ISOMORPHISMS OF GROUP EXTENSIONS

KUNG-WEI YANG

To my parents

Let $0 \to G \to E \to \Pi \to 1$ and $0 \to G \to E' \to \Pi \to 1$ be two crossed product extensions given by the crossed product groups $E = [G, \varphi, f, \Pi]$ and $E' = [G, \varphi', f', \Pi]$ respectively. A homomorphism $\Gamma \colon E \to E'$ is stabilizing if the diagram

commutes. In this paper, a necessary and sufficient condition for the existence of a stabilizing homomorphism (hence isomorphism) between any two crossed product extensions is obtained.

The result is applied to obtain a necessary and sufficient condition for the existence of an automorphism $\phi\colon E\to E$ making the diagram

commutative, given $(\sigma, \tau) \in \operatorname{Aut} \Pi \times \operatorname{Aut} G$.

NOTATION. In general, we use the notation in [3]. Throughout the paper, G and Π denote two fixed groups. G will be written in additive notation and Π in multiplicative notation. Aut G, Out G, and ZG are the automorphism group, the outer automorphism group, and the center of G, respectively. For any element $a \in G$, $\mu(a)$ denotes the inner automorphism $\mu(a)(g) = a + g - a$ given by conjugation with a. When X is a group the natural image of an element $x \in X$ in a quotient group of X is denoted \overline{x} . When \mathcal{P} is a map, $\overline{\mathcal{P}}$ denotes the map $\overline{\mathcal{P}}(x) = \overline{\mathcal{P}(x)}$.

Given groups G, Π , and functions $\varphi \colon \Pi \to \operatorname{Aut} G$, $f \colon \Pi \times \Pi \to G$ satisfying

(1)
$$\varphi(x)f(y, z) + f(x, yz) = f(x, y) + f(xy, z)$$
,

(2)
$$\varphi(x)\varphi(y) = \mu[f(x, y)]\varphi(xy),$$

and the normalization conditions $\mathcal{P}(1) = 1$, f(x, 1) = 0 = f(1, y), the set $G \times \Pi$ under the sum defined by

(3)
$$(g, x) + (h, y) = (g + \varphi(x)h + f(x, y), xy)$$

is a group. The group so constructed is called a *crossed product group*, and is denoted $[G, \mathcal{P}, f, \Pi]$, or simply E. With the homomorphism $G \to E$ defined by $g \mapsto (g, 1)$, and $E \to \Pi$ defined by $(g, x) \mapsto x$, we have an extension of G by Π

$$0 \longrightarrow G \longrightarrow E \longrightarrow II \longrightarrow 1$$
.

The extension is called a crossed product extension.

Results. Let $E = [G, \mathcal{P}, f, \Pi]$ and $E' = [G, \mathcal{P}', f', \Pi]$ be two crossed product groups. Define a stabilizing homomorphism $\Gamma \colon E \to E'$ as in the abstract. Notice that, by the "5 lemma" for groups, a stabilizing homomorphism is an isomorphism. Clearly, a homomorphism $\Gamma \colon E \to E'$ is stabilizing if and only if Γ is of the form

$$\Gamma(g, x) = (g + \gamma(x), x),$$

and

(5)
$$\varphi(x)q + f(x, y) + \gamma(xy) = \gamma(x) + \varphi'(x)[q + \gamma(y)] + f'(x, y)$$
.

Because of the normalization conditions, $\gamma(1) = 0$. Setting y = 1 in (5), we obtain

(6)
$$\varphi(x)g + \gamma(x) = \gamma(x) + \varphi'(x)g.$$

Setting g = 0 in (5), we obtain

(7)
$$f(x, y) + \gamma(xy) = \gamma(x) + \varphi'(x)\gamma(y) + f'(x, y).$$

Conversely, (5) can immediately be derived from (6) and (7). Summarizing, we have

LEMMA. If $E = [G, \mathcal{P}, f, \Pi]$ and $E' = [G, \mathcal{P}', f', \Pi]$ are two crossed product groups, then $\Gamma \colon E \to E'$ is a stabilizing isomorphism if and only if Γ is of the form (4), where the map $\gamma \colon \Pi \to G$ satisfies (6) and (7).

In particular, when $\mathcal{P} = \mathcal{P}'$, and f = f', we see that by (6), $\gamma(x) \in ZG$, and by (7), $\gamma \in Z^1(\Pi, ZG)$. $Z^1(\Pi, ZG)$ is the group of normalized 1-cocycles, and the Π -module structure on ZG is given by \mathcal{P} .

COROLLARY. If $E = [G, \mathcal{P}, f, \Pi]$ is a crossed product group, then $\Gamma \colon E \to E$ is a stabilizing automorphism if and only if Γ is of the form (4), where $\gamma \in Z^1(\Pi, ZG)$.

We remark that both the lemma and the corollary are well-known. See for instance, [5, p. 127], [2, 17.1 Satz, p. 119], [4].

It is obvious from (6) that, as homomorphisms from Π to Out G,

$$\bar{\varphi} = \bar{\varphi}'.$$

Trivially, (7) implies that

(9)
$$k(x, y) = -f(x, y) + \gamma(x) + \varphi'(x)\gamma(y) + f'(x, y) - \gamma(xy)$$

is equal to 0.

Conversely, given crossed product groups $E = [G, \mathcal{P}, f, \Pi]$ and $E = [G, \mathcal{P}', f', \Pi]$, we can ascertain the existence of a stabilizing isomorphism from E to E' by the following procedure. First, we decide whether condition (8) is fulfilled. If not, the question is settled. If (8) is satisfied, then there is a function $\gamma \colon \Pi \to G$ such that (6) holds, and ZG acquires a well-defined Π -module structure with operators $xc = \mathcal{P}(x)c(=\mathcal{P}'(x)c)$, for $c \in ZG$. We set $\gamma(1) = 0$. It is now meaningful to speak of the group $Z^2(\Pi, ZG)$ (resp., $B^2(\Pi, ZG)$) of the 2-dimensional normalized cocycles (resp., coboundaries) of Π with values in ZG. Define k(x, y) by (9). We claim that $k(x, y) \in Z^2(\Pi, ZG)$. Trivially, k(x, 1) = 0 = k(1, y). To see $k(x, y) \in ZG$, we merely observe that conjugating $\mathcal{P}'(xy)g$ with $\gamma(xy)$ and conjugating $\mathcal{P}'(xy)g$ with $-f(x, y) + \gamma(x) + \mathcal{P}'(x)\gamma(y) + f'(x, y)$ give the same result $\mathcal{P}(xy)g$. k(x, y), being the difference of these two elements, is therefore in ZG. To verify the identity

$$xk(y, z) - k(xy, z) + k(x, yz) - k(x, y) = 0$$
,

we observe that

$$k(x, yz) - k(xy, z)$$

$$= -f(x, yz) + \gamma(x) + \varphi'(x)\gamma(yz) + f'(x, yz) - f'(xy, z)$$

$$- \varphi'(xy)\gamma(z) - \gamma(xy) + f(xy, z)$$

$$= -f(x, yz) + \gamma(x) + \varphi'(x)[\gamma(yz) - f'(y, z) - \varphi'(y)\gamma(z)]$$

$$+ f'(x, y) - \gamma(xy) + f(xy, z)$$

$$= -f(x, yz) + \gamma(x) - \varphi'(x)k(y, z) - \varphi'(x)f(y, z) - \gamma(x)$$

$$+ f(x, y) + k(x, y) + f(xy, z)$$

$$= k(x, y) - xk(y, z).$$

We made use of the identities (1), (2), (9), (6), and (1), in that order. Finally, if $k(x, y) \in B^2(\Pi, ZG)$, then $k(x, y) = x\beta(y) - \beta(xy) + \beta(x)$. The function $\gamma' \colon \Pi \to G$ defined by $\gamma'(x) = \gamma(x) - \beta(x)$ satisfies (6) and (7). Therefore, the map Γ defined by (4), using γ' instead of γ , is a stabilizing isomorphism. If $k(x, y) \notin B^2(\Pi, ZG)$, then there could not exist a stabilizing isomorphism $\Gamma \colon E \to E'$. For, if there were to exist such an isomorphism, the discussion leading up to the above lemma would show that $\Gamma(g, x) = (g + \gamma'(x), x)$, with γ' satisfying (6) and (7).

Since γ and γ' both satisfy (6), $\beta(x) = \gamma(x) - \gamma'(x) \in ZG$. By (7) we have $k(x, y) = x\beta(y) - \beta(xy) + \beta(x)$ showing $k(x, y) \in B^2(\Pi, ZG)$. This discussion also shows that $\overline{k(x, y)}$ in $H^2(\Pi, ZG)$ is independent of the choice of γ . These results may now be summarized as follows.

THEOREM 1. Let $E = [G, \mathcal{P}, f, \Pi]$ and $E' = [G', \mathcal{P}', f', \Pi]$ be two crossed product groups. Then there exists a stabilizing isomorphism $\Gamma \colon E \to E'$, if and only if

- (A) $\bar{\varphi} = \bar{\varphi}'$, and
- (B) $\overline{k} = 0$ in $H^2(\Pi, ZG)$, where k(x, y) is defined as above.

We note that Theorem 1 is well-known (and is easily seen to be true) in the case where $\varphi = \varphi'$ [3, Theorem 8.8, p. 128, Lemma 8.2].

An application. Let $0 \to G \to E \to \Pi \to 1$ be a group extension. Call an automorphism of E taking G onto G an automorphism over G. Clearly, any automorphism of E over G induces automorphisms τ on G and σ on Π . It is easy to see that, in general, not every pair $(\sigma, \tau) \in \operatorname{Aut} \Pi \times \operatorname{Aut} G$ can be so induced by an automorphism of E over G. In [4], Charles Wells defined an exact sequence which gives a necessary and sufficient condition for a pair $(\sigma, \tau) \in \operatorname{Aut} \Pi \times \operatorname{Aut} G$ to be inducible by an automorphism of E over G. We now apply Theorem 1 to prove a similar result. We hope our method will also help clarify the nature of the map $C \to H^2_{\sigma}(\Pi, ZG)$ as defined in [4].

Let $0 \to G \to E \to H \to 1$ be a group extension. We may (and do) assume that E is of the form $E = [G, \mathcal{P}, f, H]$ with homomorphisms $G \to E, E \to H$ of the form as defined in the definition of a crossed product extension at the beginning of this paper. We say that a pair $(\sigma, \tau) \in \operatorname{Aut} H \times \operatorname{Aut} G$ is inducible if there exists an automorphism $\Phi \colon E \to E$ such that the diagram

(10)
$$0 \longrightarrow G \longrightarrow E \longrightarrow \Pi \longrightarrow 1$$
$$\downarrow_{\tau} \qquad \downarrow_{\phi} \qquad \downarrow_{\sigma}$$
$$0 \longrightarrow G \longrightarrow E \longrightarrow \Pi \longrightarrow 1$$

is commutative.

For $(\sigma, \tau) \in \text{Aut } \Pi \times \text{Aut } G$, let $\mathcal{P}_{\sigma}(x) = \mathcal{P}(\sigma x)$, $f_{\sigma}(x, y) = f(\sigma x, \sigma y)$; $\mathcal{P}_{\tau}(x) = \tau \mathcal{P}(x)\tau^{-1}$, $f_{\tau}(x, y) = \tau f(x, y)$. If $\overline{\mathcal{P}}_{\sigma} = \overline{\mathcal{P}}_{\tau}$, there exists a map $\gamma \colon \Pi \to G$ such that $\mathcal{P}_{\tau}(x) + \gamma(x) = \gamma(x) + \mathcal{P}_{\sigma}(x)$. Choose γ so that $\gamma(1) = 0$. In this case, define

(11)
$$k_{\sigma,\varepsilon}(x, y) = -f_{\varepsilon}(x, y) + \gamma(x) + \varphi_{\sigma}(x)\gamma(y) + f_{\sigma}(x, y) - \gamma(xy)$$
.

THEOREM 2. The pair $(\sigma, \tau) \in \text{Aut } \Pi \times \text{Aut } G$ is inducible if and

only if

- (A) $\bar{\varphi}_{\sigma} = \bar{\varphi}_{\tau}$, and
- (B) $\bar{k}_{\sigma,\tau}=0$ in $H^2(\Pi,ZG)$,

where $k_{\sigma,\tau}(x, y)$ is defined as in (11), and the Π -module structure on ZG is induced by the homomorphism $\overline{\varphi}_{\sigma} = \overline{\varphi}_{\tau}$.

Proof. Let $0 \to G \to E \to \Pi \to 1$ be a group extension. Set $E = [G, \varphi, f, \Pi]$. Let φ_{σ} , f_{σ} , φ_{τ} , f_{τ} , $k_{\sigma,\tau}$ be as defined in the paragraph preceding Theorem 2. Let $E_{\tau} = [G, \varphi_{\tau}, f_{\tau}, \Pi]$, $E_{\sigma} = [G, \varphi_{\sigma}, f_{\sigma}, \Pi]$. Define $T: E \to E_{\tau}$ by $T(g, x) = (\tau g, x)$, and $\Sigma: E_{\sigma} \to E$ by $\Sigma(g, x) = (g, \sigma x)$. It is a straightforward matter to check that T and Σ are both group homomorphisms and that the following two diagrams

commute.

If there is a stabilizing isomorphism $\Gamma: E_{\tau} \to E_{\sigma'}$ then (σ, τ) is clearly inducible.

Conversely, if (σ, τ) is inducible, then there exists an automorphism $\Phi \colon E \to E$ such that the diagram (10) is commutative. Such an automorphism is necessarily of the form $\Phi(g, x) = (\tau g + \gamma(x), \sigma x)$, where γ satisfies (6) and (7) with φ replaced by φ_{τ} and φ' replaced by φ_{σ} . Therefore, $\Gamma = \Sigma^{-1}\Phi T^{-1}$ is a stabilizing isomorphism from E_{τ} to E_{σ} . By Theorem 1, (σ, τ) is inducible if and only if (A) and (B) are satisfied.

Condition (A) of Theorem 2 can be stated more explicitly as follows: For any $x \in \Pi$, $\overline{\tau}\overline{\varphi(x)}\overline{\tau}^{-1} = \overline{\varphi(\sigma x)}$.

As direct consequences of Theorem 2, we have

COROLLARY 1. If Out G = 1 and $H^{2}(\Pi, ZG) = 0$, then every pair $(\sigma, \tau) \in \operatorname{Aut} \Pi \times \operatorname{Aut} G$ is inducible.

COROLLARY 2. If Out G = 1 and ZG = 0, then for any group E such that $G \triangleleft E$ and for each $\tau \in \operatorname{Aut} G$, there exists $\Phi \in \operatorname{Aut} E$ such that restriction of Φ to G is equal to τ .

The second corollary also follows directly from [1, Theorem 1].

REFERENCES

- 1. R. Baer, Absolute retracts in group theory, Bull. Amer. Math. Soc., 52 (1946), 501-6.
- 2. B. Huppert, Endliche Gruppen I, Die Grundlehren der math. Wissenschaften, Band 134, Springer-Verlag, Berlin and New York, 1967.
- 3. S. MacLane, Homology, Die Grundlehren der math. Wissenschaften, Band 114, Academic Press, New York, Springer Verlag, Berlin, Grottingen, Heidelberg, 1963.
- 4. C. Wells, Automorphisms of group extensions, Trans. Amer. Math. Soc., 155 (1970), 189-194.
- 5. H. J. Zassenhaus, The Theory of Groups, 2nd ed., Chelsea Publishing Company, 1958.

Received September 28, 1972.

WESTERN MICHIGAN UNIVERSITY