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FREE LATTICE-ORDERED MODULES

A. BlGARD

The aim of this paper is to show that the theory of
free lattice-ordered groups developed by E. C. Weinberg in
the abelian case can be generalized to modules over a totally
ordered Ore domain A. The main result is that for every
torsion-free ordered A-module M, there exists a free /-module
over M. The generalization given will be seen to be, in a
certain sense, the best possible.

All rings and modules considered will be assumed to be unital
Let A be a partially ordered ring and A+ its order. If, M is a left
A-module, we say that P g J I ί i s a n order on M if:

P + P^P, A+P s P, and P Π -P = {0}. If such a P is given,
we say that M is a partially ordered (or ordered) module. If P is
a total order on M, that is, if M = PU — P, we say that M is a
totally ordered module. Let M and N be partially ordered A-modules
and let / be a mapping from M to N. Then / is an o-homomorphism
if / is a monotonic homomorphism of A-modules. The o-homomorphism
/ is an o-isomorphism if / is one-to-one and if f"1 is an o-homomor-
phism.

l Some properties of /-modules* In this section, A will
denote a directed p.o. ring. An A-module M which is lattice-ordered
by the order P is called a lattice-ordered module or i-module. Pro-
ducts of lattice-ordered modules are defined in a natural way. If
M and N are Z-modules, an homomorphism / from M to JV is called
a ϊ-homomorphism if, for x,ye M:

f{x Vy) = f{x) Vfiy) and fix Ay) = fix) Λfiv) .

An /-module M is a lattice-ordered module which is a subdirect pro-
duct of totally ordered modules. This definition was first introduced
in [1] and [3].

Recall that a convex Z-subgroup S in a commutative l.o. group
G is called prime if G/S is totally ordered. The following theorem
gives useful characterizations of /-modules.

THEOREM 1. Let M be a lattice-ordered module over a unital
directed ring A. The following are equivalent:

( 1 ) M is an f'-module.
i 2) For x,yeM and O ^ λ e i , x(x V y) = Xx V \y and Xix Ay) =

Xx A Xy-
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(3) x A V = 0 implies Xx A V = 0 /or αϊϊ O ^ λ e i .
(4) Every minimal prime subgroup of M is a submodule.

Proof. (1) implies (2): This is clear since (2) is satisfied in a
totally ordered module.

(2) implies (3): If x A y = 0, then we have:

0 ^ Xx A y ^ (λ V I)x A (λ V I)y = (λ V I){x A y) = 0 .

(3) implies (4): Let S be a minimal prime subgroup. Then,
xe S if and only if there exists yίS with α? Λ V — 0. [2]. Thus, if
xe S and O ^ λ e i , we have Xx e S. Since A is directed, S is a
submodule.

(4) implies (1): Let (Si)ieI be the family of all minimal prime
subgroups of M. Then each quotient M/Si is a totally ordered
module and M i s a subdirect product of these modules.

If A is not unital, then (1), (3), and (4) are equivalent but con-
dition (2) is weaker (see [3]).

In the sequal, we shall be concerned mainly with torsion-free
modules, that is modules in which Xx = 0 implies X = 0 or x = 0.
The following property is useful:

PROPOSITION 1. If A is totally ordered, every torsion-free f-
module F is a subdirect product of torsion-free totally ordered
modules.

Let S be a minimal prime subgroup of F. Suppose that X Φ 0
and Xx e S. We may assume X > 0, as A is totally ordered. As in
the proof of Theorem 1, there exists y g S with Xx A y = 0. This
implies X(x A y) = Xx A Xy = 0, and hence x A y = 0. As ί/?S, we
obtain xe S. This proves that M/S is torsion-free and the theorem
follows.

As in the theory of ordered groups, P is an isolated order on M
if X > 0 and Xxe P implies xe P.

PROPOSITION 2. Every torsion-free f-module is isolated.

Proof. If X > 0 and Xx ̂  0, we have X(-x V 0) = -Xx V 0 = 0,
hence - » V 0 = 0 and a? ̂  0.

Conversely, it is clear that when A is totally ordered, every
isolated module is torsion-free.

2* Embedding an order in a total order* In this section, we
consider only torsion-free modules over a totally ordered unital ring
A. This is not as restrictive as it seems, since the existence of a



FREE LATTICE-ORDERED MODULES 3

nontrivial torsion-free module implies that A has no zero divisors,
and an /-ring with no zero divisors is totally ordered.

LEMMA 1. Let M be a torsion-free A-module. For every x e M,
A+x is an order.

Proof. Suppose that yeA+x Π — A+x, so that y = Xx = — μx.
The relation (λ + μ)x = 0 implies λ + /̂  = 0 or x = 0. In the first
case, X = —μeA+f] —A+ so in each case y = 0.

LEMMA 2. Let P and Q be two orders on M. Then P — Q is
an order if and only if P ΓΊ Q = 0.

Proof. The condition is necessary, since P f l Q S (P— Q) Π (Q — P)
For the converse, suppose P n Q = 0 and let ye (P — Q) Π (Q — P).
Then y — p — q — qf — pf, and p + p' = q + q'ePf)Q = Q' Hence,
p = - p ' e P π - P = 0, q = -q' e Q n - Q = 0, and it follows that
V = 0.

The ring A is said to be a left Ore domain if A admits a left
quotient field. Equivalently, A has no zero divisors and satisfies the
following condition:

( I ) If p Φ 0 and σ Φ 0, Ap Π Aσ Φ 0.
Clearly, when A is totally ordered, this condition can be replaced by
the following:

(II) If 0 < p and 0 < σ, A+ρ n A+σ Φ 0.

THEOREM 2. Le£ A be a totally ordered ring with no divisors
of zero. The following are equivalent:

(1) A is a left Ore domain.
(2) In a torsion-free A-module, every order is contained in a

total order.
(3) In a torsion-free A-module, every order is contained in an

isolated order.

Proof. (1) implies (2): By Zorn's lemma, every order is con-
tained in a maximal order. It remains to show that each maximal
order P is total. If not, suppose bίP{j-P. As PaP+A+b
(strictly), P + A+b fails to be an order. By Lemma 2, P Π —A+b Φ 0
and there exists p > 0 with pbe —P. Similarly, P — A+b is not an
order, P Π A+b Φ 0, and there exists σ > 0 with σb e P. By condi-
tion (II), there exists λ > 0 and μ > 0 with Xp = μσ > 0. Hence
Xpb = μσbeP ΓΊ — P = 0. This implies b = 0, which is a contradic-
tion. Hence P is a total order.

(2) implies (3): This is clear from Proposition 2.
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(3) implies (1): Consider A as a left-module on itself. Take
0 < p and 0 < σ. If A+p Π A+σ = 0, A+p — A+σ is an order by-
Lemma 2. Hence it is contained in an isolated order P, and thus
pleP and σ{ — T)eP. Then l e P and — l e P , which is a contra-
diction.

COROLLARY 1. Let A be a totally ordered left Ore domain. Let
f be an o-homomorphism of the torsion-free module M ordered by P
into a torsion-free totally ordered module T. There exists a total
order Po which contains P such that f(x) > 0 implies x e Po.

To see that S = {x \f(x) > 0} (J {0} is an order on ikf, note that
5 + S g S and SO -S = {0}. Also for λ > 0 and 0 Φ xe S, f(x) > 0
and hence f(Xx) = Xf(x) > 0 since T is torsion-free. As P Π —S=0,
P + S is an order by Lemma 2. The corollary then follows from
Theorem 1.

COROLLARY 2. Let A be a totally ordered left Ore domain and
let M be a torsion-free A-module ordered by P. The intersection of
all total orders containing P is the set P of elements x e M for
which there exists λ > 0 with Xx e P.

Each total order containing P is isolated and hence contains P.
Suppose x ί P, so that P Π A+x = 0. By Lemma 2, P — A+x is an
order. By Theorem 2, P — A+x is contained in a total order Q. Since
— x G Q and x Φ 0, x$Q.

THEOREM 3. Let A be a totally ordered left Ore domain. If M
is an A-module ordered by P, these are equivalent:

(1) P is isolated.
(2) M is torsion-free and P is an intersection of total orders.
(3) M can be embedded in a direct product of totally ordered

torsion-free modules.
(4) M can be embedded in a torsion-free f-module.

Proof. (1) implies (2): This follows directly from Corollary 2,
as P = P.

(2) implies (3): Let (Pi)ieI be the set of all total orders con-
taining P. If we denote by M{ the module M ordered by Pi9 there
is a canonical embedding of M into the direct product of the
modules Aff.

(3) implies (4): Clear.
(4) implies (1): This follows from Proposition 1.
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3* Free /-modules* Let A be a totally ordered left Ore domain,
and let M be a torsion-free A-module ordered by P. A torsion-free
/-module L will be called free over M if:

(1) There exists an injective o-homomorphism φ from M to L.
( 2) For every torsion-free /-module F and every o-homomorphism

/ from M to F, there exists a unique ϊ-homomorphism / from L to
F such that / © φ = /.

It is not difficult to show that L is determined up to an l-
isomorphism. To show that such an L exists, we use the two fol-
lowing lemmas:

LEMMA 3. If xaβ(a eR, βeS) and xrδ(y e U, δ e V) are two finite
families of elements in a lattice-ordered module,

V A x«β - V A xn = V . π A (%«β - Xmwβ.r)))

aeRβeS γeUδeV (a,σ) e Rx ( 7 ά xt/) (/S,/) e 5 x i 7

Proo/.

V Λ ^ - V Λ % = V Λ Λ V ( ^ - r̂.) = V A V ( ^ - »r.)
= V V A (Xaβ — %{ϊ){o{β,r)))

R oe (vSX-U) S xU

— V „ ττ A \χaβ — x(r)(σ(β,γ)))

LEMMA 4. Let N be a f-module and K a submodule of N. The
f-submodule generated by K is the set Kr of all elements V«eτz Aβesχaβ
with xaβ e K.

Proof. By Lemma 3, Kf is an i-subgroup of N. If λ ^ 0, it
follows from Theorem 1 that: λ VΛ As ̂ u = VΛ A s ^ Since the
ring is assumed to be directed, K' is a submodule.

THEOREM 4. Let {P^iei be the set of all total orders on M con-
taining P, and denote by Mi the module M ordered by P{. Let φ be
the canonical map of M into T[ieJ M^ Then the f-submodule L of
TlieiMi generated by φ(M) is free over M.

Proof. Suppose / is an o-homomorphism from M into a torsion-
free /-module F. If xeL, then by Lemma 4, x= VR KsΨ{χaβ)
where xaβ e M.

Let f(x) = yB Asf(χaβ) To show that / is a mapping, it is
sufficient to show, by Lemma 3, that yB As Φ{χaβ) = 0 implies
V* AsfiXaβ) = 0.

By Proposition 1, we may assume that F is totally ordered. By



6 A. BIGARD

Corollary 1 of Theorem 2, there exists a total order PQ containing P
such that f(x) > 0 implies x e Po.

If Vie Asf(%aβ) > 0, there exists aeR such that for each βeS,
f(%aβ)>0> which implies xaβeP0. It follows that VΛΛ*&«JB>0

(modulo Po) and V^ AsΦ{%aβ) ^ 0. Alternatively, if V* Asf&aβ) < 0,
there exists for each aeR, a βe S such that /(#αi8) < 0. Thus xaβe
— Po and it follows that \/B As%aβ < 0 (with respect to Po). Hence
VΛ AsΦiXaβ) =£ 0. Now, it is clear that / is a mapping. By Lemma
3, / is a group homomorphism. The theorem follows easily.

COROLLARY. Let A be a totally ordered ring with no divisors of
zero. The following are equivalent'.

(1) A is a left Ore domain.
(2) For every torsion-free ordered module M, there exists a free

f-module over M.

Proof. By Theorem 4, (1) implies (2). Conversely, if φ is the
o-homomorphism of M into the free /-module L over M, the positive
cone of M is a subset of Q = {x \ φ(x) ^ 0}, which is an isolated order.
Thus, (2) implies (1) by Theorem 2.

Note that φ is an o-isomorphism of M into L if and only if M
is isolated.

It is now easy to construct the free /-module over an arbitrary
set E. Let M be the free module generated by E, and trivially
order M by P = {0}. The free /-module L generated by M is a free
/-module over E, with obvious definitions.
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