.

THEOREM 5.6. Let A be a C*-algebra, G as above, and = (T, a)
a twisting pair for (G, A).

(a) Suppose A has the additional property that any automorphism
of #(A) leaves A imvariant.
Then any automorphism of L' (G, A; T) is special.

(b) A satisfies the condition of (a) if

(i) A has identity or

(ii) A is commutative or

(iii) A is primitive and Type I.

Proof. (a) follows from Theorem 5.5, and

(b)—() is trivial.

(b)—(i). If A is commutative, A can be assumed to be C.(X)
for a locally compact, 7,, second-countable (since A is separable) space
X. It is then known that _Z(4) = Cy(X) = C(Y), where Cy(X) is
the algebra of continuous, bounded, complex-valued functions on X,
and Y is the Stone-Céck compactification of X. Then any isomorphism
o of C(Y) comes from a homeomorphism f of Y. Now it is well
known that Y is not first countable at any points of ¥ <X, and in
this case, that fact characterizes Y 4 X. Thus f (and /! leave X
invariant and so o must leave A4 invariant. (b)—(iii). We may assume
that A = C(H), the algebra of compact operators on a Hilbert space
H. Then (see [16], Th. 18), .Z(A) = <Z(H) (the bounded linear
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operators on H), and any automorphism of <& (H) is an inner auto-
morphism given by a unitary in <2 (H). It is well known that such
an automorphism will leave the algebra C(H) invariant. This com-
pletes the proof.

REMARK. Very likely a minor modification of the proof of (b)—
(i) would work for any m-homogeneous C*-algebra.

ExXAMPLE 3. Our final example of an application of our results
concerns the Homogeneous Banach =-algebraic Bundles (H — B-bundles)
of Fell [12]. We refer the reader to [12] for all definitions connected
with this example. Let &% = (B, w, o, *) be an H — B-bundle over
a locally compact group G. We assume as usual that G is second-
countable, and also that the algebra A = B, is separable. We recall
that, according to Fells classification of such bundles, [12], & is
canonically associated with a group extension FE(<Z): 0— Z(A) SN
% (B)—— G— 0, where % (4) isasusual and Z/ (B) is the group of “unitary
multipliers” of the “bundle space” B. We will say that <7 is locally
trivial if 7= has a Borel right inverse which is continuous in a neigh-
borhood of e.

Finally if L'(B) is the “cross sectional algebra” of B, and u¢
7 (B), there is a canonical element {(u) of Z (L*(B)) given by: [{(u) f](x) =
u[ f(w(uw)"'w)] (r is the canonical map of Z (B) onto G).

ProposiTION 5.7. If <& is a locally trivial H — B bundle, the
above map C is an isomorphism of Z/ (B) onto Z/ (L'(B)).

Proof. [3] shows that there is a locally continuous twisted group
algebra L'(G, A; 7) isomorphic with L'(B) and that the sequence 0—%Z (4)—
U(LMG, 4; 7))—G—0 is equivalent with E(<#). Proposition 2.6, Th.
4.15, and the discussion surrounding these results complete the proof.

We remark in closing that this proposition may well hold for
more general H — B-bundles and that whenever % (B) = % (L'(B)), our
results on special isomorphisms can be reworked to apply to the Bundle
. On the other hand, our main Theorem 4.10 does not seem to
have a natural statement in the Bundle context.

Acknowledgment. We would like to thank the referee of this
paper for many useful suggestions and improvements. In particular
the proof of Lemma 4.6 is due to him and replaces a much longer
and more awkward one.
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