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THE MULTIPLIER ALGEBRA OF A CONVOLUTION
MEASURE ALGEBRA

KARI YLINEN

In this paper the structure theory of convolution measure
algebras due to J. L. Taylor is used in studying the multiplier
algebra M(A) of a commutative semi-simple convolution meas-
ure algebra A. A criterion is given for the embeddability
of M(A) in the measure algebra M(S) on the structure semi-
group S of A, and the relationship between the structure
semigroups of A and M(A) is investigated in case M(A) is
also a convolution measure algebra and S has an identity.

1* Introduction* A convolution measure algebra A is a com-
plex L-space with a multiplication which gives A the structure of a
Banach algebra and satisfies certain additional requirements. For
precise definitions and the basic theory of convolution measure alge-
bras we refer to J. L. Taylor's paper [11]. A central role in Taylor's
theory is played by the structure semigroup S of a commutative
convolution measure algebra A. The maximal regular ideal space of
A may be identified with the set of semicharacters of the compact
commutative topological semigroup S, and some properties of A are
reflected in those of S.

For any (complex) commutative Banach algebra A, let A(A) denote
the spectrum of A, that is, the space of nonzero multiplicative linear
functionals on A, equipped as usual with the relative weak* topology.
If A is in addition semisimple, then we denote by Am the space of
all complex-valued functions on A(A) that keep the space A of the
Gelfand transforms x of the elements x of A invariant by pointwise
multiplication, i.e., Am = {/: Δ(A) —>C\fxe A for all xe A}. It can
be easily shown that each fe Am determines a unique bounded linear
operator T/.A-+A satisfying Ί^x = fx,xeA. Then M(A)={Tf \fe Am)
is a Banach algebra under the uniform operator norm, called the
multiplier algebra of A. For the general theory of multiplier algebras
one may consult e.g. Larsen's book [5].

In this paper we study the multiplier algebra of a commutative
semi-simple convolution measure algebra A. J. L. Taylor has shown
in [11] that A may be naturally embedded in the convolution algebra
M(S) of finite regular Borel measures on the structure semigroup S.
In § 3 we show that M(A) can be isometrically realized as a subalgebra
of M(S) containing the image of A if and only if S has an identity.
As is to be expected, the measures then corresponding to isometric
onto multipliers have one point support in S. Section 4 gives con-
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ditions for M(A) to be a convolution measure algebra, too, and §5
concentrates on describing the relationship that exists between S and
the structure semigroup of M(A) provided M(A) is a convolution
measure algebra and S has an identity. For related results in a
somewhat different situation, see [13].

For any compact Hausdorίf space S, C(S) will denote the Banach
space of continuous complex-valued functions on S with the supremum
norm, and M(S) is the conjugate space of C(S). Of course, M(S) may
be interpreted as the space of finite regular Borel measures on S,
and if S is also a topological semigroup, M(S) is a Banach algebra
under the convolution product

= ( ( f(xy)dμ(x)dv(y) .
JS JS

2* Taylor's structure semigroup of a commutative convolu-
tion measure algebra* Preliminarily to our discussion of the multiplier
algebra we give in this section the structure semigroup a description
which differs slightly from Taylor's original construction. In special
cases an essentially similar method has been used e.g. by Rennison
in [8] and Ramirez in [7]. See also [6] and [13].

The conjugate space A' of any complex L-space A is a commu-
tative C*-algebra with identity. The corollary in [11, p. 157] says
that if A is a commutative convolution measure algebra, then Δ(A) U {0}
is a self-adjoint multiplicative subsemigroup of A! containing the
identity, so that the norm closed linear span P of Δ(A) in A! is a
C*-algebra with identity. A semicharacter on a topological semigroup
is a non-zero continuous homomorphism into the multiplicative semi-
group of complex numbers z with \z\ <£ 1.

THEOREM 2.1. Let A he a commutative convolution measure al-
gebra and P as above. For any F, Ge P' there is a unique element,
denoted FG, of Pf such that FG(a) = F(a)G(a) for all aeA(A). The
map (F, G) i-> FG is a commutative Banach algebra product in P\
The spectrum A{P) of P is a multiplicative subsemigroup of P'. With
the relative weak* topology Δ(P) is a compact topological semigroup,
and the semicharacters of A(P) are precisely the Gelfand transforms
of the elements of Δ(A). The structure semigroup S of A in the sense
of Taylor [11] is topologically isomorphic to Δ(P).

Proof. The product in Pr that we are referring to is discussed
in [1, p. 816] and [13, pp. 168-169]. In particular, since FG{aβ) =
F{aβ)G(aβ) for all a, β e A{A)f F,Ge P\ even if aβ = 0, the proof
of Theorem 2.3 in [13] is valid also in our present situation where,



MULTIPLIERS OF A CONVOLUTION MEASURE ALGEBRA 329

in general, merely Δ(A) U {0} is a multiplicative subsemigroup of A!.
Similarly, Theorem 2.4 in [13] is applicable, for the semi-simplicity of
A is nowhere needed in its proof, and Δ{A) (rather than Δ(A) U {0})
is assumed to be closed with respect to multiplication only to allow
one to appeal to the above mentioned Theorem 2.3. From the proof
of Theorem 2.2 in [11] it is clear that there is a homeomorphism φ
from the structure semigroup S of A onto A{P) such that its natural
dual map from C(A(P)) onto C(S) puts the sets of semicharacters on
S and A{P) in a bijective correspondence. As in the proof of Theorem
6.5 in [7] it is seen that φ is also a semigroup isomorphism.

From now on we call A(P) with the product mentioned in the
above theorem the structure semigroup of A and use the notation
S = Δ(P).

THEOREM 2.2. Let A and P be as in Theorem 2.1. // Pf is
given the product referred to in that theorem, then the isometric
embedding F\-+ μF from Pr onto M(S) — C(SY defined by </, μF) =
</, F) for Fe P'', feP — C(S), is an algebra isomorphism.

Proof Suppose F, Ge Pr. By the definition of the convolution
μF*μG we have for any aeΔ(A),

(a, μF*μβ} = \ \ a(xy)dμF(x)dμG(y) = \ ά(x)dμF(x)\ ά(y)dμG
JSJS JS JS

= {a, FXa, G> - <α, FG} - <α, μFG} .

Since the functions α, a e Δ(A), generate the Banach space C(S), the
equality (h, μF*μG) = (h, μFG) is valid for all he C(S), i.e., μF*μG = μFG.

3* Representing the multipliers as measures on the structure
semigroup* Throughout the rest of the paper we assume that A is
a commutative, semi-simple convolution measure algebra with struc-
ture semigroup S = Δ(P), where P is always the closed linear span
of Δ(A) in A'. The set of semicharacters on S is denoted by S. We
give Pr the Banach algebra product mentioned in Theorem 2.1.

LEMMA 3.1. The natural embedding 0: A-+Pf defined by </, θx} =
(x, />, xe A, fe P, is an isometric and bipositive (i.e., θx ^ 0 if and
only if x ^ 0) algebra homomorphism.

Proof From the definition of the product in Pr it is clear that
θ is a homomorphism. Theorem 2.3 in [11] along with the corollary
in [11, p. 154] shows that it is isometric and bipositive. Alternatively,
θ is isometric by virtue of the Kaplansky density theorem [10, p. 22],
and bipositive by Propositions 1.5.1 and 1.5.2 in [10, p. 9], since P
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contains the identity of A'.
We usually identify P' and M(S) as ordered Banach spaces and

Banach algebras in accordance with Theorem 2.2. Following Taylor
[11], we use the notation Θ(A) = AsaM(S). It follows e.g. from
[11, Theorem 2.3] and the corollary in [11, p. 154] that As is an
L-subspace [11, p. 151] of the complex L-space M(S).

LEMMA 3.2. The convolution product in M(S) is separately weak*
continuous.

Proof. Suppose v e M(S) and fe C(S). It is a simple matter to

show that the function φ, φ(y) = 1 f(xy)dv(x), is continuous on S.
JS

(A much more general result may be proved using Grothendieck's
weak compactness theorem, see [3, p. 205].) Since we have | </, v*μ} | =

I I f{%y)dv(x)dμ(y) = \ (φ, μ) |, the mapping μ \-^ v*μ is weak* con-

tinuous at zero, hence everywhere.

LEMMA 3.3. Suppose that S has an identity and μe M(S). Then
μ >̂ 0 if and only if μ*v ̂  0 for all v ^ 0 in As.

Proof. Clearly the latter condition is necessary. Suppose now
that μ*v ̂  0 for all v ^ 0 in As. Choose a basis ^ of compact
neighborhoods of the identity u of S, directed in the natural order
opposite to inclusion. Each ve As is a linear combination of non-
negative elements of As and if λe M(S), 0 rg λ ^ ve AS9 then λ e i s

since As is an L-subspace of M(S). Furthermore, since As separates
p — C(S), As is a weak* dense subspace of M(S). It follows easily
that for each Ue^ there exists a positive measure μσ e ASf

\\μs\\ = 1, with support contained in U. The net (μπ)ue«> converges
to the Dirac measure 8U in the weak* topology. By assumption,
μ^μu ^ 0 for all Ue ̂ , and since the positive cone in M(S) is weak*
closed and the convolution is separately weak* continuous (Lemma
3.2), it follows that μ = μ*δu = lim^μ*^ ^ 0.

We regard the multiplier algebra M(A) as an ordered Banach
space with positive cone {Te M(A) \ Tx ̂  0 for all x ^ 0 in A}.

THEOREM 3.1. If S has an identity, then there exists a bipositivef

isometric algebra isomorphism from M(A) onto the subalgebra B =
{μ 6 M(S) I μ*v 6 As for all v e As} of M(S). Conversely, if there exists
an isometric algebra isomorphism ψ from M(A) onto a subalgebra
of M(S) containing As, then S has an identity, and for any isomet-
ric and surjective Te M(A) we have ψ(T) = cδx, where ceC, \c \ — 1
and δx is the Dirac measure corresponding to some xeS.
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Proof. Suppose that S has an identity u. The net (/vVe*/ con-
structed in the proof of Lemma 3.3 converges to the Dirac measure
δu in the weak* topology of M(S). In particular, linv {μv, 7) = 1 for
each 7 e Δ(A) — S. If we denote by Tf e M(A) the operator corres-
ponding to the function fe Am (see the introduction), an argument
given in [1, p. 817] shows that | Σ i U α*/Cr*) I ^\\Tf\\\\^Uak7k\\ioT
all yke Δ{A), ake C, k = 1, , n. It follows that / can be extended
as a continuous linear functional f to the whole of P with norm
II f (I <̂  II Tf\\. Since the embedding Θ:A—>P' is isometric (Lemma
3.1), we have, using the definition of the product in P', | | f | |^
sup {|| fθ{x) III a? 6 A, II θ{x) || sΞ 1} = sup {|| fθ(x) \\\xe A, || x || ^ 1} =
sup,,,i|S1|| 2 > | | = || 2V||. Thus \\f\\ = || 7V||. Prom the definition of

xeA

the product in Pr it is obvious that the above embedding of M(A)
in Pf is an algebra homomorphism, so that it may be interpreted as
an isometric algebra homomorphism π: M(A) —• M(S) (Theorem 2.2).
Since the embedding of A in M(S) is bipositive (Lemma 3.1), it is
clear from Lemma 3.3 that π is bipositive. Denote π(M(A)) = B c M(S).
For functions in Am(z) A), pointwise multiplication corresponds to the
convolution of the respective measures on S (see the proof of Theorem
2.2). Therefore, As is an ideal in B. Also, if μe M(S), and μ*veAs

for all veASί then the function fμ:4(A)—+C obtained by restricting
μtoS = Δ{A) belongs to Am. The first part of the theorem is thus
proved. To prove the converse assertion we note that M{A) has
always an identity. The hypothesis then implies that a weak* dense
subalgebra of M(S) has an identity rj. It follows from Lemma 3.2
that r] is also an identity for M{S). But it is well known that the
identity of any Banach algebra is an extreme point in its unit ball
(see e.g. [10, p. 13]). Hence (see [2, p. 441]) we have η = cou for
some ueS and ceC, \c\ — 1. In fact c = 1, since cδu = cδu*cδu =
c2δu2, so that u = u2 and c = c2. Now, u is an identity for S, since
δux = du*δx = δx for all xe S. For the last statement, it is enough
to show that ψ(T) is an extreme point of the unit ball of M(S) [2,
p. 441]. If 0 ^ λ ^ 1 and μl9 μ2e M(S) are such that f(T) = Xμ, +
(1 — X)μ2 and H/^JI^l, | | ^ 2 | | ^ 1 , we have for the identity η of
M(S), since also ΓeJl f(A) [5, p. 15],

where WfiT'^μ^l ^ 1 and II^Γ"" 1)*^!! ^ 1. Since rj is an extreme
point of the unit ball of M(S), we have λ = 0 or λ = 1. Therefore,
ψ(T) is also an extreme point of the unit ball of M(S).

NOTE. From the proof of the above theorem it is clear that S
has an identity if and only if A has a weak bounded approximate
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identity [1, p. 817] of norm one. (Compare [11, Theorem 3.1].)

4* M(A) as a convolution measure algebra* If S has an iden-
tity, then M(A) may be embedded in M(S) in accordance with Theo-
rem 3.1. Unfortunately, the nature of the image B<zM(S) of M(A)
is not sufficiently clear on the basis of that result. For example, we
should like to conclude that B is a so-called L-subalgebra of M(S),
which turns out to be equivalent to saying that M(A) with its natural
order is a convolution measure algebra. The next theorem gives two
other necessary and sufficient conditions for this to be case.

We assume henceforth that S has an identity and let π: M(A) —>
M(S) be the bipositive, isometric homomorphism constructed in the proof
of Theorem 3.1, and denote as before B = π(M(A))={μ e M(S) | μ*v e As

for all v e As}. Since S has an identity, A{A) (and not merely A(A) U {0})
is a multiplicative subsemigroup of A\ so that it makes sense to talk
about translations of functions on A(A). A set &~ of functions
/: Δ{A) —• C is translation invariant, if fe a?~ implies fa e J^~ for all
aeA(A), where fa(β) =f(aβ) for a9βeJ(A).

A closed subalgebra N of the convolution measure algebra M(S)
is an L-subalgebra of M(S), if for any μ e N its total variation | μ \
belongs to N, and if v e N whenever μ e N and v is absolutely con-
tinuous with respect to \μ\ (denoted v<\μ\) [12, p. 257], This
definition is easily seen to be equivalent to requiring that N be a
subalgebra and an L-subspace of M(S) in the sense of [11].

THEOREM 4.1. The following conditions are equivalent:
( i ) M(A) is a convolution measure algebra (in the order defined

before Theorem 3.1),
(ii) B is an L-subalgebra of M(S),
(iii) Am is a translation invariant set of functions on Λ(A),
(iv) for any μe B, \μ\ also belongs to B.

Proof. We shall establish the following chain of implications:
(ϋ) => (iϋ)«(i v ) ^ (ϋ) => (i) => (iv). if (ϋ) holds and μeB,fe C(S), then
the measure fμ (i.e., the functional g H-> μ(fg) on C(S)) belongs to B.
But if fe Am and μf = π(Tf), then we have f%β) = μf(aβ) = aμf{β)
for all a, β e A(A) = S, so that fa e A™, since aμf e B and As is an
ideal in B. Thus (ii) implies (iii). Next, assume (iii) and choose any
μeB. Then the function fμ: Δ(A) -> C defined by fμ(a) = μ(a) for
a e A(A) = S belongs to Am. By assumption, (fμ)

a e Am for any a e A(A).
But the measure in B corresponding to (fμ)

a when a is regarded as
a semicharacter of S, is aμ. As S generates the Banach space C(S)
and the mapping ft-*fμ is continuous from C(S) to M(S), which con-
tains B as a closed subspace, we have fμe B for all fe C(S). Fur-



MULTIPLIERS OF A CONVOLUTION MEASURE ALGEBRA 333

thermore, C(S) is dense in 1/(5, | μ \) [4, p. 140] so that there is a
sequence of functions in C(S) converging to g in L^S, \ μ |), where g
is a I μ [-measurable function with | g(x) \ = 1 | μ |-a.e. and such that
μ — g\μ\ [4, p. 171]. By virtue of the continuity of the mapping
fy+fμ from L\S, \ μ |) to M(S) and the fact that fμ e B for all fe C(S),
it follows that \μ\ = gμe J5, i.e., (iv) holds. Assume now (iv) and
that μ e M(S) is absolutely continuous with respect to some λ ^ 0 in
B. Then we have also μ3- < λ, j = l, , 4, in the Jordan decomposi-
tion μ = μx — μ2 + i(μ3 — /i4), where μ1 and μ2 (resp. μ3 and μ4) are
mutually singular nonnegative measures. If v ^ 0 is in AS9 we have
v*μό < v*λ. This has been proved in a somewhat more general sett-
ing by Pym in [6, p. 630]. Since As is an L-subspace of M(S), hence
an L-subalgebra in the sense of [12], we have v*μeAs. It follows
that in fact v*μ e As for an arbitrary v e As, so that μ e B. Thus
(ii) holds. Since M(A) is isometrically algebra and order isomorphic
to B, and any L-subalgebra of M(S) is a convolution measure algebra
(see [11, p. 151 and Definition 2.1]), (ii) implies (i) at once. Finally,
if M(A) is a convolution measure algebra (hence a complex L-space),
(iv) holds by virtue of Corollary 1.6 and Proposition 1.8 in [9].

On the basis of the above theorem sufficient conditions (assuming
that S has an identity) can be given to guarantee that M(A) is a
convolution measure algebra. Since As is an L-subalgebra of M(S),
an argument used in the proof of the above theorem shows that A
is translation invariant on Δ(A). If we assume for example that A
is regular and has a bounded approximate identity consisting of
elements with G elf and transforms of compact support, then the theo-
rem in [1, p. 819] shows that Am consists of those functions on Δ(A)
which belong locally to A and may be extended to continuous linear
functionals on P. Then Theorem 4.2 in [13] shows that Am is trans-
lation invariant. Another case where the translation invariance of Am

follows immediately from that of A arises, when S is a multiplicative
group, for then we have (fax)(β) = f{aβ)xa~\aβ) = y(β) for some ye A,
if fe Am and xe A. For a discussion of this kind of a situation,
see [12].

5* The structure semigroups of A and M(A). We retain the
general hypotheses and notational conventions made in §§ 3 and 4.
In particular S has an identity. Let us make the additional assump-
tion that M(A) is a convolution measure algebra (in the order defined
before Theorem 3.1). When A and M(A) are realized as subalgebras
of M(S) (§ 3), it is seen that the embedding j : A -+ M(A) defined by
j(x) = T* is isometric and bipositive. It is readily seen to be an L-
homomorphism [11, p. 152], since As is an L-subspace of M(S). We
let Q denote the closed linear span of Δ{M(A)) in M(A)\ Then T =
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A(Q) with the usual topology and product is the structure semigroup
of M(A). Before stating Theorem 5.1, which relates S and T to each
other, we prove an auxiliary result.

LEMMA 5.1. The mapping Φ\P—*M{A)' defined by (Φf, L> =
<τc(L), /> for L G M(A), feP = C(S), is an isometric C*-algebra homo-
morphism which maps the identity of P to that of M(A)', and we have

(1) i o φ ( / ) = / f feP,

for the transpose j*: M(A)f —> A! of j. Furthermore, Φ(P)aQ.

Proof. Equation (1) is immediate. Since j: A—+ M(A) is an L-
homomorphism, j*:M(AY—>A' is a C*-algebra homomorphism which
preserves the identity [11, p. 153]. Therefore,

(2) j*(ΦaΦβ) = aβ for a,βe A{A) = S .

As S has an identity, aβ Φ 0. A simple calculation shows that since
π is a homomorphism, Φa and Φβ are multiplicative, so that by (2)
their product is a multiplicative extension of aβ to M(A) (when aβ
is regarded as a functional on j{A)). Now, Φ(aβ) is also a multiplica-
tive extension of aβ to M(A), and since there are only one of them
[5, p. 24], we have Φ{aβ) = ΦaΦβ. A similar argument shows that
Φ\A(A) preserves involution. It follows that Φ is a C*-algebra homo-
morphism. Since the identity e1 of A! belongs to A(A) and the iden-
tity e2 of M(AY to A(M(A)), the uniqueness of the multiplicative
extension again shows that Φex = e2. Since any C*-algebra homo-
morphism is norm-decreasing [10, p. 5] it follows from (1) that Φ is
isometric. The last statement is a consequence of the fact that
Φ{A{A))aΔ{M(A)).

In the following theorem ξ> denotes the natural embedding of
M(A) in M(T) [11, p. 158]. The identity map of a set D is denoted
by idD.

THEOREM 5.1. There exist unique continuous semigroup homo-
morphisms ψ:S~>T and φ: T—+S such that

(1) Φf(t) = f o <p(t) and Ψg(s) = g o ψ(s)
for all teT, fe C(S) = P, seS, ge C(T) = Q, where Ψ = j* | Q and Φ
is the map defined in Lemma 5.1. Furthermore,

(a) φoψ — ids and Ψoφ — idP.
(b) ψ(S) is a closed ideal in T.
(c) For the identity u of S we have ψ°φ(t) = tψ(u), teT.
(d) // we denote MS(T) = {μe M(T) 11 μ \(T\ψ(S)) = 0}, then MS(T)

is an ideal in M(T) and ¥*(M(S)) = MS(T) for the transpose Ψ*:
M(S)-+M(T) ofΨ.
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(e) The diagram below commutes, and all maps appearing in
it are algebra homomorphisms.

3 M{A)

Proof. It is clear that (1) holds if and only if the maps f: A(P) —>
A(Q) and φ: A(Q) -+ A(P) are defined by setting <f (s), g) = Ψg(s) and
<<P{t), /> - Φf(t) foτseS,teT,geQ = C(T), and fe P = C(S). From
the definition of the product in S and T it follows that f and φ,
obviously continuous, are semigroup homomorphisms. For example,
if 7 e A(M(A)) and x,yeS, then ΨΎ e A(A) or ^7 = 0, and in both
cases (f(xy), 7> = (xy, ΨΎ} = <α?, ^7X2/, ^7) = < (̂a?), 7}(Ψ(y), τ>, i.e.,
1K&2/) = Ψ(%)Ψ(y)- The second formula in (a) is a consequence of
Lemma 5.1, and the first formula follows from the second by a simple
calculation. The commutativity of the square in (e) is seen as follows:
<flT, ?F*o%)> = (ψgf θx) = (pf ψg} = (j(χ)f g) = <#, Qoj(χ)} for ^ 4 ,
geC(T) = Q, so that Ψ*od = $oj. The lower triangle commutes
because of (a). As to the upper triangle, note that if 7 belongs to
A(A), then Φ7 is its unique multiplicative extension to M(A) (see the
proof of Lemma 5.1). Therefore, <7, Φ* ° £(L)> = <Φ7, $(L)> = Λ(7) =
<7, ^(ί/)>, where / z is the function in Am corresponding to LeM(A).
Since A(A) = S generates C(S), the equation Φ* ° φ = TΓ follows. The
second statement in (e) is also easily proved. Next we show that
Ψ*(M(Sι)) = MS(T). Since ?F and Φ are norm-decreasing, f* and Φ*
are so, and (e) implies that F* is isometric. On the other hand, Ψ*
is continuous from σ(M(S), C(S)) to σ(M(T), C(T)). Therefore, using
the weak* compactness of Br = {μe M(S) \ \\ μ\\ ^ r}, we see that
{μ G Ψ*(M(S)) III μ [I ^ r} is weak* compact, hence closed for each r ^ 0.
The Krein-Smulian theorem [2, p. 429] then shows that Ψ*(M(S)) is
weak* closed in M(T). If S (resp. T) is considered naturally em-
bedded in M(S) (resp. M(T))9 then F* \S = ψ, so that Ψ*(S) = f{S).
The linear combinations of the Dirac measures are weak* dense in
M(S). Similarly, since σ(M8(T), C{T)) and σ(Ms(T), C(f(S))) coincide
on M8(T), the linear span of ψ(S) = Ψ*(S) is σ(M8(T), C(T))-dense
in MS(T), which in turn is weak* closed in M(T), as f(S) c T is
compact. From these remarks the equation Ψ*(M(S)) = MS(T) follows
by the weak* continuity of Ψ*. From (e) and the fact that j(A) is
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an ideal in M(A) it follows that Ψ*(AS) is an ideal in Q(M(A)). Since
As is weak* dense in M(S) [11, p. 158], it follows from what was
said above that the weak* closure of Ψ*(AS) is MS(T) = W*(M(S)).
By virtue of the separate weak* continuity of the convolution in
M(T) (Lemma 3.2), Ms is therefore an ideal in M(T), which contains
$(M(A)) as a weak* dense subspace. Thus (d) is proved. Since
multiplication in T corresponds to the convolution of Dirac measures,
(b) is an immediate consequence of (d). Finally, (c) follows from the
equation φ(ψ°φ(t)) = φ(tf(u)), i.e., φ(t) = φ(t)u, since φ is injective
on φ(S) and tf(u) e

EXAMPLES. The above theorem is applicable e.g. in two classical
situations, where the algebra A is defined in terms of a locally com-
pact abelian topological group G. If A is L\G), the convolution
algebra of Haar integrable functions on G, then as is well known
[5, p. 3] the multiplier algebra M{A) may be identified with the
convolution algebra M(G) of bounded regular Borel measures on G.
In this case, S is the Bohr compactification of G and ψ(S) is the
kernel (i.e., minimal ideal) of T [11, p. 164].

Similarly, the theorem yields a connection between the structure
semigroups of the convolution measure algebras

ί \f{x)\dx =
JG\G +

and

M(G+) = {μe M(G) 11 μ \(G\G+) = 0} ,

where G+ is a closed subsemigroup of G containing the neutral ele-
ment of G and such that the interior of G+ generates G and is dense
in G+. For A = LXG+) satisfies the hypotheses of the theorem (for
example, S has an identity, since G+ may be realixed as a dense
subsemigroup of S [11, p. 163]), and Birtel has shown in [1, p. 821]
that M(A) = M(G+). In the case of A = L\G+) (and hence if A =
L\G)) the usual order in M{A) as a space of measures agrees with
the order defined before Theorem 3.1, for it follows from Birtel's
proof that there is a net {μσ} of positive μσ e Lί(G+) satisfying
limσμσ*μ(f) = μ(f) for all fe C0(G), μeM(G+).
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