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CLASSES OF CIRCULANTS OVER THE »-ADIC
AND RATIONAL INTEGERS

DENNIS A. GARBANATI

Let G =1{¢%g,9% ---,9%!} be a finite abelian group of
order ¢ where g is a prime. Let Z, and Z denote the p-adic
and rational integers respectively. A circulant for G over
Z, (or Z) is a ¢-square matrix A of the form A = X%} a,P(g?)
where a;€ Z, (or Z) and P is the left regular representation
of G, i.e., P(g%) is a g-square permutation matrix and P(gig’)=
P(9*)P(97). Let M and L be symmetric unimodular circulants
for G over Z, (or Z). The circulants M/ and L are said to
be in the same G-class if there exists a circulant A4 for G
over Z, (or Z, respectively) such that M/ = ATLA where 7
denotes transposition. The central object of this paper is:
(i) to give computable criteria for determining whether or
not two circulants for G over Z, are in the same G-class,
(ii) to give a computable upper bound (which seems to be
frequently equal to 1) for the number of G-classes among
the positive definite symmetric unimodular circulants, and
(iii) to introduce a group matrix concept (called G-genus)
corresponding to the concept of genus.

This paper advances the work done by M. Newman, O. Taussky,
R. C. Thompson, and the author in [3,4, 5,7,8,9,13,14]. The
methods in (i) and (iii) involve generalizing a result of O. Taussky
[13] and then applying a local theorem from [4]. The methods in
(i) involve a slight elaboration of the methods found in D. Davis’
thesis [1].

2. Notation. Let ¢ be an odd prime. Let F' be a field whose
characteristic does not divide 2¢. Let { be a primitive gth root of
1, i.e., a g-order generator of the roots of 2? — 1€ Fx]. Let K = F({)
and k= F({+ ). Let N(-) = Ngu(-) be the norm function from
K into k. Let S(:) = Sk/#(+) be the trace function from K into F.
Let & (K/F) denote the Galois group of K over F. Let G be a group
of order ¢, that is,

G={1=4d,9,0,-,97}

where g generates G. Let R’ be a ring in F.
DEFINITION. A ¢-square matrix A is called a circulant for G
over R’ (or simply a circulant) if A has the form A = > a;P(g%)

where a;€ R’ and P is the left regular representation of G. Thus
the (1, j) entry of P(¢%) is 1 if g*¢’™ = ¢ and zero if g*g™* # g™
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The term circulant in this paper shall always refer to a circulant for
G and hence shall always be a ¢-square matrix.
Let

H={=x06x 1"}

be the character group on G, i.e., the homomorphisms of G into K
where ' is the principal character and ) generates H. We may
assume X(g) = £.

If A= >"ta;P(¢%) is a circulant, for 0 < j < q¢ — 1 define

(1) N4) =3 airi(e) -

By §2 of [3], there is a matrix U such that for any circulant A over
R’ we have

(2) UAU™ = diag (- -+, Myi(4), -+)

where \,i(A) is the j + 1th entry.
Let 7 denote transposition.

3. Preliminary material. We start with a generalization of O.
Taussky’s result [13]. Although it might look unnecessarily abstract,
Lemma 1 has the advantage of being able to produce both the local
theorem (Theorem 1) and O. Taussky’s global theorem (Theorem 5).
In anticipation of Lemma 1, note that if R’ is a ring in F with 1
and M is a matrix over R’ then M is unimodular if the determinant
of M is a unit in R'.

LEMMA 1. Let R’ be a ring in F with 1 such that R'/qR’ is a
field whose characteristic is not 2. Let R = R+ R'C + --- + R'{*,
a ring in K. Let U and U be the groups of wunits of R’ and R
respectively. Suppose [K: F] =q — 1. Let M and L be unimodular
(not mecessarily symmetric) circulants over R'. Then the following
are equivalent:

(i) There exists a circulant A over R’ such that M = A"LA.

(ii) 2N (ML) e R"” and \,(ML™)e N(R).

(iii) N (ML™e U”? and N(ML™)e N(U).

Proof. (i)=(il) By Lemma 5 of [3] and (2), )N (ML™) =
N AN (L) = N (AN (A) = [N (A)]Pe R®. Since [K: F] =g — 1 we
see by Lemma 4 of [3] that [K:k] = 2. Hence again by Lemma 5
of [3] and by (2), M(ML™) = N(M)/Ny(L) = Mf(AT N (A) = N(\,(4)).
Since A, (A4) € R the result follows.

(ii)= (i) By (2)

Np(ML™) = N (M2 (L) = @ = o
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where a€ R, and
M(ML™) = MM\ (L) = b = N(B)

where B¢ R. From [K:k] = 2 it follows that N(B) = Bo(B8) where
g:{— (e £ (K/F). Since L is unimodular, ML™ = >\!=; ¢;P(g°) where
c;eR'. From [K:F] =q — 1 and (4) of [3], it follows that

¢ = 075 M(ML) = ML) + SOu (ML)
= 7@ + SO)) -

Since L is unimodular, ae R’. Since S({’) = —1for 1=i=<q—1,
S(b)e R’. Also ge R’ because 1€ R’. Let ¢ and d be elements of R'.
Write ¢ = d if there exists an ec R’ such that ¢ — d = ge. Then
0=+ S(N(B)). Since Re R, write 8 =b,+bl+ -+ + b,
where b;e R’. Then

az + S[(bo + blc + e+ bq—1Cq_1)(bo + blc~l + bzc_z R bq—l(:)]

o+ (¢ — 1)(b§ + b4 e b§—1) + S( Z“ bibj(:i“j>

=a*— B+ -+ b))~ D bbi=a—(bo+ b+ e+ D)

AF]
0<%,7=¢—1

0

il

Il

But we also have for any &k, 0 <k <q — 1,

SX(gF)B) = S[C# (b, + 0L+ +++ + b,_,L7Y)]
(3) = S(bL7* 4+ bl + «-+ + b, L17F)
= —(by+ -+ + bq—l) .

Therefore, [SX(g™)B)]*= (b, + - - - + b,_,)* and hence 0 = a* — [S(X(97*)B)]*.
Since R'/qR’ is a field, we see, using (3), that « = 0 if and only if
SXg™B)=0forall k, 0=k=qg—1. If forall k&, 0=k <q—1, we
have a = 0 and S(X(¢7")B) = 0 then let A, = « and A, = B. Suppose
for all k£, 0<k<qg—1, we have o« =0 and SX(¢97%)B) 0. Then
since R'/qR’ is a field of characteristic not equal to 2 it follows by
(3) that either (i) 0 = a — S(X(97*)B) for all k, 0 =k = q — 1, or (ii)
o0=a+ SHA(g™p) for all k, 0 <k <q— 1. If(i) holds, let, = —a
and A, = B. If (ii) holds, let v, =@ and A, = 8. For 1=i<q—-1
leto:{— e Z(K/F). Forl<i<q—1letx,;;=o0;(\,). By Lemma
2 of [3], the ¢ relations

¢—1 )
@ = 075 LGP

define a g-square circulant A over F such that A = >}i=} a,P(9*) where
Ao(A) = Ny and N, (A4) = \,. By choosing A, and \, as above a,€ R’
for all k. Then for any 1 < 7 < ¢ — 1 we have, using Lemma 5 of [3],



438 D. A. GARBANATI

that N, (M)/\ (L) = 04(b) = 0.(N(B)) = N(0:8) = N(0:(\(A4))) = N(\i(A)) =
Ai(ATN,i(A4).  Also by Lemma 5 of [3], M (M)/Ny (L) = o = (AP =
A (AT (A). Therefore, by (2) we have M = ATLA.

It remains to show that (ii) = (iii). Since N\ (ML™) = a® and
M(ML™) = N(B) where o€ R’ and B€ R we have that det ML =
&Ny +(N(B)). Since M and L are unimodular, det ML™ is a unit in
R’, and hence g is a unit in B. We shall show Ny,(N(B8)) € R’. Then
a will be a unit in R’. The irreducible polynomial of { over F is
'+ «-. + 2+ 1. Therefore, each element of R can be written
uniquely in the form a,{ + @l + - -+ + a,,{" where a;€ R’. Therefore,
Ny o(NB) =al + -+ + a,_,0* '€ F where a;€ R’. Since this expres-
sion is unique and since it is invariant under each te £ (K/F) it
follows that a, = a, = -+ = a,_,. Hence N, (N(B))ecR'.

Now let us expand our considerations to discuss group matrices
for an arbitrary abelian group G of order m». Let o denote the
ring of integers of a local field F. A group matrix A for G over o
is an m-square matrix of the form A = 3),..a,P(g) where a,c0 and
P is the left regular representation of G so that using the elements
of G to index the rows and columns of P(g) it follows that the (%, &)
entry of P(g) is 1 if gh = k and zero if gh # k. As in [3], for each
character X on G, we define N\, (4) = . @,%X(9)-

LEMMA 2. Let G be an arbitrary abelian group of order m. Let
F be a local field whose characteristic does mot divide 2n. Suppose
" is a unit in o of F. Let M and L be symmetric unimodular
group matrices for G over o, the ring of integers of F. Then there
exists a group matric A over o such that M = A"LA if and only if
MAML™) is the square of a unit in o for each X of order 1 or 2.

Proof. (=) Since Mand L are unimodular N\, (ML™")=X(M)/\(L)
is a unit in o for each X of order 1 of 2. The result now follows
from Theorem 1 of [3].

(=) Let {X.} be an independent set of characters. (See defini-
tion in §2 of [3].) If the order of X, is 1 or 2 and A\, (ML™) =
MM\ (L) = o, where «,, is a unit in o, let \,, = @,,. Suppose the
order of X, isd>2. Let K=F({;) and k=F(;+; ™). If K=Fk then by
Lemma 6 of [3] we can assume that the d-order independent characters
occur in independent inverse pairs (X, Z,™') no two of which have a
character in common. For the pair (X, X.™%) let Ny, = Mo (M)/Nr (L)
and )\t = 1. Now suppose [K:k[= 2. Then, from 32:6a of [10],
K is a quadratic unramified extension of k. So, since M and L are
unimodular, it follows from 63:16 of [10] that A\, (M)/\(L)€ Ngu(U)
where U is the group of units of the local field K. Suppose
N M)Ay (L) = Ngplaz,) where a,, € U. Then let \,, = a,.. Now use
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Lemma 2 of [3] along with the fact that % is a unit in F' and that
Az is a unit in F({; + ;') where d is the order of X, to define a
group matrix A over o. Proceed as in the proof of Theorem 1 of [3]
to show that M = A" LA.

4, Local theory. Let the notation be that described in §2
with the following additions. Let p» denote an arbitrary prime. Let
Q, be the p-adic numbers. Let the F' of §2 be @,. Let O be the
ring of integers of K. Let R’ = Z, denote the p-adic integers and
U’ the group of units of Z,. If F' is a field let F denote the multi-
plicative group F'\{0}.

LEMMA 8. If p=q then O=2Z,+ Z,L + -+ + Z,*

Proof. Let p be the spot on @, and P the spot on K. Let ||,
the normalized valuation on K. Let Il ={ — 1. Since K=@Q, +
Q,C+ -+ + QL it follows that K =Q, + Q@[] + --- + Q,[I*. So
ifaeOthena =a, + a,fl + --- + a,, /1" where a,€Q,. By Lemma
2(ii) of [4], K is a totally ramified extension of @, of degree ¢ —1
and /7 is a prime in K. Hence if aieQ,, then |a; |y, = p™°“™" where
¢ =ord,a;. Therefore, if 0<j <i<q—2anda; a;€Q, then |a,/I’ |, #
|a;IT |y. By the Principle of Domination for any a;€Q, where 0 <
j<q— 2 we have

1z |aly=max{[all[:0=t=q— 2} = |afl |y = p~o 7

where ¢ = ord,a;. Hence ¢ = 0 and so |a;|, < 1.
THEOREM 1. Let M and L be symmetric unimodular q-square
circulants over Z,. Then there exists a g-square circulant A over Z,

such that M = A"LA if and only if Np(ML™) e U™

Proof. (=) Since M and L are unimodular, \,(M)/r,(L)e U’.
Now use Theorem 1 of [4].

(=) By Theorem 1 of [4] there exists a circulant B over @, such
that M = B"LB. Hence by Theorem 1 of [3], Ny(ML™) = M(M)/N\y(L) €
N(K). Since M and L are unimodular, by 32:3 of [10], NM(ML™) =
MM/ (L)€ N(U) where U is the group of units in O of K.

If p=gq the conclusion follows from Lemma 2(ii) of [4] and
Lemmas 1 and 3 where FF=Q,, R" =7, and R=90. If p#q use
Lemma 2 with ' = @, and o = Z,.

COROLLARY 1.1. Let M and L be symmetric unimodular circu-
lants over Z,. There exists a circulant B over Q, such that M = B'LB
if and only if there exists a circulant A over Z, such that M = A*LA.
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Proof. (=) By Theorem 1 of [4], M(ML™)e@:. Hence
NeAML™)e U”. The result now follows by Theorem 1.

THEOREM 2. Let {e, &} or {e, &, &, €.} be representative of the 2
@f »+#2) or 4 (if p = 2) square classes, U'/U", of units of Z,. For
o given symmetric unimodular circulant M over Z, there exists a
unique €; such that M = A7(¢;I)A for some circulant A over Z, (where
I is the identity matriz).

Proof. Pick the ¢; which is in the same square class as \.(M)
and use Theorem 1.

DEFINITION. Let S denote the set of symmetric unimodular cir-
culants over Z,. Let M, LeS. We say M is G-congruent to L if
there exists a circulant A over Z, such that M = A"LA. The equiva-
lence relation of G-congruence partitions S into equivalence classes
called G-classes of S.

COROLLARY 2.1. If p # 2 there are two G-classes of S. If p = 2
there are four G-classes of S.

DEFINITION. Let M be a symmetric unimodular circulant over Z,.
Define the discriminant of M, denoted dM, to be the square class of
the determinant of M, i.e., dM = (det M)/ U".

THEOREM 3. Let M and L be symmetric unimodular circulants
over Z,. Then M and L are G-congruent if and only if dM = dL.

Proof. Use Theorem 2 and the fact that ¢ is odd.

5. Global theory. Let the notation be that of §2 except that
now F' = @, the rationals, and R’ = Z the rational integers. Let R
denote the ring of algebraic integers of K and U its group of units.

DEFINITION. Let G be an arbitrary abelian group. Let G, denote
the group of all symmetric unimodular group matrices for G over Z.
Let G, denote the subgroup of G, consisting of all the positive definite
group matrices. Let M, Le G,. Consider the following two equiva-
lence relations on G,.

(i) We say M and L are G-congruent if there exists a group
matrix A over Z such that M = ATLA. The equivalence relation of
G-congruence partitions G, into subsets which we call G-classes. A
typical G-class is denoted as follows

clsM={LeG | M and L are G-congruent}.
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Let »,(@G), respectively n,(G), denote the number of subsets into which
G-congruence partitions G,, respectively G,.

(ii) We say M and L are in the same imertia class if ML is
positive definite. We denote an inertia class as follows

int M ={LeG,| M and L are in the same inertia class} .

Let i(G) denote the number of inertia classes into which @G, is
partitioned.

PROPOSITION. Let M and L be symmetric unimodular group
matrices over Z. The following are equivalent:

(i) ML 1is positive definite.

(ii) (M (L) > 0 for each X.

(iii) ML™ 1is positive definite.

(iv) There exists a group matric A. over the reals such that
M = ALLA...

(v) There exists a group matric A over @ such that M = A"LA.

Proof. It is clear from §2 of [3], (i)« (ii) = (iii). To show
(iii) = (iv) use Corollary 1.2 of [3]. That (v) = (iv) is immediate. If
(iv) holds then ML™ is positive definite. Now apply Corollary 2.1 of
[4] to get (v).

THEOREM 4. Let M and L be symmetric unimodular group
matrices over Z. If cls M = cls L then int M = int L. Furthermore,
given any two inertia classes the number of G-classes lying inside
each of them is the same.

Proof. The first assertion is immediate. To establish the second
assertion let int M be an arbitrary inertia class. Let G? denote the
group of all squares in G,. Consider G,/G: which is a subgroup of
G,/G? and (int M)/G} which is a subset of G,/Gi. By Theorem 4 and
Corollary 1 of [5] it suffices to show there is a one-to-one correspondence
between the cosets of (int M)/G: and the cosets of G,/G:. Let
G,/G} = (MG, - -+, M,G3}, where M;eG, (1 <17 =<35). Let

7: G,/G? — (int M)/G?
via
(MG}) = MM,G}
for 1 <4 <s. It is easy to show that 7z is one-to-one. To show 7
is onto let Leint M. Show MM,G? = LG? for some ¢. Since M'LeG,

we have that ML ¢ M,G? for some 4. Therefore, M'LG?* = M,G? and
hence MM,G: = M(M™LG?) = LG
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COROLLARY 4.1. Let G be an arbitrary abelian group. Then
U@ON,(G) = ny(G). (A formula for n,(G) can be found in [5].)

Let us once again restrict our discussion to g¢-square circulants.
Even in this restricted setting the converse of the first assertion of
Theorem 4 does not hold. The example at the end of this paper
shows that int M = int L does not necessarily imply that cls M = cls L.

The following question is central. If M and L are symmetric
unimodular circulants then when does there exist a circulant A such
that M = A"LA, i.e., when is it that cls M = ¢cls L? If ML™ is not
positive definite (i.e., int M = int L) (and this is easily checked by
computation) then cls M + cls L. So we may assume ML~ is positive
definite. The question thus reduces itself to the following question.
When is a positive definite circulant G-congruent to the identity
matrix I? (Since G is abelian M = ATLA if and only if ML™ = A"A.)
Conversely, if criteria can be produced which will establish when two
indefinite circulants are G-congruent then the question of whether or
not two positive definite circulants are G-congruent can be answered.
For if M and L are positive definite circulants and N is an arbitrary
indefinite circulant then NM and NL are indefinite and NM and NL
are G-congruent if and only if M and L are G-congruent. This inter-
dependence of the definite and indefinite case (also see Theorem 4) is
the most striking way (as far as the author can see to date) in which
the theory of G-classes differs from the ordinary theory of classes of
quadratic forms as found in say O’Meara’s book [10]. In the ordinary
theory of classes of quadratic forms if M and L are symmetric uni-
modular indefinite matrices over Z, computable criteria exist for
determining whether or not there exists a matrix A over Z such
that M = ATLA [12, Theorem 4 and 5, pp. 92-93]. Whereas if M
and L are positive definite the situation is quite different and the
theory is by no means as definitive.

As an aid to answering the above-mentioned central question we
shall give a proof of O. Taussky’s result [13] using Lemma 1.

THEOREM 5. Let M and L be symmetric unimodular g-square
circulants over Z. Let V denote the group of umits inm the ring of
algebraic integers of k. The following are equivalent:

(1) There exists a circulant A over Z such that M = A"LA.

(ii) N (ML™) =1 and M(ML™)e N(R).

(iii) Ay (ML™) =1 and r(ML™")e N(U).

(iv) 2o(ML™) =1 and (ML *)e V2.

Proof. From Lemma 1 and 7-5-4 of [15] it follows that (i) =(ii) =
(iii). The equivalence (iii) < (iv) follows from Lemma 10.11 on page
119 of [11].
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According to tradition E. C. Dade has shown that for all primes
g < 100 except for ¢ = 29 every positive definite symmetric unimodular
g-square circulant over Z is in the same G-class. Since this result is
not in the literature we will prove Theorem 6 which most likely
repeats much of what he did.

Let k = Q¢ + £™), the maximal real subfield of Q({) where { is
a primitive gth root of 1. Let V denote the group of units in the
ring of algebraic integers of k. Let V* denote the group obtained
by squaring all the elements in V. Let T be the group of totally
positive units in V. Let v, ---, v, denote the cyclotomic units, i.e.,
v,=—1and v, = (" —HYC - for i=2,8 ---, p where p=
(g — 1)/2. (See page 7 of D. Davis’ thesis [1].) Let W denote the
subgroup of V generated by the cyclotomic units. Consider the Galois
group Z(k/Q) = {0, -+, 0,} where p = (¢ — 1)/2. If ack let

t(a) = (-, ploa)/| o)), --)

where p(o,(a)/|0;(«)]) is in the jth position and where |-| denotes the
ordinary absolute value function and p: {1, —1} — GF(2) via o(1) =0
and o(—1) = 1. Let M, be the matrix of cyclotomic signatures [1,
p. 8] i.e., the p-square matrix whose ith row is 7(v;). Consider the
vector space [1, p. 10]

GF2)z (k/Q) = {a,0, + -+ + a,0,|a; =0 or 1}.

Let
sgn: V— GF(2)Zz (k/Q)
via

sgn(a) = z (0 @)| o) )o; -

The map sgn is a homomorphism from the multiplicative group V into
the additive group of GF(2)Z (k/Q) [1, Lemma 2.4, p. 10]. The kernel
of sgn is T. Thus V/T as a multiplicative group is isomorphic to the
additive group sgn V. Now thinking of sgn V as a vector space over
GF(2) we see that (V: T) = 2* where o is the dimension of sgn V.

THEOREM 6. Let G be a group of prime order q. Then n,(G)
divides 27~ where s denotes the rank of M, and p = (¢ — 1)/2.

Proof. Let b be the dimension of sgn W. Then b < a where a
is the dimension of sgn V. Thus by Theorem 2.6 on page 11 of [1]
20 =2<2"=(V:T). Since (V:V? =27 [1, Theorem 2.3, p.9] we
have that (T:V?) = (V:V)/(V:T) < 2. Let M and L be elements
of G,. If (M) and N(L) are in the same coset of T/V? then by
Theorem 5 there exists a circulant A over Z such that M = ATLA.
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Hence 7,(G) < (T:V? < 2°~*. By Theorem 6 of [5], n,(G) divides 277*.

The tables in the back of D. Davis’ thesis [1] inform us that for
all primes ¢ < 100 except ¢ = 29 the rank of M, is p. In fact, the
tables reveal that for all but 24 of the 156 primes ¢ < 1000 the
rank of M, is p. By Theorem 6 if ¢ is not one of the exceptional 24
primes, 17,(G) = 1. The example at the end of the paper shows that
in the case ¢ = 29 we have that 7,(G) = 2.

THEOREM 7. Let q be an odd prime. Let the order of G be q.
If p=(q — 1)/2 is prime and if 2 is a primitive root mod p then
n(G@) = 1.

Proof. Use Theorem 3.5 of [1, p. 32] and Theorem 6.

THEOREM 8. Let q be an odd prime = 7. Let the order of G be
q. If p=1(q—1)/2 is a prime and p =3 mod 8 and if (p — 1)/2 is
prime then n,(G) = 1.

Proof. Use Corollary 3.5.1 of [1, p. 33] and Theorem 6.
6. The G-genus.

DEFINITION. Let M and L be symmetric unimodular group
matrices over Z. We say M and L are in the same G-genus if for
each prime p there exists a group matrix 4, over Z, such that M =
A,"LA, and there exists a group matrix A, over the reals such that
M=A.LA..

THEOREM 9. Let M and L be symmetric unimodular circulants
over Z. Then M and L are in the same G-genus if and only if M
and L are in the same inertia class.

Proof. (=) This is immediate.

(=) This follows from Theorem 1.

Thus the class number question as translated into the group
matrix setting (i.e., how many G-classes lie in a G-genus) because of
Theorem 4 can be resolved for g-square circulants if %.(G) can be
computed.

7. An example. The following example will show that if G is
a group of order 29 then 7,(G) = 2.

Let p be a prime integer. Let A = Z/p"Z where n = 1. Let
P A, — A, via P (x + p"Z) = x + p"'Z. The inverse limit
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Z, = l(iin (A,, P.)
={@ + vz 0.+ pZ, - )e [ A1 Pule + 1°2)
=%,_, + p"'Z for n= 2}

is the ring of p-adic integers [12, p. 23] where addition and multipli-
cation are coordinatewise. Let @, denote the p-adic numbers, i.e., the
quotient field of Z, [12, p. 26]. Let A, denote the multiplicative
subgroup of A4,.

From now on p shall denote the prime 59. Since the order of A4,
is p"(p — 1) it follows from the corollary on page 53 of [6] that
there exists a unique multiplicative subgroup of A, of order 29.
Denote this subgroup by W,. Let @, restricted to W, be denoted
by #..

PROPOSITION. For n = 2 the map P, is an isomorphism from
the multiplicative group W, onto the multiplicative group W,_,. The
tnverse limit W, = im(W,, P.) is the multiplicative group of all the

29th 7roots of 1 wm Z,.

Proof. Let o(-) denote “the order of.” Since o(4,) = 2" (p — 1),
by the Fundamental Theorem of Finite Abelian Groups we can express
A, as the following internal direct product, A, = W, x B, where
o(B,) = 2p"'. Likewise A, ,= W,_, x B,_, where o(B,_)) = 2p"*.
We want to show that #,(W,) & W,_,. The map @, is a multiplicative
homomorphism of A, onto A, Suppose ze W, and ®,(z) = x-y
where ze W,_, and ye B,_,. Since 2* = 1and 4* = 1, we get ¢y* = 1.
Therefore, o(y) divides 29. But o(y) divides o(B,_,). Hence o(y) = 1.
Similarly ¢,(B,) & B,_,- Since ¥ maps A, onto A,_,, the above results
establish that ¢,(W,) = W,_,. Also if xe€ Z, then 2® = 1 if and only
if e W,.

Now to construct a number u e Z, which among other things is
not a square in @,. First note that 3 + pZ # 1 + pZ, but (8 + pZ)* =
1+ pZ. By the preceding proposition there exists one and only one
a= (@ +pZ ---)e W, such that 2, + pZ=3+ pZ. For i1=2,3,...,14
let

(4) w = (@ — a™M(a—a™).
Let
U = (UUsUs U UgUog¥hy Yoy ) (U Ui W)’

Forj=1,---,14, let w; =a’ + a. If i is even (2 <1 < 14), then
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(5) Uy = W) + Wy + W + ++0 + @O,y .
If i is odd (2 < i < 14), then
(6) u521+w2+w4+ws+"'+wi_l.

Hence for 2 <1 < 14, u;e Z,. To show u is not a square in @, it
suffices to show w = u,u;usu,UsuU,,u,; is not a square in Q,. Using
(4), (5), and (6) one can deduce that w = (y, + pZ, ---) is a unit in Z,.
By Theorem 3 on page 34 of [12], w is a square in Q,, if and only
if y, + pZ is a square in A,. Calculation using (5) and (6) will show
that y, + pZ = 33 + pZ. Let (<) denote the Legendre symbol. Since
(33/59) = —1, it follows that 33 + pZ is not a square in A, and hence
# is not a square in Q,.

Let { be the following complex number { = ¢*¥*. Let K = Q({)
and k =Q( + (). Fori=23, ---, 14, let

v, = (= THE -
and let
V = (V05050050501 015)(VsV,0V1)"

Let Q(a) be the smallest field in Q, containing @ and «. Let ®(z) =
1+a+ 2>+ --- +2*. Then both Q) and Q(a) are splitting fields
of ¢(x) over Q. By the corollary and Theorem 5.J. on page 184 of
[6] there is an isomorphism ¢ from Q({) onto Q(a) fixing @ such
that 0({) = a. Now wek [1, p. 7]. If v were a square in k then
o(v) = % would be a square in Q(a) = @,, a contradiction. Hence v is
not a square in k. Furthermore, it can be shown that v is a totally
positive unit in the ring of algebraic integers of k. This can be done
directly or by using the more rapid methods of Chapter II of [1].

For j=12 ---,14,lety; = a7 + 2. If ¢ is even (2 <1 < 14),
let

V(@) =Y+ Y+ Y+ F Yo
If 1is odd (2 <7 < 14), let
@) =14+ Y+ Yt Yt ot Y
Then v({) = v; and v:(1) = 7. Let
v(@) = (v(@)v(@)Vs(@) (@) Vs(2)V(2)V 12 (2)V1s(X)) (Vo (R)V1o(@)V1s()) -

Then v({) = v and (1) = 1 mod 29.

If a(x) e Z[x] and if b(z) = a(x) + tP(x) where ¢ € Z then () = b(C)
but b(1) = a(l) + 29t. Hence there exists m(x)e Z[z] of degree at
most 28 such that m({) = v and yet 0 < m(l) < 28. Since v({) —
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m({) = 0, we see by using the corollary on page 269 of [2] that
v(@) — m(x) = c(x)P(x) where c(x) e Z[x]. Since v(1) =1 mod 29 and
P(1) = 29 we get m(1) = 1. If m(z) = m, + mx + -+ + my@*® then
let M = >2,m;P(¢9"). This M is a positive definite, symmetric, uni-
modular, 29-square circulant over Z such that )\, (M) is not the square
of a unit and hence by Theorem 5, M and I are not G-congruent.
Thus 7,(G) = 2.
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