PACIFIC JOURNAL OF MATHEMATICS
Vol. 49, No. 1, 1973

FREE LATTICE-ORDERED MODULES

A. BIGARD

The aim of this paper is to show that the theory of
free lattice-ordered groups developed by E.C. Weinberg in
the abelian case can be generalized to modules over a totally
ordered Ore domain A. The main result is that for every
torsion-free ordered A-module }, there exists a free f-module
over M. The generalization given will be seen to be, in a
certain sense, the best possible.

All rings and modules considered will be assumed to be unital.
Let A be a partially ordered ring and A, its order. If M is a left
A-module, we say that P< M is an order on M if:

P+P< P, AP P, and PN —P = {0}. If such a P is given,
we say that M is a partially ordered (or ordered) module. If P is
a total order on M, that is, if M= PU —P, we say that M is a
totally ordered module. Let M and N be partially ordered A-modules
and let f be a mapping from M to N. Then f is an o-homomorphism
if f is a monotonic homomorphism of A-modules. The o-homomorphism
f is an o-isomorphism if f is one-to-one and if f* is an o-homomor-
phism.

1. Some properties of f-modules. In this section, A will
denote a directed p.o. ring. An A-module M which is lattice-ordered
by the order P is called a lattice-ordered module or [-module. Pro-
ducts of lattice-ordered modules are defined in a natural way. If
M and N are l-modules, an homomorphism f from M to N is called
a l-homomorphism if, for z, y € M:

fl@Vy) =fle) Vi) and f@Ay) = @) Af©) -

An f-module M is a lattice-ordered module which is a subdirect pro-
duct of totally ordered modules. This definition was first introduced
in [1] and [3].

Recall that a convex [l-subgroup S in a commutative l.o. group
G is called prime if G/S is totally ordered. The following theorem
gives useful characterizations of f-modules.

THEOREM 1. Let M be a lattice-ordered module over a wunital
directed ring A. The following are equivalent:

(1) M is an f-module.

(2) Forx,yeMand 01 e A, M2V Yy) =NV Iy and Mz A y) =
A A M.
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(8) zAy=0 implies \a Ay=0 for all 0 < 1e A.
(4) Every minimal prime subgroup of M is a submodule.

Proof. (1) implies (2): This is clear since (2) is satisfied in a
totally ordered module.
(2) implies (8): If z A y = 0, then we have:

0=MAY=OVIHzAAMVDy=0VIHazAy =0.

(8) implies (4): Let S be a minimal prime subgroup. Then,
xe S if and only if there exists y¢ S with « A y = 0. [2]. Thus, if
xeS and 0 < xe A, we have Mxe S. Since A is directed, S is a
submodule.

(4) implies (1): Let (S;);.; be the family of all minimal prime
subgroups of M. Then each quotient M/S; is a totally ordered
module and M is a subdirect product of these modules.

If A is not unital, then (1), (3), and (4) are equivalent but con-
dition (2) is weaker (see [3]).

In the sequal, we shall be concerned mainly with torsion-free
modules, that is modules in which Az = 0 implies A =0 or z = 0.
The following property is useful:

ProposiTION 1. If A is totally ordered, every torsion-free f-
module F is a subdirect product of torsion-free totally ordered
modules.

Let S be a minimal prime subgroup of F. Suppose that X\ = 0
and e S. We may assume A > 0, as A is totally ordered. As in
the proof of Theorem 1, there exists y¢ S with xx A y = 0. This
implies Mz A ) = A2 A My = 0, and hence x Ay =0. As y¢3S, we
obtain xe€S. This proves that M/S is torsion-free and the theorem
follows.

As in the theory of ordered groups, P is an isolated order on M
if x> 0 and Mxe P implies x e P.

PROPOSITION 2. Ewery torsion-free f-module is isolated.

Proof. If x>0 and Mz =0, we have M(—2zV 0) = =V 0 =0,
hence —2x vV 0 =0 and =z = 0.

Conversely, it is clear that when A is totally ordered, every
isolated module is torsion-free.

2. Embedding an order in a total order. In this section, we
consider only torsion-free modules over a totally ordered unital ring
A. This is not as restrictive as it seems, since the existence of a
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nontrivial torsion-free module implies that A has no zero divisors,
and an f-ring with no zero divisors is totally ordered.

LEMMA 1. Let M be a torsion-free A-module. For every xe M,
A,z is an order.

Proof. Suppose that ye A.xN —A,x, so that y = e = —pe.
The relation (A + )z = 0 implies A + £ =0 or x = 0. In the first
case, n = —pec A, N —A, so in each case y = 0.

LEMMA 2. Let P and Q be two orders on M. Then P — Q 1is
an order if and only if PN Q = 0.

Proof. The condition is necessary, since PNQ = (P—Q)N(Q—P).
For the converse, suppose PNQ =0 and let ye (P — Q) N (Q — P).
Then y=p—q=¢q¢ — 9, and p+ 9 =q+q¢decPNQ=0. Hence,
p=—pePN—-P=0,qg=—-qcQN—-Q=0, and it follows that
y=0.

The ring A is said to be a left Ore domain if A admits a left
quotient field. Equivalently, A has no zero divisors and satisfies the
following condition:

(I) If p#0and ¢ #0, AoN Ao = 0.

Clearly, when A is totally ordered, this condition can be replaced by
the following:

(IT) If0<pand 0 <o, A, pN A0 # 0.

THEOREM 2. Let A be a totally ordered ring with mno divisors
of zero. The following are equivalent:

(1) A is a left Ore domain.

(2) In a torsion-free A-module, every order is contained in a
total order.

(8) In a torsion-free A-module, every order is contained in an
isolated order.

Proof. (1) implies (2): By Zorn’s lemma, every order is con-
tained in a maximal order. It remains to show that each maximal
order P is total. If not, suppose b¢PU —P. As PC P+ A,b
(strictly), P + A.b fails to be an order. By Lemma 2, PN —A4,b+0
and there exists 0 > 0 with pbe —P. Similarly, P — A.b is not an
order, PN A,b +# 0, and there exists ¢ > 0 with obe P. By condi-
tion (II), there exists x>0 and ¢ >0 with Ao = o > 0. Hence
A0b = pobe PN —P = 0. This implies b = 0, which is a contradic-
tion. Hence P is a total order.

(2) implies (3): This is clear from Proposition 2.
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(8) implies (1): Consider A as a left-module on itself. Take
0<poand 0<o. If A,oNA,o=0, A, 0— A,0 is an order by
Lemma 2. Hence it is contained in an isolated order P, and thus
0le P and o(—1)e P. Then 1e¢P and —1le P, which is a contra-
diction.

COROLLARY 1. Let A be a totally ordered left Ore domain. Let
f be an o-homomorphism of the torsion-free module M ordered by P
into a torsion-free totally ordered module T. There exists a total
order P, which contains P such that f(x) > 0 implies x ¢ P,

To see that S = {x|f(x) > 0} U {0} is an order on M, note that
S+S&Sand SN —S={0}. Also for A >0 and 0~2z¢S, f(x) >0
and hence f(Ax) = \f(x) > 0 since T is torsion-free. As PN —S =0,
P+ S is an order by Lemma 2. The corollary then follows from
Theorem 1.

COROLLARY 2. Let A be a totally ordered left Ore domain and
let M be a torsion-free A-module ordered by P. The intersection of
all total orders conmtaining P is the set P of elements we M for
which there exists N > 0 with Az e P.

Each total order containing P is isolated and hence contains P.
Suppose x¢ P, so that PN A,o = 0. By Lemma 2, P — A,z is an
order. By Theorem 2, P — A.x is contained in a total order Q. Since
—zeQand 2+ 0, z¢ Q.

THEOREM 3. Let A be a totally ordered left Ore domain. If M
1s an A-module ordered by P, these are equivalent:

(1) P s isolated.

(2) M is torsion-free and P is an intersection of total orders.

(8) M can be embedded in a direct product of totally ordered
torston-free modules.

(4) M can be embedded in a torsion-free f-module.

Proof. (1) implies (2): This follows directly from Corollary 2,
as P = P.

(2) implies (8): Let (P;);.; be the set of all total orders con-
taining P. If we denote by M; the module M ordered by P,, there
is a canonical embedding of M into the direct product of the
modules M;.

(3) implies (4): Clear.

(4) implies (1): This follows from Proposition 1.
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3. Free f-modules. Let A be a totally ordered left Ore domain,
and let M be a torsion-free A-module ordered by P. A torsion-free
Sf-module L will be called free over M if:

(1) There exists an injective o-homomorphism @ from M to L.

(2) For every torsion-free f~-module F' and every o-homomorphism
f from M to F, there exists a unique I-homomorphism f from L to
F such that fo = f.

It is not difficult to show that L is determined up to an I-
isomorphism. To show that such an L exists, we use the two fol-
lowing lemmas:

LEMMA 3. If w.(xeR,BeS) and z,(ve U,0e V) are two finite
families of elements in a lattice-ordered module,

V Avs— V A, = \'4 A (@ — Tiyosm) -

acR feS TeU deV (a,0)e RX(VSXU) (8,7)e SXU

Proof.
VA=Y Amo= Y AAY G2 = Y AY G2
= \1{ i (XXU) S{\U(xaﬁ — Trae,m)

Il

(Tap — Tiryioes,m) +
(a,0) e RX(VSXU) (B,7)e SXU

LEMMA 4. Let N be a f-module and K a submodule of N. The
f-submodule generated by K ts the set K’ of all elements Vacr Ases ®as
With .. € K.

Proof. By Lemma 3, K’ is an [-subgroup of N. If =0, it
follows from Theorem 1 that: AN Vi As®ws = Vz As M. Since the
ring is assumed to be directed, K’ is a submodule.

THEOREM 4. Let (P;);.; be the set of all total orders on M con-
taining P, and denote by M; the module M ordered by P;,. Let @ be
the canonical map of M into [l;c; M;. Then the f-submodule L of
Il:c.: M; generated by (M) is free over M.

Proof. Suppose f is an o-homomorphism from M into a torsion-
free f-module F. If xe L, then by Lemma 4, x = VYV AsPp)
where x,,€ M.

Let f(®) = Vi Asf(@.). To show that f is a mapping, it is
sufficient to show, by Lemma 3, that V; As®(x.;) =0 implies
Ve Asf(@a) = 0.

By Proposition 1, we may assume that F' is totally ordered. By



6 A. BIGARD

Corollary 1 of Theorem 2, there exists a total order P, containing P
such that f(z) > 0 implies x ¢ P,.

If Vz Asf(®.p) > 0, there exists ac R such that for each ge S,
Sf(x.) >0, which implies x.,,€P,. It follows that Vi Asx., >0
(modulo Py) and YV AsP(®.s) = 0. Alternatively, if Vi Asf(2.) <0,
there exists for each ae R, a e S such that f(x,:) <0. Thus x,¢
—P, and it follows that Vz As®.; <0 (with respect to P,). Hence
Vz As P®.s) # 0. Now, it is clear that f is a mapping. By Lemma
8,7 is a group homomorphism. The theorem follows easily.

COROLLARY. Let A be a totally ordered ring with no divisors of
zero. The following are equivalent:

(1) A is a left Ore domain.

(2) For every torsion-free ordered module M, there exists a free
f-module over M.

Proof. By Theorem 4, (1) implies (2). Conversely, if @ is the
o-homomorphism of M into the free f~module L over M, the positive
cone of M is a subset of @ = {x|®(x) = 0}, which is an isolated order.
Thus, (2) implies (1) by Theorem 2.

Note that @ is an o-isomorphism of M into L if and only if M
is isolated.

It is now easy to construct the free f-module over an arbitrary
set E. Let M be the free module generated by FE, and trivially
order M by P = {0}. The free f-module L generated by M is a free
f-module over E, with obvious definitions.
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