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ERGODICITY IN VON NEUMANN ALGEBRAS

CHARLES RADIN

We investigate the ergodicity of elements of a von Neumann
algebra 2 under the action of an arbitrary cyclic group of
inner *-automorphisms of 9. A simple corollary of our results
is the following characterization: A von Neumann algebra %
is finite if and only if for each A €% and inner *-automorphism
a of 9, there exists Ac such that 1/N 3 V=la(A) —A

N-oco
in the weak operator topology.

1. Introduction. Our purpose is to explore in a new direction
the ergodic theory of von Neumann algebras presented by Kovics
and Sziics [2]. In [2] the essential contribution was the introduction
of a certain restriction (called G-finiteness) on a group of *-automor-
phisms of a von Neumann algebra, fashioned so that all elements of
the algebra behave ergodicly with respect to the group. Instead we
consider the action of a natural class of (eyclic) groups of *-automor-
phisms, namely the inner ones, and investigate which elements of the
algebra behave ergodicly with respect to all such groups.

2. Behavior of infinite projections. From the ergodic theory
developed in [2], we note the following simple consequence.

THEOREM 0. (Kovacs and Sziics). Let U be a finite von Neumann
algebra. For_each AcU and each inmer *-automorphism o« of 2,
there ewists Ae U such that 1/N >, a”(A)V_:O—:Z i the strong

operator topology.

Our first result is a complement to this and provides a new
characterization of finiteness for von Neumann algebras.

THEOREM 1. Let U be a von Neumann algebra. For each nonzero
infinite projection Pe there exists an infinite projection 6e N,
0 < P, and a unitary Ue N, such that 1/N 3V U"0U™ does not con-
verge in the weak operator topology.

First we need the following lemma.

LEMMA. There exists a monzero properly infinite projection
P < P.

Proof. Let S be the set of all central projections E of 9 such
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that EP is finite. 0e S so S is not empty. Let {E,} be an orthogonal
family of elementsof S. If 3, E.P~ Q< 3. E.P (where ~ is the usual
equivalence relation for projections in ), then F,P ~ F.Q < E,P so
that £,Q = E,P and therefore @ = >, F.Q = >, E,P. Therefore, Q =
. E.P and 3, E.P is finite. It follows easily that there exists a
(unique) maximal element F' in S. From [1, II1.2.3.5] it follows that
(I—F)P is nonzero and infinite. Assume it is not properly infinite.
Then from [1, II1.2.5.9] there exists a central projection G such
that 0% G(I— F)P is finite. But then from [1, II[.2.3.5] F< F +
G(I — F') € S, which contradiction proves our lemma with P’ = (I — F')P.

Proof of Theorem 1. From [1, II1.8.6.2] there exists a set
{P,|neZ} of nonzero projections P, e such that P,P, = 4,,,P, and
P, ~ P, for all m,neZ, and such that >}, <. P. —~ in the

strong operator topology. Therefore, there exist V,e W such that
v,*V,= P, and V,V,* = P,,, for all neZ, so that P,.,V, = V,P,
and P,V,* = V,*P,., for all ne Z. Define for each f ¢ 27 (the Hilbert
space of definition of ),

Uf = (norm lim 3, V,P,f) + (I — P)f,

m—oo [n|Zm

where the limit exists since ||V, P.f || = || P.f|| and V,P.f = P,.,.V.f
so that {V,P.f | ne€ Z} are pairwise orthogonal and

2 NVaPSIF = 2 PSP S IPSIF

In fact U is clearly a linear and norm preserving surjection, and
therefore unitary. Now since

(‘kzl VkP,c>norm lim > P,f = Z V.P,.f

m—oo |njZ2m

it follows that U,=1 — P’ + Z VLP,, has U as a strong operator limit

as | — co. Therefore, Ue?l. It also follows that UP, U™ = P,., for
all neZ, and so by induction U"P,U™ = P,,, for all m,neZ,
Now define g: N— {0, 1} by

) (1 if 3" =n <3 for some meN
n) =
g 10 if 3" <n <3 for some meN.

Then define § as the strong operator limit as
K— — = of Zgn:lx’ g<_m)Pm s

and let +» be a unit vector in P,5#. Now consider
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<«p, UN'S, U6 U—wf> ~ NS <¢r, U U-”Poq/f>

= UN'S, 3 o(=m)(v, PecsPitr)

m=—

- 1/N’g g(n) .

It is easy to see that for all Me N, 1/3%+ S¥¥* 1 g(n) = 2/3 yet
1/32+2 Sueimti-1 (1) <1/3, and the theorem is proven.
Using Theorem 0, we have immediately,

COROLLARY 1 (resp.2). A won Neumann algebra U s finite if
and on_ly if for each Ac and inner *-aut_omorphism a of A, there
exists A € U such that 1/N >3- a*(A) T_IO?A in the weak (resp. strong)

operator topology.

3. Finite elements. Theorem 1 raises the question of the ergodic
behavior, under arbitrary inner *-automorphisms, of “finite elements”
of infinite von Neumann algebras. The following theorem gives some
information in this direction.

THEOREM 2. Let N be a von Neumann algebra and © a faithful
normal semi-finite trace on AT tnvariant under the *-automorphism
a of A. Then for each A e U such that T(A*A) < oo, there exists Ae U
such that 1/N >3-t a™(A) oo A in the strong operator topology.

Proof. First we define the following (standard) objects: see e.g.
[1, 1.6.2.2]

[[ 1.2 Ae W — [c(A*A)]'"

A= {AeA|[A], < =} .
Let L, be the abstract completion of _#~ in the norm || ||,, and extend
l| ||l: to L, in the usual way. Let 7 be the isometric embedding of
A" into L,. L, is a Hilbert space with the obvious addition and

scalar multiplication, and inner product <, > defined as the extension
to L, X L, of

T:A X Be 4~ X 4 —>7(A*B).
We note the simple inequalities

|AB|.<||A|l||B|. for all Be 4", AeX
|AB|. < || Al.||B||  for all Be 4", Bedl.
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We then define the C*-representation 7 of 2% on L, by
n(A)i(B) = i(AB)

and noting that ||7(A)i(B)|. = ||AB|. < || 4] || B||, so that 7(4) ex-
tends uniquely to L, by continuity. It is easy to see that « is faithful
and normal and that

U: i(B) — i(a[B]) for Be 4~

extends to a unitary operator on L,. Defining, for Be ¥,

B, = %Vi a™(B), we know by von Neumann’s
mean ergodic theorem that for each Ae._#", i(Ay) is || ||.~Cauchy.
Define for each Be 77,

D,: i{(B) — norm lim 7w(A4,)i(B)
Nooo

which limit exists since
| m(Ay — Aw)i(B) . = || Ay — Ax || Bl .
D, is obviously linear. Furthermore,

I Di(B) |l = lim || 7(Ay)i(B) [l = | A || Bl

so D, extends uniquely to a bounded operator on L, by continuity.
It is easy to see that w(4,) converges to D, in the strong operator
topology. Since 7 is normal, 7(2) is strong operator closed [1, I.4.3.2]
so there exists Ae¥ such that D, = m(4). Since m is faithful,
Ay —]\7:)0?& in the strong operator topology [1, I.4.3.1].

COROLLARY 1. Let U be a countably decomposable von Neumann
algebra. For each ﬁal,ite projection Pe W and inner *-automorphism
a of U, there exists Pe U such that

1 N—1

N >, a™(P) Noo P in the strong operator topology .
M=0

Proof. Let
AGQI'_‘)Al@Azeﬁl@%Z

be the canonical decomposition of 2 into its countably decomposable
semi-finite and purely infinite components. From [1, 1.6.7.9] we know
that any finite countably decomposable von Neumann algebra has a
faithful, normal, tracial state. Inserting this fact into the proof of
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[3, 2.5.3], we see that there exists a countable faithful family
{z. | m e N} of normal semi-finite traces on ;" with pairwise orthogonal
supports such that 7,(P,) < « for all ne N. Define

o = 3 7./leP) + 2"

on 2U;; it is faithful, normal and semi-finite. Since « is also inner
for 9, and therefore leaves 7’ invariant, we may apply Theorem 2 to
A,. Since P, = 0 from [1, II1.2.4.8], we are finished.

In the countably decomposable case, Theorem 2 gives us an es-
sentially different proof of Theorem 0, namely

COROLLARY 2. Let U be a finite countably decomposable von
Neumann algebra. For each A e and inner x-automorphism o of U,
there exists A e 9 such that

N—1 —_—
% S a*(A) Now A in the strong operator topology .
n=0 —C0

Proof. Just combine the existence of a faithful finite normal
trace on A* [1, 1.6.7.9] with Theorem 2.
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