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MAXIMAL INVARIANT SUBSPACES OF STRICTLY
CYCLIC OPERATOR ALGEBRAS

MARY R. EMBRY

A strictly cyclic operator algebra .7 on a complex
Banach space X(dim X = 2) is a uniformly closed subalgebra
of £ (X) such that %7z = X for some z in X. In this paper
it is shown that (i) if .7 is strictly cyclic and intransitive,
then &7 has a maximal (proper, closed) invariant subspace
and (ii) if Ae & (X), A # 2] and {A}' (the commutant of 4) is
strictly cyclic, then A has a maximal hyperinvariant subspace.

1. Notation and terminology. Throughout the paper X is a
complex Banach space of dimension greater than one and &(X) is
the algebra of continuous linear operators on X. .o will denote a
uniformly closed subalgebra of &~ (X) which is strictly cyclic and =z,
will be a strictly cyclic vector for .o that is, .o7x, = X. We do not
insist that the identity element I of <°(X) be an element of .o

If & c <~ (X), then the commutant of <& is &' = {E: Fe ¥ (X)
and EB = BE for all B in <#}. We shall use the terminology of
“invariant” and “transitive” as follows: if Mc X and & < £ (X),
then (i) M is invariant under <% if B M = {Bm: Be &% and me M} C
M, (ii) M is an invariant subspace for <& if M is invariant under
& and M is a closed, nontrivial (= {0}, X) linear subspace of X,
(ili) &# is transitive if <Z has no invariant subspace and intransitive
if <Z has an invariant subspace. Further, if Aec & (X) and {4} is
intransitive, then each invariant subspace of {4} is called a hyperin-
variant subspace of A. Finally an invariant subspace of .<Z is maximal
if it is not properly contained in another invariant subspace of <7Z.

2. Introduction. Strictly cyclic operator algebras have been
studied by A. Lambert, D. A. Herrero, and the auther of this paper.
(See for example [2]-[6].) One of the major results in [2, Theorem
3.8], [3, Theorem 2], and [6, Theorem 4.5] is that a transitive sub-
algebra of < (X) containing a strictly cyclic algebra is necessarily
strongly dense in &#(X). In each of three developments the following
is a key lemma: The only dense linear manifold invariant under a
strictly cyeclic subalgebra of ~(X) is X. In Lemma 1 we shall
present a generalization of this lemma which will be useful in the
study of maximal invariant subspaces and noncyclic vectors of a
strictly cyclic algebra .o

LEMMA 1. If M is invariant under S and x,< M, then M = X.
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(It should be noted that we do not require M to be linear nor do
we require, as was done in Lemma 3.4 of [2], that Te .o The proof
given here is a slight modification of that given in [2].)

Proof. We shall show that .o7w,Cc M and thus X = o7z, C M.
Let {x,} be a sequence in M such that lim,_. , = ©,. By [2, Lemma 3.1
(i1)] there exists a sequence {A4,} in . such that A,x, =z, — x,
and lim,_.||4,.]] = 0. Thus for n sufficiently large, ||4,|| <1 and
I—-A4,)" = (A Consequently, .o (I — A,)*C .7 and since
2,=U—-A4,)"'«, we have vz, =.>{I—-A4,) ", C ¥z, CM, as
desired.

For the sake of future reference we restate and reprove the
transitivity theorem.

THEOREM 1. If .7 is a strictly cyclic transitive subalgebra of
A(X), then .7 is strongly dense in £ (X).

Proof. Using Lemma 1 we can show (asin [2, Lemma 3.5]) that
each densely defined linear transformation commuting with .7 is
everywhere defined and continuous. Further, again using Lemma 1,
we can show that if Fc.o and z < o{FE), then either zI — E is not
one-to-one or does not have dense range. Thus if .&7 is transitive,
necessarily F = zI. Consequently, it follows from [1, p. 636 and Cor.
2.5, p. 641] that .7 is strongly dense in &~ (X.)

3. Maximal invariant subspaces. In [2, Theorem 3.1] it is
shown that every strictly cyclic, separated operator algebra .o~ has
a maximal invariant subspace. (.o is separated by , if A =0
whenever Ae.o»” and Ax, = 0.) Theorem 2 allows us to obtain the
same result without the hypothesis that .o~ be separated, provided
7 is intransitive.

THEOREM 2. An intransitive, strictly cyclic subalgebra &7 of
FA(X) has a maximal tnvariant subspace.

Proof. Let _# = {M: M is an invariant subspace of .o}. By
hypothesis .72+ @. We shall order .~ by set inclusion and show
that each linearly ordered subset of _# has an upper bound in _#Z
To this end we let {M,} be a linearly ordered subset of _#. Then
U. M, is invariant under .oz By Lemma 1, if {(J,M, = X, then
U. M,= X and consequently x,e M, for some value of a. Since this
last implies that X = .72, o M, C M, and contradicts the fact that
M, is a proper closed linear subspace of X, we see that |J. M, is not
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dense in X. Thus U, M, is an element of _# and is an upper bound
for {M,}. By the Maximality Principle .# has a maximal element.

Lemma 1 and the Maximality Principle can be combined to arrive
at other similar results. For example, (i) if .o is intransitive and
strictly cyclic, then .o~ has a proper maximal invariant subset (this
will be discussed further in §4) and (ii) if X is a Hilbert space and
.57 has a reducing subspace (that is, an invariant subspace of .o~
which is also invariant under .&/* = {A*: Ae.&}), then & has a
maximal reducing subspace.

In [2, Theorem 3.7] it is shown that if A is not a scalar multiple
of I and {A} is strictly cyclic, then A has a hyperinvariant subspace.
This result combined with Theorem 2 yields the following:

COROLLARY 1. If A is mot a scalar multiple of I and {A} s
strictly cyclic, then A has a mawximal hyperinvariant subspace.

We shall now turn our attention to intransitive, strictly cyclie
operator algebras on a Hilbert space X. If M is a closed linear
subspace of X, P, will denote the orthogonal projection of X onto M
and M* the orthogonal complement of M: M* = {y: <y, m> = 0 for all
m in M}. Furthermore, &7* = {A*: Ae .o},

In the Hilbert space situation we are able to conclude that .o7*/M
is strongly dense in & (M*) when M is a maximal invariant subspace
for .o This remains an open question if X is an arbitrary Banach
space and is a particularly interesting one if X is reflexive. For in
that case if M is a maximal invariant subspace of .97, then M* =
{x*: 2*(M) = 0} is a minimal invariant subspace of .o7*.

THEOREM 3. Let .o be a strictly cyclic operator algebra on a
Hilbert space X. If M is a mazimal invariant subspace of o7, then

(i) (I— Py.o7(I— Pz, = M- and (ii) &7 *(I — P, s strongly
dense in & (M*4).

Proof. Note first that (I — P,).>7(I — P,) = (I — P,).57, so that
(i) is immediate. Since M is a maximal invariant subspace for .o/, M*
is a minimal invariant subspace for . *. Thus each of .&7*(I — Py)
and (I — P,).7 (I — P,) is transitive on M*. Thus the uniform closure
of (I - P,).>r(I— P, in & (M) is transitive and by (i) is strictly
cyclic; hence by Theorem 1 (I — P,).o7 (I — P,) is strongly dense in
(M), which concludes our proof of (ii).

THEOREM 4. Let X be a Hilbert space, Ac ¥ (X) and {A}
strictly cyclic. If M 1is a maximal invariant subspace for {A},
then there exists a multiplicative linear functional f on {A}’ such
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that for each E in {A)', (E — f(E)I)(X)C M.

Proof. As we noted in the proof of Theorem 3,
Z = (I - PM){A}’(I_ PM)

is strongly dense in & (M') and thus its commutant consists of the
scalar multiples of the identity operator on M*‘. Since {A}’ {4}
and M is invariant under {4}, we know that (I — P,){A}'(I — P,)
is contained in the commutant of <#Z on M* and hence (I — P,){4}'(I —
P,) c{2(I — P,)}. Thus for E in {A}"”, there exists a complex number
z such that (I — P,)E(I — P,) = 2z(I — P,). Therefore, (I — P,)(E —
2I) = 0 since M is invariant under {A}"”; or equivalently (F — zI)(X) C
M. Since M is a proper subset of X, it is now obvious that the
number z for which (E — zI)(X) C M is unique. Define f(E) = z.

That f is linear follows immediately from the fact that f(F) is
the unique number for which (E — f(E)I)(X)c M. Furthermore, since
M is invariant under {A}”’, (FE — f(E)F)(X)c M for all E, Fe{A}".
Consequently (by uniqueness again), 0 = f(FE — f(E)F) = f(FE) —
F(E)f(F) and thus we see that f is multiplicative.

COROLLARY 2. Let Ae ¥ (X) where X is a Hilbert space. If
the range of A — zI is dense in X for each complex z, then {A} 1is
not strictly cyclic.

Proof. Except for one minor technicality, Corollary 2 follows
immediately from Theorem 4. For, if {4} is strictly cyclic and
intransitive, by Theorem 4 there exists a complex number f(A4) such
that the range of A — f(A)I is contained in a proper subspace of X.
By Corollary 1 the only other way in which {4} can be strictly cyclic
is when A = zI for some complex z, in which case the range of A —
zI is certainly not dense in X.

In [2, Lemma 3.6] and [3, Proposition 2], it is shown that if
Ee ., where 7 is strictly cyclic and z € o(F), then either zI — E
is not one-to-one or zI — E does not have dense range. Corollary 2
now adds to our knowledge of g(A) where {A} is strictly cyeclic: in
this case we know that for at least one value of 2, the range of
A — zI is nondense. Indeed we have the stronger result:

COROLLARY 3. Let Ae ¥ (X) where X s a Hilbert space. If
{AY s strictly cyclic, then there exists a common eigenvector for {A*})".

Proof. The case in which {4} = &(X) is trivial. Thus we
assume A # zI. By Theorem 4 if Ee{A}”’, there exists a complex
number f(E) such that (E — f(E)I)(X) C M where M is a maximal
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invariant subspace of {4}). Therefore, E*(I — Pz, = f(E)*(I — Py)x,
and (I — Py)x, + 0 since z, is cyclic for {4} and M is a proper
invariant subspace for {A}.

4. Noncyclic vectors of .9, In this last section of this paper
we shall discuss briefly several properties of the set of noncyclic vectors
of a strictly cyclic operator algebra .. A vector x is noncyclic for
S if o7x is not dense in X. These results are summarized in
Theorem 5. Parts (i) and (iii) of Theorem 5 also are found in [5,
Theorem 2].

THEOREM 5. Let N be the set of moncyclic vectors of a strictly
cyclic operator algebra .7,

(i) i «¢ N, then x is a strictly cyclic vector for .o,

(ii) N s tnvariant under .57,

(iii) N is closed in X,

(iv) N is the unique proper maximal invariant subset of .7

(v) if N is not linear, then N + N = X, where N + N = {x +
y:x,ye N}.

Proof. (i) If x¢ N, then .o = X and thus by Lemma 1 since
7% is invariant under .7, we have .&7x = X and z is strictly cyclic.
(ii) Assume that xe€ N and A e.o. Then . Az C .7 and consequently
S Ax #+ X. That is, Aze N for each 4 in . which proves (ii).
(iii) By (ii) & Nc N. Since .o~ has a strictly cyclic vector, we know
by Lemma 1 that N contains no strictly cyclic vector for .o Thus
by (i) N contains only noncyclic vectors for .97 which says that N is
closed. (iv) By (ii) N is invariant under .2 By hypothesis .~ has
a strictly cyclic vector so that N == X. These two observations essen-
tially prove (iv) since an element x of a proper invariant subset of
7 is necessarily an element of N. (v) If N is nonlinear, then
since N is homogeneous, we know that N == N + N. Therefore, since
N + N is invariant under .o (by (ii) we know that N+ N = X by
@iv))-

To see that there exist strictly cyclic operator algebras for which
N is linear and those for which N is nonlinear let us reconsider
Example 1 of [2].

ExamPLE. Let X be a Banach space, dim X = 2 and let z,¢ X,
2, 7= 0. Let each of z* and y* be a continuous linear functional on
X such that z*(z) = y*(&,) = 1. For each « in X define A4, by

Ay = a*@)[y — v* (] + v*(y)x
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and let &7 = {4,:x e X}.

It was observed in [2] that .o is a strictly cyclic operator algebra
with strictly cyclic, separating vector x,.

A simple argument shows that a vector y, of X is cyclic (and
hence by Theorem 5 strictly cyelic) if and only if y*(y,) # 0 and z*(y,) #
0. Thus the set N of noncyclic vectors coincides with ker y* U ker o*.
Consequently, N is linear if #* and y* are dependent and nonlinear
otherwise.
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