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BOUNDS FOR PRODUCTS OF INTERVAL FUNCTIONS

JoN C. HELTON

Since it is possible for ,/I°(1 + G) to exist and not be zero
when G is unbounded and 1 + G is not bounded away from
zero, the conditions under which products of the form
| T7[1 + G(%4-1, %;)]| are bounded or bounded away from zero
for suitable subdivisions {z;}; of [a,b] are important in many
theorems concerning product integrals. Conditions are ob-
tained for such bounds to exist for products of the form
II1+ FG) and Il + F + G), where F and G are functions
from R X R to R. Further, these results are used to obtain
an existence theorem for product integrals.

All integrals and definitions are of the subdivision-refinement type,
and functions are from the subset {(x, ¥): 2 <y} of R X R to R, where
R represents the set of real numbers. If D = {z,}; is a subdivision
of [a,b] and G is a function, then D(I) = {[z,,, 2]} and G, =
G(%,_;, ;). The statements that G is bounded, Ge OP°, G 0Q° and
GeOB° on [a,b] mean there exist a subdivision D of [a,b] and a
positive number B such that if J = {z,}; is a refinement of D, then

(1) |G(u)| < B for ueJ(I),

(2) |1+ G)|<Bfor1<r<s<mn,

(8) |I:1+ G)|>B for1<r<s=<mn, and

(4) 2,0G| < B,
respectively. The notation {z,}r'? represents a subdivision of an
interval [x,_,, #,] defined by a subdivision {x}r. If G is a function,
then G €S, on [a, b] only if lim, ., + G(z, ) and lim,,,, — G(, y) exist
and are zero for pe|a, d], and Ge S, on [a, b] only if lim,, + G(p, x)
andb lim,., — G(z, ) ?xist for p ea, b]. Further, G € OA° on [a, b] only
if |G exists and (|G- (6| =0, and GeoM® on [4,8] only if
JIM(1+ G) exists for a<z<y<b and S 1+ G—I1+ G)|=0.
Also, Ge OQ' and Ge OB* on |[a, ] if there exists a subdivision D =
{z}# of [a, b] such that

(1) fl1<g=snand z,., < <y<2x, then Ge0OQ° on [z, y],
and

(2) if 1< q < n, then either GeOB° on [%,_,, %] or G — 1€ OB°
on [, ., ],
respectively. The statement that G is almost bounded above by g
(or, almost bounded below by B) on [a, b] means there exists a posi-
tive integer N such that if D is a subdivision of [a, b] and ue H
only if w € D(I) and G(u) > B (or, G(u) < B) then H has less than N
elements. Consult B. W. Helton [2] and J. S. MacNerney [4] for
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additional details.

THEOREM 1. If G is a function, then the following are equivalent:
(1) GeOB° on [a,b], and
(2) if FeOP° on [a,b], then F + GeOP° on [a, b].

Proof (2—1). Let F be the function such that F(x,y) = 0 if
Gz,y) =0 and F(z,y) = —2 if G(x,y) < 0. Hence, if J is a sub-
division of [a, b], then

|HJ(I)(1 + F + G)| = HJ(I)(l + IGI) ’
which can be bounded only if GeOB°.

Proof (1—2). Suppose F'e OP°. There exist positive numbers
B and C with B > 1, a positive integer ¢ and a subdivision D of
[a, b] such that if J = {x,}¥ is a refinement of D, then

(1) |I1+ F)|<Bfor1<r<s=w,

(2) exp[4B2,,|G|] <C,

(8) if T is a collection of nonintersecting subsets of J(I), then
the number of te T such that exp [4BX,|G]|] > 2 is less than 4, and

(4) the number of w e J(I) such that |G(u)| > 1/4B is less than <.

Let J = {x,}¥ be a refinement of D and suppose 1 < r < s < w.
Let L = {[z,_,, «,]};, and let H be the subset of L such that ue H
only if |1 + F(u)| < 1/4B. Further, let K be the collection of subsets
of L such that k € K only if there exist u, v e H such that u precedes
v on [a, b] and either

(1) k= {t|t precedes v and follows w} and kN H = &,

(2) w is the first element in H and k = {¢|¢ precedes u}, or

(8) v is the last element in H and k = {¢t|¢ follows v}.
Let we Monly if we H and |G(u)| > 1/4B, and let ke N only if ke K
and exp [4B 2,|G|] > 2. Hence, M and N each has less than 7 ele-
ments. Also, K has at most one more element than H. Hence, K — N
can have at most ¢ more elements than H — M. Let j,m and =
denote the number of elements in M, H — M and K — N, respectively,
and suppose U = ,.x k. Hence,

[IT,(1+ F + G)|
S+ Fl+ |G- {1+ F + G)]}
S {lIy[1AB + |G} - {ll y_x[1/AB + |G} - {{ Iyl + F + ()]}
= {(1/4B)’C}- {1/4B + 1/4B}" - {|{II(1 + F + G) |}
= C{12B}" - {Iliex | IL[1 + F][L + (1 + F)™'G] [}
= C{12By" - (Il [ T.(1 + F) II(1 + 4B G )]}
= C{1/2B}" - {Il,ex[| I1.(1 + F)|III.(1 + 4B|G]]} -
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My exn[11, (1 + F) JUL(1 + 4B|G ]}
= C{1/2B)" - {BC}'- {2B}"
= BiCi+'(2B)"™ < BiCi*{(2B)" .

Lemma 1.1. If S"F ewists, then Fe0A° on [a,b] .

This result is due to A. Kolmogoroff [3, p. 669]. Further, related
results have also been obtained by W. D. L. Appling [1, Th. 2, p.
155] and B. W. Helton [2, Th. 4.1, p. 304].

b
CorOLLARY 1.1. If X F exists, then the following are equivalent:
(1) FeOP° on [a,b], and (2) SFGOPO on [a, b].

b
Indication of proof. Since SF exists, F'€0OA° [Lemma 1.1].
The result now follows by using Theorem 1.

) COROLLARY 1.2. If FeOP° on [a,b], JI'(1+ F) ewxists and
g |G| = 0, then JI'(L + F + G) evists and is JI'(1 + F).

Indication of proof. A related result is proved by B. W. Helton
[2, Th. 5.6, p. 315]. This result follows by an argument similar to
the one used in that theorem since Theorem 1 implies that ¥ +~ G ¢ OP°.

COROLLARY 1.3. If G 1is a function, then the following are
equivalent:

(1) GeOP° on la,b], and

(2) if FeOB° on [a,b], then F + GeOP° on [a, b].

Proof. Theorem 1 establishes that (1) implies (2). Further, (2)
implies (1) since F = 0 belongs to OB°.

B. W. Helton has shown if G is a function from S x S to N such
that Ge0OA° and GeOB°, then GeOM°, where S represents a
linearly ordered set and N represents a ring which has a multiplica-
tive identity element denoted by 1 and has a norm || with respect
to which N is complete and |1| =1 [2, Th. 8.4 (1 —2), p. 301]. We
now use Theorem 1 to establish a related result. In particular, we
show that if F' and G are functions from R x R to R such that Fe OM?°,

FecOP°,FeS NS, and Ge OB®° on [a, b] and SbG exists, then F +
GeOM° on [a, b].

LEmMA 2.1. If F and G are functions such that Fe OM°,Fe
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OP°,FeS, and Ge OB° on |[a,b] and € > 0, then there exists a sub-
division {y}¢ of [a, b] such that if y,., < x <y <y, and H is a sub-
division of [z, y]l, then

ll_HH(I)(1+F+ G)l<8.

Further, if Fe8, and Ge S, on [a, b], then there exists a subdivision
{z}: of [a, b] such that if z,., < x <y = z,and H is a subdivision of
[®, y], then

1+ F,y) + G@,y) — Hyp(1+ F+ Q) <e.

Proof. Suppose F and G are functions such that FFe OM°, Fe
OP°,Fc S, and Ge OB° on [a, b] and ¢ > 0. It follows from Theorem
1 that F'+ Ge OP°. There exist a subdivision D, = {y}¢ of [a, b]
and a number B > 1 such that if J = {z,}7 is a refinement of D,, then

(1) |Iil+ F)|<Band |IIi1+ F,+ G)|<Bfor1=i<j=<mn,

(2) |F(z,y)| <e9B and X, |G| <e9B if 1Sqg=n,2,,<
x <y <z, and H is a subdivision of [z, y], and

(3) 2,Q+ F) — Iy, (1 + F)| <¢e/9B, where H, is a subdivi-
sion of [x,_,, 2] for ¢ =1,2, -+, n.

Suppose 1 < ¢g=wuwandy,_, <z<y<vy, IfH={r} is a subdivision
of [x, y], then

11— Hyn(1+ F+ G)|
= |1+ F(x,y) — F(z,y) — {I[;_.(1L + F,)
+ S + FHIGHT -0 (1 + Fy + GO}
S+ Fe,y) — -1+ F)| + |F(z,y)]
+ T TS + F) |G| i—gs(1 + F + G|
< €¢/9B + ¢/9B + B%/9B® = ¢/3B < ¢ .
We now make the additional suppositions that Fe S, and Ge S,
on [a,b]. There exists a subdivision £ = {w, tutt of [a, b] such that
(1) ¥y,€ (Waq, Wayyy) for 1 < g < w,
(2) [F(Yqgy Wegsr) + G(Yq, Wagr)) — F(Yq, 2) — G(y,, 2)| < &/2for 0 <
g < % and x€ (y,, Wy, and
(3) [Flwy, y) + G(wy, y) — F(z,y,) — G(z,y,)| < e/2for 0< g=
w and @ € [w.,, ¥,)-
Let D, = {z,}3* be the subdivision D, U E of [a, b]. Suppose 1 < q < 3u,
2 S <y=z, and H is a subdivision of [z,y]. If either 2z, , <
x < y < 2, or neither z,_, nor z, is in D,, then

11+ F(z,y) + G@,y) — Upn(1 + F + G)|
S|F@, 9|+ |G, 9] + |1 = Ty + F+ G)
< e/9B + ¢/9B® + ¢/3B < ¢.
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If z,.,eD,,x = 2,, and H = {h,};, then

11+ F(x,y) + G, y) — Hypn(1 + F + G)|
= [F(z,y) + G(@,9) — F(x, h) — Gz, hy) |
+ |1+ F(z, b)) + Gz, k)| |1 — II;[1 + F(h,_,, hy)
+ Gy, k)] |
<¢/2+4+ Bef3B< ¢.

If z,e D, and y = z,, the necessary inequality follows in a similar
manner. Therefore, D, is the desired subdivision.

THEOREM 2. If F and G are functions fuch that Fe OM°, Fe
OP®,Fe SN, and Ge OB° on [a,4] and | G evists, then F + Ge
OM° on [a, b].

Proof. We initially show that if ¢ > 0 then there exists a sub-
division D of [a, b] such that if H = {x,}r is a refinement of D and
H, is a subdivision of [x,_;, 2,] for ¢ = 1,2, -+, n, then

SN+ F+ G — g1+ F+ G)|<e.

Let € > 0. It follows from Lemma 1.1 that G e OA° and from Theorem
1 that F+ Ge OP°. Thus, by employing the hypothesis and Lemma
2.1, there exist a subdivision D, = {y,}¥ of [a, b] and a number B > 1
such that if J = {z,}¢ is a refinement of D,, then

(1) %Gl < B,

(2) |Til+ F)|<Bfor 1<i<j=<mn,

(3) 21G,— 2y Gl <e/band 37 |(1 + Fy) — (1 + F)[<¢/5,
where L, is a subdivision of [x,_,, ] for 1 < ¢ < n, and

(4) 11—z + F)|<¢/sBand |1 — Hyp(1 + F + G)| <¢/6B°
for 1< g¢=mn,2,,<2<y<wx and H a subdivision of [z, y].
Further, it also follows from Lemma 2.1 that there exists a sub-
division D, = {z,}; of [a,d] such that if 1= ¢g=<v,z,, S 2<y=z
and H is a subdivision of [x, y], then

11+ F(z,y) + G=,y) — Hzy(1 + F + G)| < ¢/10u .

Let D= D,U D, and suppose H = {x}; is a refinement of D and
H, = {z,}¢'? is a subdivision of [x,_,, x,] for 1 < ¢ < n. Let P be the
set such that ge P only if [x,_,, %,] has an end point in D, and let
Q = {i} — P. Further, to simplify notation, let F,, = F(z,,._,, %),
Gor = G(Zg,r1y Tor)y Agr = 5211 + Fyy) and B,, = I119,,(1 + Fo. + Gq)-
Thus,
Sell+ Fy+ G — My + F + @)
é qupll =+ Fq + Gq - Bqu
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+ Y00l + F, + G, — B,|
< 2ue/10u + ,e0|1 + F, + G, — [Ag nigy:
+ 219 A,,G,..B,,] |
=¢/5+ 2’1¢I€€?|1 + F, — Aq,n(q)+1]
+ ool Gy — 219 A,,G,.B,, |
< 2¢/5 + Y0l G, — 279G, |
+ Yol 219G, — 319A,.G,.B,,|
< 8ef5 + 2yq27 1 — Ayl |Gyl
+ e8| A |Gor | |11 — B, |
< 3¢/6 + (¢/5B)B + (¢/6B*)B* = ¢ .

Hence, if a <2 <y < b and ¢ > 0, then there exist a subdivision
D of [a, b] and a number B such that if H = {z,}; is a refinement of
D and H, is a subdivision of [x,_,, «,], then

(1) |[Hil+ F,+G)|<Bfor1<i<j=mn, and

(2) M1+ F,+ G, — (1 + F+ G)| <e¢/B.
Thus, if H and H, are defined as above, then

\IT3(L + Fy + G,) — I (1L + F + G)|
é BZZ,lnll + Fq + Gq - HHq(I)(l + F+ G)I
< B¥¢/B®) = ¢.

Therefore, [1*(1 + F + G) exists.
b
It now follows that S 1+ F+G—IH1l+F+G)|=0. Hence,
F+ GeOM® on [a, b].

THEOREM 3. If FeO0Q°,GeOB° and 1+ F + G s bounded away
Jrom zero on [a, b], then F' + Ge 0Q° on [a, b].

Proof. There exist a subdivision D of [a, b], a positive number
¢ < 1 and a positive integer m such that if J = {z;}; is a refinement
of D, then

(1) 14+ F,+ G, >cfor1=<qg=mn,

(2) |1+ F)|>cforl1=<i<j=<mn, and

(8) if K is any collection of nonintersecting subsets of J(I),
then the number of ke K such that Y,|G|/c > 1/2 is less than m.
Suppose J = {x,}¢ is a refinement of D and 1=r=s=n. Let K =
{k;} be the collection of nonintersecting subsets of {[x,_,, z,]}: such
that

(1) k, = {[z,_y, z]}28), where m(1) is the first integer such that
m(l) = r and |G, |/c < 1/2 and n(1) is the largest integer such that
n(l) < s, 20 |G, l/e £1/2 and Zp¥*|G,l/c > 1/2 if such an integer
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exists and s otherwise, and
(2) k; = {[wes, 2 ]}53, where m(j) is the first integer such that

m(5)
m(g) > n(j — 1) and |G, |/c < 1/2 and n(j) is the largest integer such
that n(j) < s, Tn@) |G, |/c < 1/2 and 21| G, |/c > 1/2 if such an integer
exists and s otherwise.
Let U= Ui.xk and V = {[z,_,, ]}y — U. Note that K and V each
has a maximum of m elements. Thus,

|1+ F, + G,)]|

={l, |1+ F+ GM,|1+ F+ G}
|1+ F| - [G]]
¢"Myexlll |1 + FMILIL — [GI(1 + F)7]
™ e {1 — |G /e)}
ekl — 24| Glle] Z e/27 .

o

\YARI\Y

COROLLARY 8.1. If bF exists, then the following are equivalent:
(1) FeOQ° on [a,b], and (2) SFe 0Q° on [a, b].

b
Indication of proof. Since gF exists, F'e OA° [Lemma 1.1].

The result now follows by using Theorem 3.

COROLLARY 3.2. If G is a function, then the following are equiv-
alent: 1) GeOQ' on [a,b], and (2) if FeOB° on [a,b], then F +
Ge 0Q' on [a,d].

Indication of proof. Since FF=0 is in OB°, (2) implies (1).
Further, it follows from Theorem 3 that (1) implies (2).

LEMMA 3.1. If 0 G=1 and G¢ OB° on [a, b], then —G ¢ 0Q°
on |a, b].

Indication of proof. 1f H is a subdivision of [a, b], then

(1 — G) = exp [y In(l — G)]
= exp [~ un27GY1] .

ThUS, HH(I)(I - G) —_’O as Z’H(I)G_—) O,
COROLLARY 38.3. If G is a function, then the following are equiv-

alent: (1) Ge OB®° on [a,b], and (2) if FeOQ" on [a,b], then F +
Ge0Q' on [a,d].
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Proof. Since it follows from Theorem 3 that (1) implies (2), we
need only show that (2) implies (1). The function |G| is almost
bounded above on [a, b] by 1/2. If this is not so, then a contradiction
follows by considering the function F' such that

(1) F(x,y)=0if —-1/2 < G(x,y) =0,

(3) F(x,y)= —2if 0 < G(z,y) < 1/2, and

(4) F(z,9) = —G(=z,y) —3/2 if G(z,y) > 1/2.

Thus, although FFeOQ', F + G¢O0Q" since |1+ F+ G| =1 and the
number of intervals for which |1 + F + G| = 1/2 is unbounded. Now,
if G¢ OB°, a contradiction follows from Lemma 3.1 by using the
function F' such that

(1) F(z,y) = —2 if G(z,y) = 0, and

(2) F(z,y) =0 if G(z,y) < 0.

THEOREM 4. If G is a function, then the following are equiv-
alent:

(1) if Sb]F[ — 0, then FGe OB®,
(2) if Sbu«"; — 0, then FGe OP°,

(3) f SblFI = 0, then FGe 0Q°, and
(4) G s bounded on [a, b].

Proof. It follows readily that (4) implies (1). Further, it follows
that (4) implies (2) and (3) by using Theorems 1 and 3, respectively.
If Gz,y) as =, y—p,G(x,y) as z,y— p*, G(x,p) as *— p~ and
G(p, %) as x— p* are bounded for each pe€ [a, b], then it follows from
the covering theorem that G is bounded on [a, b]. If one or more of
these bounds fail to exist for some pe€]a,d], then there exists a
sequence {(y,, )} of distinct subintervals of [a, b] such that |G(y,, z,)| >
¢ for ¢ =1,2, ..., and if {x}; is a subdivision of [a,d] and » is a
positive integer then there exist positive integers ¢ and j such that
j>r and w;,_, = ¥y; < #; < ;. Contradictions to (1) and (2) now fol-

low by considering the function F' such that

F(z,y) = [G(x, 9)]/[a’ |Gz, y) ]

if there exists a positive integer ¢ such that z = y, and ¥ = z, and
F(z,y) = 0 otherwise. Here gblF | = 0, but F'G is in neither OB° nor
OP°. Further, a contradiction to (8) follows by considering the func-
tion F such that F(z,y) = [-G(x,y)]™* if there exists a positive
integer ¢ such that « = y, and y = 2, and F(x,y) = 0 otherwise.
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LEMMA 5.1. If G is a function such that

(1) G is almost bounded above by 1/3 on [a, b], and

(2) if FeOP° on [a,b], then FGe OP° on [a, b],
then Ge OB° on [a,b].

Proof. Suppose G¢OB° on [a,b]. It follows from Theorem 4
that G is bounded on [a, b]. There exists a set {C(¢)};> such that

(1) C(3) is a finite set of nonoverlapping subintervals of [a, b]
which can be grouped into a collection D(7) of nonintersecting pairs
of adjacent intervals,

(2) no interval in C(i + 1) has an end point which is also the
end point of an interval in C(q),q =1,2,+--, 1,

(8) if (»,y) e C(3), then G(z,y) < 1/3, and

(4) ZewlGl >
Let C= Uy D), and let F be the function on [a, b] such that if
{(w, v), (r, s)} € C and G(u, v) = G(r, s), then

(a) F(u,v)= —2if G(u,v) <0,

(b) F(u,v)=2if G(u,v) =0,

(e) F(r,e)= —11if r = and r < 2, and

(d) F(z,s)= —1if s=u and = <s,
and F(z, y) = 0 otherwise. Thus, FFe OP° on [a, b]. However,

[1 + F(u, v)G(u, v)][1 + F(r,s)G(r, 8)] = 1 + [G(u, v)|/3 .

Hence, since G is bounded and {3, |G|} is unbounded, F'G ¢ OP°.
This is a contradiction, and therefore, Ge OB° on [a, b].

LEMMA 5.2. If G is a function such that

(1) G is almost bounded below by 1/10 on [a, b], and

(2) i FeOP° on [a,b], then FGe OP° on [a, b],
then G — 1e OB° on |a, b].

Proof. Suppose G — 1¢ OB° on [a, b]. It follows from Theorem
4 that G is bounded on [a, b]. There exists a set {C(7)}; satisfying
conditions (1) and (2) in Lemma 5.1 plus the additional conditions

(8) if (x,y) e C(®), then G(x,y) > 1/10, and

(4) ZomlG - 1! > 1.
Let C = Uy D(7), where D(¢) is defined as in Lemma 5.1. Note that
if {(u,v), (r,s)} € C and G(u,v) = G(r, s), then either

(5) Gu,v)=1and |1 — Gu,v)|=|1— G(r,s)|, or

(6) G(r,s) <1 and either G(u,v) = G(r, s) or

11— G(u,v)| < |1 — G(r,s)].

Let F be the function on [a, ] such that if {(u,v),(r,s)}eC and
G(u, v) = G(r, s), then
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(a) F(u,v) = —2 and F(r,s) = 0 if (5) is true,

(b) F(u,v) =1 and F(r,x) = —1/2 if (6) is true, » = v and
r < x, and

(¢) F(u,v)=1 and F(x,s) = —1/2 if (6) is true, s = w and
r <8,
and F(z,y) = 0 otherwise. Thus, F e OP° on [a,d]. Observe that
if (5) is true, then

[1 + F(u, v)G(u, v)][1 + F(r, s)G(r, s)] = —{1 + 2[G(«, v) — 1]},
and if (6) is true, then

[1 + F(w, v)G(w, v)][1 + F(r, s)G(r, s)]
= [1 + G(r, s)][1 — G(r, s)/2]
> 1+ [1/20][1 — G(r, s)] -

Hence, since G is bounded and {Z. |G — 1|} is unbounded, F'G ¢ OP°.
This is a contradiction, and therefore, G — 1€ OB° on [a, b].

THEOREM 5. If G is a function, then the following are equivalent:
(1) GeOB* on [a,b], and
(2) ¢f FeOP® on [a,bd], then FGe OP° on |a, b].

Proof (2—1). If a < a < b, then there exists a number g such
that « < 8 < b and either Ge OB° on [a, 8] or G — 1€ OB° on [a, B].
If this is false and ¢ < @ < B < b, then it follows from Lemmas 5.1
and 5.2 that G is neither almost bounded above by 1/3 nor almost
bounded below by 1/10 on [a, B]; hence, there exist sequences {s,};
and {r,}? such that '

(1) s, and 7, are subintervals of [a, b] with a common end point,

(2) s, precedes r, and r,,, precedes s,, and

(3) G(s,) < 1/10 and G(r,) = 1/10.

Let H = {s,} U {r,}7, and let F be the function on [a, b] such that

(1) F(x,y) = —1 if there exists an interval (z, y) € H such that
r <y and G(z,y) < 1/10,

(2) F(z,y)=2if (x,y)e H and G(z, y) = 1/10, and

(3) F(z,y) = 0 otherwise.

Thus, F'e OP° on [a, b]. However, it follows that F'G ¢ OP° on |[a, b]
since

[1 + F(s,)G()L + F(r,)G(r,)] > (.9)(1.2) = 1.08 .

Similarly, if ¢ < 8< b, then there exists a number a such that
a=a<p and either GeOB° on [a,B] or G — 1€ OB° on [«, B].
It now follows that G € OB* on [a, b] by using the covering theorem.
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Proof (1—2). Since OB°<=OP°, if GeOB° and FeOP° on
[#, y], then FGe OP° on [x,y]. Note that

1+ FG=14+F+ F(G—-1).

Thus, it follows from Theorem 1 that if G — 1 OB° and FeOP°
on [z, y], then FGe OP° on [z,y]. Therefore, (1) must imply (2).

COROLLARY 5.1. If G s a function, then the following are equiv-
alent:

(1) GeOP° on [a,b], and

(2) if FeOB* on [a,b], then FGe OP° on [a, b].

Indication of proof. It follows that (1) implies (2) by using
Theorem 5 and that (2) implies (1) by considering the function F' = 1.

LEMMA 6.1. If G is a bounded function such that

(1) G s almost bounded above by 1/3 on [a, b], and

(2) if FeOQ° and is bounded on [a,b] and 1 + FG s bounded
away from zero, then FGe 0Q° on [a, b],
then Ge OB° on [a, b].

Proof. Suppose G¢ OB° on [a,b]. There exist a subdivision D
of [a, b] and a positive integer m such that if J is a refinement of
D and we J(I) then |G(u)|/m < 1/2. Let H be the set such that ue H
only if there exists a refinement J of D such that ueJ(I), and let
F be the function such that

(1) Fu)= —2if ue H and 0 =< G(u) = 1/8,

(2) F(u) =1/m if we H and G(u) < 0, and

(3) Fl(x,y) = 0 otherwise.

Since FFe 0Q° and 1 -+ FG is bounded away from zero, F'G e OQ°.
However, it follows from Lemma 3.1 that F'G¢ 0Q°. This is a con-
tradiction, and therefore, G e OB°.

LemmA 6.2. If G is a bounded function such that

(1) G s almost bounded below by 1/10 on [a, b], and

(2) <f FeOQ° and is bounded on [a, b] and 1 + FG is bounded
away from zero, then FGe OQ° on [a,b],
then G — 1€ OB° on |a, b].

Proof. There exist a subdivision D of [a,b] and a number B
such that if J is a refinement of D and weJ(I) then |G(w)| < B.
Let H be the set such that uwe H only if there exists a refinement
J of D such that we J(I). Let H, and H, be the subsets of H such
that we H, only if G(u) <1 and u € H, only if G(u) > 1. For i=1,2,
let Gi(z,y) = G(z,y) if (x,y)e H; and Gz, y) = 0 if (x,y) ¢ H,.
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Suppose G, — 1¢ OB° on [a, b]. Let F' be the function such that

(1) Fu)= —2if ue H, and G(u) < 5/12 or 7/12 < G(u) = 1,

(2) F(w) = —3 if ue H, and 5/12 < G(u) < 7/12, and

(3) F(x,y) = 0 otherwise.
Since FFe 0Q° and 1 + F'G is bounded away from zero, FGe OQ°.
However, it follows from Lemma 3.1 that FFG¢ OQ°. This is a con-
tradiction, and therefore, G, — 1€ OB°.

Suppose G, — 1¢O0B° on [a,b]. There exist a set {C(4)}; and
an integer m > 1 such that

(1) C(7) is a finite set of nonoverlapping subintervals of [a, b]
which can be grouped into a collection D(i7) of nonintersecting pairs
{(w, v), (r, s)} of adjacent intervals such that either G(u,v) > 1 or
G(r, s) > 1,

(2) mno interval in C(¢ + 1) has an end point which is also the
end point of an interval in C(g9),q¢=1,2,+--,1,

(8) if (x, y) e C(®) then G(x,y) > 1/10 and G(x, y)/m < 1/2, and

(4) Zcmle“ 1| > 1.
Let C = Uy D(7), and let F' be the function such that if {(u, v), (r, s)} € C
and G(u, v) = G(r, s) then F(u,v) = —1/m, F(r,2) = 1/(m — 1) if r = »
and F(z,s) =1/(m — 1) if s =u, and F(z,y) = 0 otherwise. Since
FeOQ° and 1+ FG is bounded away from zero, F'G € 0OQ°. However,
if {(u,v), (r,8)} € C and G(u,v) = G(r, s), then

0 <[1+ F(u, v)G(u, v)][1 + F(r, s)G(r, s)]
= [1 - G(u, v)/m][1 + G(u, v)/(m — 1)]
<1+ [1- Gu,v)]/mm—1).

It follows from Lemma 3.1 that FFG ¢ OQ°. This is a contradiction,
and therefore, G, — 1€ OB°.

Thus, since G; — 1€ OB° on [a,b] for ¢+ =1,2, it follows that
G — 1€ OB° on [a, b].

THEOREM 6. If G is a bounded function, then the following are
equivalent:

(1) GeOB* on [a,b], and

(2) iof FeOQ° and is bounded on [a,b] and 1 + FG s bounded
away from zero, then FGe O0Q° on [a, b].

Proof (2—1). If a < a < b, then there exists a number B such
that @« < 8 < b and either Ge OB° on [a, 8] or G — 1€ OB° on [«, £].
If this is false, then it follows from Lemmas 6.1 and 6.2 that there
exist sequences {s,};” and {r,}7 and a set H defined as in Theorem 5.
Let F be a function on [a, ] such that if (u,v) and (v, s) are intervals
in H such that G(u, v) < 1/10 and G(v, s) = 1/10, then
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(1) 1+ F(u,v)G(w,v) =1/2 and F(v,s) = 0 if G(u,v) < —1/10,

(2) F(x,v)=1,-1/2< F(v,s) < 0and1/2=<1 + F(v, s)G(v, s) <
95 if —1/10 < G(u, v) = 0, and

(8) F(x,v)=—8, —12=<F(v,s)<0and 1/2=1 + F(v, s)G(v, )<
95 if 0 < G(u, v) < 1/10,
and F(z,y) = 0 otherwise. Since F' is a bounded function in 0Q°
such that 1 + F'G is bounded away from zero, F'Ge OQ°. However,

1+ F(s,)G(sy)l[1 + F(r)G(ry)]| = .95 .

Hence, FiG ¢ OQ°. Similarly, if ¢ < 8 < b, then there exists a number
a such that ¢ < @ < 8 and either Ge OB° on [a, 8] or G — 1€ OB®
on [a, B]. It now follows that Ge OB* on [a, b] by using the cover-
ing theorem.

Proof (1—2). This follows from Theorem 3 by a procedure
similar to that used in Theorem 5.
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