FREE LATTICE-ORDERED MODULES

A. BIGARD

The aim of this paper is to show that the theory of free lattice-ordered groups developed by E. C. Weinberg in the abelian case can be generalized to modules over a totally ordered Ore domain A. The main result is that for every torsion-free ordered A-module M, there exists a free f-module over M. The generalization given will be seen to be, in a certain sense, the best possible.

All rings and modules considered will be assumed to be unital. Let A be a partially ordered ring and A_+ its order. If M is a left A-module, we say that $P \subseteq M$ is an order on M if:

 $P+P \subseteq P$, $A_+P \subseteq P$, and $P\cap -P=\{0\}$. If such a P is given, we say that M is a partially ordered (or ordered) module. If P is a total order on M, that is, if $M=P\cup -P$, we say that M is a totally ordered module. Let M and N be partially ordered A-modules and let f be a mapping from M to N. Then f is an o-homomorphism if f is a monotonic homomorphism of A-modules. The o-homomorphism f is an o-homomorphism if f is one-to-one and if f^{-1} is an o-homomorphism.

1. Some properties of f-modules. In this section, A will denote a directed p.o. ring. An A-module M which is lattice-ordered by the order P is called a lattice-ordered module or l-module. Products of lattice-ordered modules are defined in a natural way. If M and N are l-modules, an homomorphism f from M to N is called a l-homomorphism if, for $x, y \in M$:

$$f(x \vee y) = f(x) \vee f(y)$$
 and $f(x \wedge y) = f(x) \wedge f(y)$.

An f-module M is a lattice-ordered module which is a subdirect product of totally ordered modules. This definition was first introduced in [1] and [3].

Recall that a convex l-subgroup S in a commutative l.o. group G is called prime if G/S is totally ordered. The following theorem gives useful characterizations of f-modules.

Theorem 1. Let M be a lattice-ordered module over a unital directed ring A. The following are equivalent:

- (1) M is an f-module.
- (2) For $x, y \in M$ and $0 \le \lambda \in A$, $\lambda(x \lor y) = \lambda x \lor \lambda y$ and $\lambda(x \land y) = \lambda x \land \lambda y$.

A. BIGARD

- (3) $x \wedge y = 0$ implies $\lambda x \wedge y = 0$ for all $0 \le \lambda \in A$.
- (4) Every minimal prime subgroup of M is a submodule.
- *Proof.* (1) implies (2): This is clear since (2) is satisfied in a totally ordered module.
 - (2) implies (3): If $x \wedge y = 0$, then we have:

$$0 \le \lambda x \wedge y \le (\lambda \vee I)x \wedge (\lambda \vee I)y = (\lambda \vee I)(x \wedge y) = 0$$
.

- (3) implies (4): Let S be a minimal prime subgroup. Then, $x \in S$ if and only if there exists $y \notin S$ with $x \wedge y = 0$. [2]. Thus, if $x \in S$ and $0 \le \lambda \in A$, we have $\lambda x \in S$. Since A is directed, S is a submodule.
- (4) implies (1): Let $(S_i)_{i\in I}$ be the family of all minimal prime subgroups of M. Then each quotient M/S_i is a totally ordered module and M is a subdirect product of these modules.
- If A is not unital, then (1), (3), and (4) are equivalent but condition (2) is weaker (see [3]).

In the sequal, we shall be concerned mainly with torsion-free modules, that is modules in which $\lambda x = 0$ implies $\lambda = 0$ or x = 0. The following property is useful:

PROPOSITION 1. If A is totally ordered, every torsion-free fmodule F is a subdirect product of torsion-free totally ordered
modules.

Let S be a minimal prime subgroup of F. Suppose that $\lambda \neq 0$ and $\lambda x \in S$. We may assume $\lambda > 0$, as A is totally ordered. As in the proof of Theorem 1, there exists $y \notin S$ with $\lambda x \wedge y = 0$. This implies $\lambda(x \wedge y) = \lambda x \wedge \lambda y = 0$, and hence $x \wedge y = 0$. As $y \notin S$, we obtain $x \in S$. This proves that M/S is torsion-free and the theorem follows.

As in the theory of ordered groups, P is an isolated order on M if $\lambda > 0$ and $\lambda x \in P$ implies $x \in P$.

Proposition 2. Every torsion-free f-module is isolated.

Proof. If $\lambda > 0$ and $\lambda x \ge 0$, we have $\lambda(-x \vee 0) = -\lambda x \vee 0 = 0$, hence $-x \vee 0 = 0$ and $x \ge 0$.

Conversely, it is clear that when A is totally ordered, every isolated module is torsion-free.

2. Embedding an order in a total order. In this section, we consider only torsion-free modules over a totally ordered unital ring A. This is not as restrictive as it seems, since the existence of a

nontrivial torsion-free module implies that A has no zero divisors, and an f-ring with no zero divisors is totally ordered.

LEMMA 1. Let M be a torsion-free A-module. For every $x \in M$, A_+x is an order.

Proof. Suppose that $y \in A_+x \cap -A_+x$, so that $y = \lambda x = -\mu x$. The relation $(\lambda + \mu)x = 0$ implies $\lambda + \mu = 0$ or x = 0. In the first case, $\lambda = -\mu \in A_+ \cap -A_+$ so in each case y = 0.

LEMMA 2. Let P and Q be two orders on M. Then P-Q is an order if and only if $P \cap Q = 0$.

Proof. The condition is necessary, since $P \cap Q \subseteq (P-Q) \cap (Q-P)$. For the converse, suppose $P \cap Q = 0$ and let $y \in (P-Q) \cap (Q-P)$. Then y = p - q = q' - p', and $p + p' = q + q' \in P \cap Q = 0$. Hence, $p = -p' \in P \cap -P = 0$, $q = -q' \in Q \cap -Q = 0$, and it follows that y = 0.

The ring A is said to be a left Ore domain if A admits a left quotient field. Equivalently, A has no zero divisors and satisfies the following condition:

- (I) If $\rho \neq 0$ and $\sigma \neq 0$, $A\rho \cap A\sigma \neq 0$. Clearly, when A is totally ordered, this condition can be replaced by the following:
 - (II) If $0 < \rho$ and $0 < \sigma$, $A_+\rho \cap A_+\sigma \neq 0$.

THEOREM 2. Let A be a totally ordered ring with no divisors of zero. The following are equivalent:

- (1) A is a left Ore domain.
- (2) In a torsion-free A-module, every order is contained in a total order.
- (3) In a torsion-free A-module, every order is contained in an isolated order.
- *Proof.* (1) implies (2): By Zorn's lemma, every order is contained in a maximal order. It remains to show that each maximal order P is total. If not, suppose $b \notin P \cup -P$. As $P \subset P + A_+ b$ (strictly), $P + A_+ b$ fails to be an order. By Lemma 2, $P \cap -A_+ b \neq 0$ and there exists $\rho > 0$ with $\rho b \in -P$. Similarly, $P A_+ b$ is not an order, $P \cap A_+ b \neq 0$, and there exists $\sigma > 0$ with $\sigma b \in P$. By condition (II), there exists $\lambda > 0$ and $\mu > 0$ with $\lambda \rho = \mu \sigma > 0$. Hence $\lambda \rho b = \mu \sigma b \in P \cap -P = 0$. This implies b = 0, which is a contradiction. Hence P is a total order.
 - (2) implies (3): This is clear from Proposition 2.

A. BIGARD

(3) implies (1): Consider A as a left-module on itself. Take $0<\rho$ and $0<\sigma$. If $A_+\rho\cap A_+\sigma=0$, $A_+\rho-A_+\sigma$ is an order by Lemma 2. Hence it is contained in an isolated order P, and thus $\rho 1\in P$ and $\sigma(-1)\in P$. Then $1\in P$ and $-1\in P$, which is a contradiction.

COROLLARY 1. Let A be a totally ordered left Ore domain. Let f be an o-homomorphism of the torsion-free module M ordered by P into a torsion-free totally ordered module T. There exists a total order P_0 which contains P such that f(x) > 0 implies $x \in P_0$.

To see that $S=\{x\mid f(x)>0\}\cup\{0\}$ is an order on M, note that $S+S\subseteq S$ and $S\cap -S=\{0\}$. Also for $\lambda>0$ and $0\neq x\in S,\ f(x)>0$ and hence $f(\lambda x)=\lambda f(x)>0$ since T is torsion-free. As $P\cap -S=0$, P+S is an order by Lemma 2. The corollary then follows from Theorem 1.

COROLLARY 2. Let A be a totally ordered left Ore domain and let M be a torsion-free A-module ordered by P. The intersection of all total orders containing P is the set \bar{P} of elements $x \in M$ for which there exists $\lambda > 0$ with $\lambda x \in P$.

Each total order containing P is isolated and hence contains \bar{P} . Suppose $x \notin \bar{P}$, so that $P \cap A_+ x = 0$. By Lemma 2, $P - A_+ x$ is an order. By Theorem 2, $P - A_+ x$ is contained in a total order Q. Since $-x \in Q$ and $x \neq 0$, $x \notin Q$.

THEOREM 3. Let A be a totally ordered left Ore domain. If M is an A-module ordered by P, these are equivalent:

- (1) P is isolated.
- (2) M is torsion-free and P is an intersection of total orders.
- (3) M can be embedded in a direct product of totally ordered torsion-free modules.
 - (4) M can be embedded in a torsion-free f-module.

Proof. (1) implies (2): This follows directly from Corollary 2, as $P = \bar{P}$.

- (2) implies (3): Let $(P_i)_{i \in I}$ be the set of all total orders containing P. If we denote by M_i the module M ordered by P_i , there is a canonical embedding of M into the direct product of the modules M_i .
 - (3) implies (4): Clear.
 - (4) implies (1): This follows from Proposition 1.

- 3. Free f-modules. Let A be a totally ordered left Ore domain, and let M be a torsion-free A-module ordered by P. A torsion-free f-module L will be called f ree over M if:
 - (1) There exists an injective o-homomorphism φ from M to L.
- (2) For every torsion-free f-module F and every o-homomorphism f from M to F, there exists a unique l-homomorphism \overline{f} from L to F such that $\overline{f} \circ \varphi = f$.

It is not difficult to show that L is determined up to an l-isomorphism. To show that such an L exists, we use the two following lemmas:

LEMMA 3. If $x_{\alpha\beta}(\alpha \in R, \beta \in S)$ and $x_{\gamma\delta}(\gamma \in U, \delta \in V)$ are two finite families of elements in a lattice-ordered module,

$$\bigvee_{\alpha \in R} \bigwedge_{\beta \in S} x_{\alpha\beta} - \bigvee_{\gamma \in U} \bigwedge_{\delta \in V} x_{\gamma\delta} = \bigvee_{(\alpha,\sigma) \in R \times (V^S \times U) \ (\beta,\gamma) \in S \times U} (x_{\alpha\beta} - x_{(\gamma)(\sigma(\beta,\gamma))}).$$

Proof.

$$egin{array}{l} igvee_R igwedge_S x_{lphaeta} - igvee_V igwedge_V x_{\gamma\delta} = igvee_R igwedge_S igwedge_V (x_{lphaeta} - x_{\gamma\delta}) = igvee_R igwedge_{S imes U} igvee_V (x_{lphaeta} - x_{\gamma\delta}) \ = igvee_R igvee_{S imes U} igwedge_V (x_{lphaeta} - x_{(\gamma)(\sigma(eta,\gamma))}) \ = igvee_{(lpha,\sigma) \in R imes (V^{S imes U})} igwedge_{(eta,\gamma) \in S imes U} (x_{lphaeta} - x_{(\gamma)(\sigma(eta,\gamma))}) \;. \end{array}$$

LEMMA 4. Let N be a f-module and K a submodule of N. The f-submodule generated by K is the set K' of all elements $\bigvee_{\alpha \in \mathbb{R}} \bigwedge_{\beta \in S} x_{\alpha\beta}$ with $x_{\alpha\beta} \in K$.

Proof. By Lemma 3, K' is an l-subgroup of N. If $\lambda \geq 0$, it follows from Theorem 1 that: $\lambda \bigvee_R \bigwedge_S x_{\alpha\beta} = \bigvee_R \bigwedge_S \lambda x_{\alpha\beta}$. Since the ring is assumed to be directed, K' is a submodule.

THEOREM 4. Let $(P_i)_{i\in I}$ be the set of all total orders on M containing P, and denote by M_i the module M ordered by P_i . Let φ be the canonical map of M into $\prod_{i\in I}M_i$. Then the f-submodule L of $\prod_{i\in I}M_i$ generated by $\varphi(M)$ is free over M.

Proof. Suppose f is an o-homomorphism from M into a torsion-free f-module F. If $x \in L$, then by Lemma 4, $x = \bigvee_R \bigwedge_S \varphi(x_{\alpha\beta})$ where $x_{\alpha\beta} \in M$.

Let $\overline{f}(x) = \bigvee_R \bigwedge_S f(x_{\alpha\beta})$. To show that \overline{f} is a mapping, it is sufficient to show, by Lemma 3, that $\bigvee_R \bigwedge_S \varphi(x_{\alpha\beta}) = 0$ implies $\bigvee_R \bigwedge_S f(x_{\alpha\beta}) = 0$.

By Proposition 1, we may assume that F is totally ordered. By

6 A. BIGARD

Corollary 1 of Theorem 2, there exists a total order P_0 containing P such that f(x) > 0 implies $x \in P_0$.

If $\bigvee_R \bigwedge_S f(x_{\alpha\beta}) > 0$, there exists $\alpha \in R$ such that for each $\beta \in S$, $f(x_{\alpha\beta}) > 0$, which implies $x_{\alpha\beta} \in P_0$. It follows that $\bigvee_R \bigwedge_S x_{\alpha\beta} > 0$ (modulo P_0) and $\bigvee_R \bigwedge_S \varphi(x_{\alpha\beta}) \neq 0$. Alternatively, if $\bigvee_R \bigwedge_S f(x_{\alpha\beta}) < 0$, there exists for each $\alpha \in R$, $\alpha \in S$ such that $f(x_{\alpha\beta}) < 0$. Thus $x_{\alpha\beta} \in P_0$ and it follows that $\bigvee_R \bigwedge_S x_{\alpha\beta} < 0$ (with respect to P_0). Hence $\bigvee_R \bigwedge_S \varphi(x_{\alpha\beta}) \neq 0$. Now, it is clear that \overline{f} is a mapping. By Lemma $3, \overline{f}$ is a group homomorphism. The theorem follows easily.

COROLLARY. Let A be a totally ordered ring with no divisors of zero. The following are equivalent:

- (1) A is a left Ore domain.
- (2) For every torsion-free ordered module M, there exists a free f-module over M.

Proof. By Theorem 4, (1) implies (2). Conversely, if φ is the o-homomorphism of M into the free f-module L over M, the positive cone of M is a subset of $Q = \{x \mid \varphi(x) \geq 0\}$, which is an isolated order. Thus, (2) implies (1) by Theorem 2.

Note that φ is an o-isomorphism of M into L if and only if M is isolated.

It is now easy to construct the free f-module over an arbitrary set E. Let M be the free module generated by E, and trivially order M by $P = \{0\}$. The free f-module L generated by M is a free f-module over E, with obvious definitions.

REFERENCES

- 1. A. Bigard, Contribution à la théorie des groupes réticulés, Thèse Sc. Math., Paris, 1969
- 2. P. Conrad, Introduction à la théorie des groupes réticulés, Secrétariat mathématique, Paris, 1967.
- 2. S. A. Steinberg, Lattice-ordered rings and modules, Ph. D. Thesis, Urbana, Illinois, 1970
- E. C. Weinberg, Free lattice-ordered abelian groups, Math. Annalen t, 151 (1963), 187-199 and t. 159 (1965), 217-222.

Received July 19, 1972 and in revised form May 4, 1973.

CENTRE UNIVERSITAIRE DU MANS