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ON THE NORMAL SUBGROUPS OF INTEGRAL
ORTHOGONAL GROUPS

D. G. JAMES

Let &€ denote the spinorial kernel of an orthogonal group
of an indefinite unimodular quadratic form over the integers
in a global field. The normal subgroups of & that arise from
the local structure of & are studied.

Let S be a Dedekind set of spots on a global field F' with charac-
teristic not two and o the ring of integers of FF at S. Let V be a
finite dimensional quadratic space over F with dimension at least 5
and associated bilinear form B and quadratic form q. The orthogonal
group of V is

O(V) = {peEndV]q(p(x)) = q(z) for all ze V}.

Assume V supports a unimodular lattice M with orthogonal group
OM) = {pe O(V)|o(M) = M}. At each spot peS we can localize
and consider the orthogonal group O(M,) of the isotropic unimodular
lattice M, over the ring of integers o, in the local field F,. The
subgroups of O(JM,) normalized by its commutator subgroup have
been classified in [1, 2, 3]. We show here how this local structure
can be injected into O(M) when S is an indefinite set of spots for
V. A rich structure of normal subgroups of the spinorial kernel of
O(M) is then provided by the local behaviour at the dyadic spots.
Most of our terminology and notation is taken from O’Meara [4].

1. &-invariant sublattices of M, M, is split by a hyperbolic
plane H, at each spot peS. Write M, = H, 1 K, and H, = o,u, +
o,v, where B,(u,, v,) =1 and ¢,(%,) = q,(v,) = 0. In [2] it is shown
that &, the group generated by the Siegel transformations E(u,, «,)
and E(v,, x,), is equal to the spinorial kernel of O(M,). Define

& ={peOM)|p,e &, for all peS}.

Note that & is defined if dimV = 5, even when V is anisotropic.
In fact, using the global square theorem [4, 65: 15] and [2, Theorem
2.9, it is easily seen that % is the spinorial kernel of O(M).

A sublattice P of M is called Z-invariant if @(P) = P for all
pec . Let M, denote the lattice

M, = {ve M|q(x) € o}
with dual lattice
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M* ={xe V|B, M,) < o} .
Define an ideal a(P) in o by
a(P) = 5, B(r, M) .

Then
aP)*P<S M*.

LemMMA 1.1. Let P be sublattice of M and
M, oP)'P= M*.

Then P is Z-imvariant.

Proof. Locally, P, is &,-invariant [2, Theorem 3.1] since (J,), =
(M,)y, a(P,) = a(P), and

(M) & o(P)'P, & (M,)* .
Take pe & and let @(P) = Q. Then @,¢ &, and

Pv =¢v(Pp) =¢(P)v :Qp
for all pe S. Hence P = Q by [4, 8lE].

THEOREM 1.2. Let S be an indefinite set of spots for V and
assume dimV = 7 4f [o,: p] = 2 at any dyadic spot. Then a sublattice
P of M 1s E-imvariant if and only if

M, < o(P)'P = M* .

Proof. We need only show that if P is &-invariant, then (M), S
a(P,)'P, for all peS. Fix pe S and take 0,¢ &,. By the strong
approximation theorem for rotations [4, 104: 4], there exists @ € O(V)
such that || —6,], <& and |||, =1 for q =+ p. Then Pe O(M)
and, since & is the spinorial kernel, ¢ &. Hence ¢(P) = P. By
making ¢ sufficiently small, we may assume (@, — 0,)(P,) & P,. Thus
6,(P,) = P, for all 4, &,. Hence P, is &,-invariant and by [2,
Theorem 3.1] it follows that a(P,)(M,), < P,.

THEOREM 1.3. For each dyadic spot p assume given an o,-lattice
J, with (M,), & J, S (M,)*. Then there exists an o-lattice P such
that P, = J, at each dyadic spot and M, =& P < M*.

Proof. This follows immediately from [4, 81:14] since (M,), =
(M,)* = M, at all nondyadic spots.
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REMARK 1.4. If 2 is unramified, the lattices satisfying (M), &
P = (M,)* were determined in [1]. When 2 ramifies the number of
such lattices proliferates (even for the gaussian integers, there are
lattices M having more than 20 such P).

2. Normal subgroups of &, Let 5 be an indexing set such
that M., £e 5, gives all the lattices on V such that

M. = M. M*.

Let a be an ideal in o such that aM, = M,. Then a, M, & (M,).
and we define &,(a,M;,) as in [2] as the normal subgroup of &,
generated by all isometries of the form 6,E(u,, «,)8;" or 6,E(v,, ,)0;"
where 0,¢ &, and z,€ K, N a,M,,. Define

EaM) = {pe € |p, e &,(0,M,,) for all peS}
and
F (M) = {pe & |lp, ] S & (aMy)} .
Then & (aM,) & & (aM,) and any subgroup .+~ of & such that
E@M) S 1 = F (aMy)

is a normal subgroup of &.
We also define the local group .#,(a,M;,) by

%(aprp) = {¢7p€ gp’[¢w Cé)p] S gv(avMev)} .

Note that this definition is more restrictive than that in [2] where
®, was taken in O(M,), not &,.

THEOREM 2.1. Let S be an indefinite set of spots for V and
dimV = 5. Then for any ideal a + {0} with aM, & M,,

ﬁ(aMf)/g(aME) = g %(aprp)/gp(apMﬂ) .

Proof. Observe first that for pta we have
gv(avMép) =&, = %(%Mh) .
Define a mapping

I f(aMé) B H Z(aaMév)/ g&(apMép)

by sending @e¢ . & (aM,) into (--+, P,, +++),. Where &, denotes the
coset determined by @, in #,(a,M,,)/ &, (a,M,,). It is necessary to
show that 7" is well-defined, namely @, ¢ .#,(a,M,,) for each p|a. Let
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¥, € &, and take e & such that ||y;'0 — I||, <e. Then [, 0] is in
& (aM,) and hence [p,, 0,] is in &,(a,M,,). For sufficiently small e,
it follows from Corollary 3.3 that +,'6, is in &,(a,M,,) and hence
[#,, ¥,] € &,(a,M,,). Thus I" is a well-defined group homomorphism.

® is in the kernel of I" if and only if ¢,e &,(a,M,,) for each
pla. But @, &, = &,(a,M,,) for pya. Hence the kernel of I is
& (a ).

It remains to show that I" is surjective. For each pla fix +,
in #,(a,M,,). By the strong approximation theorem, there exists
e & such that

[|vy'e — I||, <e for bpla.

It now suffices to show @e. .7 (aM,), for if ¢ is sufficiently small,
VP, € &,(a,M,,) by Corollary 8.8 and hence +, and @, determine
the same coset in .7, (a,M,,)/%,(a,M,,). We must show [p,, 0,]¢
&,(a,M,,) for any e & and all pe S. For ptra this is trivial. For
pla and ¢ sufficiently small, ¥, = '@, € &,(a,M,,) and hence

[QDM 0»] = ["xlrpr 0::] = [":ku, XvanX;I] [Xw 0»]
is in &,(a,M,,). This completes the proof.

REMARK 2.2. We restricted ourselves to Dedekind domains com-
ing from global fields so that the strong approximation theorem for
rotations could be used. If, however, we assume M has hyperbolic
rank at least one, so that globally M = H 1 K with H=ou + ov a
hyperbolic plane and K is free, a strong approximation theorem
can still be established for any Dedekind domain. Define all &,
with respect to the localization of H. Then, from [2, Theorem 2.9],
any 60, in the spinorial kernel is of the form

0, =TI B(w, 2.0 B, y.)

with z,(p) and y.(p) in (K,),. By approximating to the coefficients
of z(p) and y,(b) in the Dedekind domain o, we can approximate to
0, by an isometry in O(M) for a finite number of p.

3. The structure of Z,(a,M,,)/ & ,(a,M,,). We close with some
comments on the structure of the abelian group .#,(a,M,,)/ &,(a,M,,).
For simplicity, since only the local situation is considered in this
section, the suffix p is dropped and we write o for o, M for M, V
for V,, and so on.

For £e 5, let

Mt = {we V| B, M) < o)
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be the dual lattice of M,. Write M, =H 1 K, and M, =H 1 K..
Then K, & K, and jwe can choose a basis z,, ..., z, for K, such
that

K, =0x, + «++ + 0z,
and
K, = phw, + eoo 4 piu,
with the integers k, invariants for K,, K, and
0=k =sk=s-=k..
Let y,, ++-, y. be the dual basis of #, +--, #,. Then
K*=oy,+ «+« + 0y,
and
Kt = phy, + oo + phuy, .
For each 1 < 7 < n, define

Ke(i) =K, + pkiKe
=0x, + oo + 0w, + prTRbp, e oo - pPriTEag,

and let K¢®? 1 < ¢ < m, be the dual lattices. Write M,,, = H 1L K,
and M*? = H | K*?, Then

M2 M) 2 Mezy 2 +++ 2 My = M,
and
M MYS MY < oo © M¥™ = M*.
Define congruence subgroups by

O(aM,) = {pe &|o(r) = rmodaM, for all re M.},
O(aM,): = {pe O(aM,)|p(r) = r mod 2ap~*M,,;, for all re2M*?}

for 1 <4 < m, and
@My = () O@M .
Since p5M, =& M., 1 < i < n, it can be checked that
g @M,) < O(aM.)y < O(aM,) & & (alMy)
provided that ag(M,) < o.
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THEOREM 3.1. For a & 4p, the subgroup O(aM.) is generated by
& (aM,) and the isometries O(¢) with € = 1 mod a.

Proof. The isometries @(¢) are defined in [2]. Let @ e O(aM,);
changing @ by the given isometries, we will reduce it to the identity
mapping. Assume for some m < n that o(y;) =y;, 1 <j=<m—1,
(consider e O(V)). Let

<P(u+ym):8u+,80+ym+;aixi.

Since @(y;) = ¥;, it follows that a; =0 for1<j<m —1. For j=
m,  + Y, € M and hence a;x;cap*iM,;. Thus a;eap™i, so that
a;x;€aM, m < j < n, and hence s = D\, ax, is in aM,. Now let

v = B, —x,)Ew, (1 — &)x,)E(v, e 's)pE(u, %,) -

If + is generated by the given isometries, so is @ (since ¢ — l¢
ap~*m), Since now (y;) = y; for 1 < j < m, the proof is concluded
by induction.

REMARK 3.2. The assumption a & 4p in the theorem is used to
ensure ap¥ = p (in particular ¢ is now a unit). When 40 < a, more
care is needed (see [3, Tables I, II]).

COROLLARY 3.3. O(4alM,)* < & (aM,) when a < p.

Proof. We need only show &(¢)e &(aM,) when ¢ = 1mod 4a.
By Hensel’s lemma ¢ = 7* with 7 = 1moda. Now @(7) is in & (aM,)
by [2, Proposition 1.2].

COROLLARY 3.4. O(alM,) = & (aM,) when p is nondyadic.

Proof. For nondyadic p, M, = M = M* = M,. Clearly O(oM) =
# by the definition of O(aM). If a < p, then ¢ =1moda and by
Hensel’s lemma ¢ = 7* with 7 = 1mod a. Again, @(¢) is in & (alM).

For dyadic p, under the hypothesis of Theorem 3.1, O(aM,)*/& (a M)
is an abelian group with exponent dividing 2. We have indicated
in [3, VI] how to find the cardinality of this quotient group (when
2 is unramified). For nondyadic p the group & (aM)/O(aM) has
either 1 or 2 elements, depending on whether —I is in &. For
dyadic p some comments on the group are made in [3, VII]. The
quotient group O(aM,)/O(aM.)* will now be determined explicitly in
two special cases.

EXAMPLE 8.5. Let M = H | N 1 ow where g(N)So. Let & =
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[@ + ord 2)/2] so that
M,=HINLYw and M*=H L N1ptw.
The Z-invariant dual lattices are
M,=H1 N1p*w and M '=H | N 1 pw
where —h < k < h. We show, for a & 2p*¥+'+* that
O(aM;) = O(aM,)* .

Let e O(aM,). Then @(w) = ew + s where secap™(H L N). For all
te H L N, since @(t) = t mod alM,, it follows that B(s, ¢) is in ap™ and
hence seap™(H L N). Now q(w) = q(@(w)) gives

¢ = 1mod a?p™2 .

Consequently, @(w) = wmod ap~™ M, and @ € O(aM,) .

ExAMPLE 8.6. Let M = H L N L (ow + 0z) where ¢(N) S o and
ow + 0z = (A, 0)>. Let h = [(1 + ord 2)/2] so that

M,=H1N1@pw-+o2) and M*=H LN L (ow+ p ).
Fix 0 <4, 5 £ h; then

M;=H1N_1@®w+pi) and M'=H 1 NLPw+p?)

are a pair of Z-invariant lattices (but not all are of this form). If
a & 4p,

o/ptti if i+7=h

M, =
O(aM,)[O(aM.)* = {O/pzh—-i—i if i+4=h.

We omit the computational details of the proof except to mention
that representatives of the various cosets can be obtained from the
isometry defined by

vi(w) = & w + é(e — ez, ¥r(2) = ez

by suitably choosing the unit .
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