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GROUPS OF ISOMETRIES ON ORLICZ SPACES

JEROME A. GOLDSTEIN

If X is an Orlicz space of functions on an atomic measure
space, then, roughly, the only strongly continuous groups of
isometries on X are trivial, unless X is a Hilbert space. Hilbert
space is thus characterized among the Orlicz spaces on an
atomic measure space by its great abundance of strongly
continuous isometric groups.

1. Introduction. Let X be a real or complex Orlicz space of fune-
tions on an atomic measure space; an additional (not very restrictive)
condition will be imposed on X which implies in particular that X = L~.
If X is a Hilbert space, there are numerous strongly continuous one para-
meter groups of isometries on X, according to a classical theorem of
M. H. Stone; namely, each skew-adjoint operator on X generates such
a group. We shall show that this property characterizes the Hilbert
spaces among the Orlicz spaces under consideration on an atomic
measure space. Our main result is, roughly, if {T,:te R = (— oo, o)}
is a strongly continuous (or (C,)) group of linear isometries on X and
if X is not a Hilbert space, then for each real ¢, 7, has the following
form: (T.f)(w) = exp {i-tg(w)}f(w) for fe X and we 2 if X is complex,
where ¢ is a real-valued function on @2; or T, = I (= the identity
operator on X) if X is real.

Section 2 contains some preliminaries, including a discussion of
duality maps for Orlicz spaces. The main result is stated and proved
in §3. Section 4 contains some complements and examples, including
a proof of the main theorem for finite dimensional L~ spaces.

The present paper has several points of contact with Lumer’s

paper [9], which we became aware of shortly after the present paper
was submitted for publication.

2. Preliminaries. For general facts about Orlicz spaces, con-
venient references are [6], [17], [11], [12], and [13]. Let (2, 3, ¢) be a
measure space and let L°® be a real or complex Orlicz space on it. Let
¥ be the convex function complementary to @ in the sense of Young.
We normalize @, ¥ so that @(1) + ¥ (1) = 1; this can always be done
according to [17, p. 173]. Then norm in L? is defined by

171 = int {k > 0: | 0G| 5 i = 00},

and similarly for the norm || - ||, in L*. Every ¢ e L* defines a bounded
linear functional on L’ by means of the map f —»S fédy; moreover,
2
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the norm of this functional is || 4 ||s.

We shall only consider atomic measure spaces, and we shall sup-
pose without loss of generality that each atom has finite positive
measure. The assumption that no atom has zero measure enables us
to view members of L° as functions rather than as equivalence classes
of such. The assumption that no atom has infinite measure means
simply that the measure space has the finite subset property. This
assumption in no way restricts the generality since each f € L° neces-
sarily vanishes on all atoms of infinite measure, and so we could
delete from 2 its atoms of infinite measure without changing L?, as
long as @(x) > 0 for = > 0.

We shall use the terminology of Hille and Phillips [5], [4] con-
cerning semigroups of linear operators. Let Y be a real or complex
Banach space with dual space Y*. For fe Y, ge Y* the value of ¢
at f will be denoted by {f, ¢>. For feY let _Zf be the (nonempty)
set of all g Y* such that ||¢|| = ||f]| and {f, > = ||f|I*. A duality
map of Y is a function J: Y — Y* satisfying Jfe Zf for each fe Y.

PROPOSITION. A necessary and sufficient condition that a linear
operator A on Y generates a (C,) group of isometries on Y is that
+1 belong to the resolvent set of A and

Re CAf,Jf> =0
for each duality map J of Y and each feDom (A) .

We shall need some information concerning duality maps for
Orlicz spaces. A candidate for a duality map of L° is

Jf(w) =0 if f(w) = 0; otherwise

(1) JF () = CL.£ 1l Fw) | ) 10/ F) | 11116~

where C, = [S”| Flovrl fl],,‘l)dy]_l‘ Note that J defined by (1) is

not a duality map for L? in general; for instance; this is the case if
2 is not a singleton and L? = L=. However, we have the following
positive result, which we state for not necessarily atomic measure
spaces.

LEMMA. Let (2, 2, pt.) be an arbitrary measure space with the
finite subset property. Suppose that @, ¥ are everywhere finite. Let
0+fel’=L°Q, 2%, ) and define Jf by (1). Suppose Jfe L¥ and

pfwe Q: @ is not differentiable at | f(w)|||flls™" or

(2) ¥ is not differentiable at |Jf(w) ||| Jf(w)|z""} = 0.
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Then Jfe Ff. If @) =p7a”, 1 = p < oo, x>0, then J defined by
1) s a duality map for L*.

Proof. This is a variant of a result of Lumer’s [9], and the
present proof differs from Lumer’s. According to general Orlicz space
theory (cf. e.g. [17, p. 175]), equality occurs in Holder’s inequality

[, fodm = 1£ 111l > 0

whenever ¢ = ¢Jf for some positive constant ¢ and Jf defined by (1),
and in addition,

L, 2011l = 01), | (o116l = F()

These last two conditions hold by (2) together with a slight modifica-
tion of the proof in [14, p. 682].

Note that (2) automatically holds if both @’ and ¥’ are continuous.
Also, if f is a bounded function in L° which vanishes off a set of
finite p,-measure, then Jfe LY.

If @(x) = p~'a”, 1 < p < oo, then L® = L? and (1) becomes

Jf(w) = 0 if f(w) = 0; otherwise
Jfw) = ([ f11,777 flw) [ f(w) [

It is easily seen that Jfe L? (where p~* + ¢7' = 1) and J defines a
duality map for L?. This follows from the first part of the lemma
for 1 < p < o, and from a trivial calculation for p = 1; it is also easy
to verify this directly.

We shall assume a weak form of the statement: J defined by (1)
is a duality map for L°. Specifically, our assumption on @ is as
follows:

™ (i) 0< D@ < o for x> 0.

(ii) If the support of fe L® consists of at most two points, then
Jfe _Zf where Jf is defined by (1).

(i) excludes L=, but is not otherwise very restrictive. The
above lemma gives a sufficient condition for (ii) to hold. In particular,
(i) holds if L* = L?, 1 < p < <=, or if both @" and ¥ are continuous.

@)

3. The main result. Let X = L%(Q, Y, ¢) be a real or complex
Orlicz space on an atomic measure space, let T = {T,:tc R} be a (C)
group of isometries on X, and let A be the infinitesimal generator of
T. We shall make the following assumption concerning A.

(**y For we R let 6(w) be the function whose value at w' €2 s
1 or 0 according as w' = w or w =*= w. Assume o(w) <€ Dom (4) for
each we Q.
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(**) is automatically satisfied if X is finite dimensional or more
generally if T is continuous in the uniform operator topology. Also,
(**) is satisfied by all the generators of (C,) semigroups on the sequence
spaces !° (or I?) that one normally encounters in the applications.
Therefore, we do not view (**) as being very restrictive.

Our main result is the following

THEOREM. Let X = L°(Q, 2, ) be an Orlicz space on an atomic
measure space, let T = {T,:te R} be a (C,) group of isometries on X
with generator A, and suppose (*) and (**) hold. Suppose X is mnot
a Hilbert space, i.e., @ is not of the form @(s) = const X s

(i) If X is a real space, then mnecessarily T, = I for each te R.

(ii) If X is a complex space, there is a function g: 2 — R such
that (T, f)(w) = exp {itg(w)} f(w) for each fe X and each we 2.

Note that for any function g¢: 2 — R the formula in (ii) clearly
defines a (C,) group of isometries on X if X is complex.

For the proof of the theorem, suppose that @ is not of the form
O(s) = const x s*. We shall prove that for each we 2 there is a real
number g(w) such that A(6(w)) = ig(w)d(w). (In other words, if we
view A as a matrix, then all the off diagonal entries are zero,
while the diagonal entries are purely imaginary.) The rest of the
proof of the theorem runs as follows. Let fe X. Then f= >3, ¢;0(w;)
for suitable scalars ¢; and points w; € 2, since the support of f is at
most countable. f, = 3%, ¢;0(w;) —f as n— c and

Af. =i 3 eig(w)otw) -

Since A is closed it follows that for f = 3.2, c;0(w;) € Dom (4), Af =
1 35 e;9(w;)o(w;); and f = 3332, ¢;6(w;) belongs to Dom (4) if and only
if fe X and there is a k£ > 0 such that >3, (k| c;g(w;) | )p{w;} < eo.
The conclusion of the theorem follows immediately.

In order to prove that A(6(w)) = ig(w)é(w) for some g(w) € R, we
assume the contrary and seek a contradiction. First, by the proposi-
tion and (%),

0 = Re {4d(w), Jo(w)) = Re (A(3(w))(w)) @ (k™) {w}

where k = ||6(w)]|l,; whence by (i) of (*), Re (A(é(w))(w)) =0, or
A(6(w))(w) = ig(w) for some g(w) e R. Hence we are assuming that
A(B(wy))(w,) # 0 for a pair w,, w, of distinct members of 2, and we
seek a contradiction. Let a, @, be nonzero scalars, let f; = o(w;),
j=1, 2, and let f = a,f, + a,f,. By the proposition, (*) and (**),
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0 = Re (Af, Jf> = Re >, axAf;, Jf)
(3)
= Re{

2

>

J=1

S (AL )T | a7 O | £l )il -

Letting B, = |a, ||| fllo~* and noting that Re (Af;)(w;) = 0, (3) reduces
to

0 = Re {#{w}0" (B, | o, |7 (AS2) (w)
+ Hw} ' (B, | . [ (A f) (wo)}

Let a, = 2, with z 5= 0. Then (4) becomes
0 = Re{z[p{w,}@"(B) (A L) (w) + {w}0 (| 2] B)27* | 2| (Af)(w)]} -

Now write z = re” and cancel » from Re{...}. Recall our assump-
tion that (Af)(w,) # 0; let & be the argument of (Af,)(w,). Then the
second term in Re{---} is independent of », so we conclude that
@' (rBy) | (Af)(w,) | does not depend on ». Thus @'(rg,) = cr for
some real number ¢ and all » > 0. Hence @(s) = (c/28,)s* for all
s = 0. This is the desired contradiction, and the proof is complete.

(4)

4, Further results and remarks.

COROLLARY. The conclusions of the theorem hold if X is a finite
dimensional L= space (i.e., if Q is a finite set and X = L=(2, 2, ).

Proof. T* ={T,*:tec R} is a (C,) group of isometries on X* =
L', 2, ). By the theorem, T,* is either the identity or multiplica-
tion by exp {—itg(+)} for some g: 2 — R. The proof is completed by
taking adjoints again.

REMARK 1. The dual space of L=(2, X, ¢t) can be identified with
L'Q, %, ) for some different measure space (cf. [3, pp. 394-395]).
Our proof of the corollary fails to work for the infinite dimensional case
for two reasons: (2,, 2, £,) may be nonatomic even if (2, X, p) is atomic,
and T* need not be strongly continuous since X is not reflexive.

REMARK 2. Let Y be a c-algebra of subsets of R containing all
singletons, and let ¢ be the discrete measure on (R, 3), so that p(E)
is the number of points in E. Let X = LR, 3, 1), 1<p =< co.
T = {T,:tc R} defined by (T.f)(x) = f(x + t) is a group of isometries
on X. T is not strongly continuous; it is not even strongly measur-
able. This follows either from our theorem or from a direct com-
putation. This example shows that the requirement of strong con-
tinuity of T in the theorem is essential.
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REMARK 3. Lamperti [7] has characterized the isometries and
surjective isometries on L* spaces; in particular, many such exist.
Our results show that if the measure space is atomic and if p # 2, o,
only the trivial isometries can be embedded in a (C;) group of iso-
metries. Other aspects of isometries on L7 spaces have been studied
recently by Byrne and Sullivan [2]. Lumer [9] has extended Lam-
perti’s results to a large class of Orlicz spaces. Our results similarly
complement Lumer’s results.

REMARK 4. Following a number of recent authors (cf. for instance
[8], [16]), we define a bounded operator A on a Banach space X to
be skew-hermitian whenever || e**|| = 1 for each te R. This is equiva-
lent to saying that the (C,) group generated by A is a group of
isometries. Our theorem thus characterizes the skew-hermitian opera-
tors on the Orlicz spaces L°(%2, Y, pt), where the measure space is
atomic and @ satisfies (*). This complements a theorem of Lumer
[9, pp. 106-107].

REMARK 5. A (C,) group of isometries on a finite dimensional L?
space (with p = 2) is trivial, according to the theorem and corollary
above. Nevertheless, there exist nontrivial (C,) groups of isometries
on finite dimensional subspaces of L? spaces, as the following example
shows.

Let 2 = {zeC:|z| = 1} be the unit circle in the complex plane.
Let X be the real space L?(2, 2, t), where 3 is the oc-algebra of
Borel sets of 2, ¢ is Haar measure, and 1 £ p < o. T ={T,:te R}
is a (C,) group of isometries on X, where

(T.N)@) =fle+ 1

for fe X, t, v € B; here we are regarding members of X as (equivalence
classes of) 2z-periodic real functions on R. Let Y= {f,: a = (a, a,) € RY}
where for ace R}, xe R, f,(®) = a,cos & + a,sinz. Y is a two dimen-
sional subspace of X left invariant by 7T, for each real ¢ (as a simple
computation shows). Thus the restriction of T' to Y is the desired
example.

We note, incidentally, that the closed subspaces of L? which are
themselves L” spaces have been (almost completely) characterized by
Ando [1] and Tzafriri [15].
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