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ON RINGS ON GROUPS
J. D. REID

The class of faithful (fully faithful) abelian groups is
introduced as a generalization of the semi-simple (strongly
semi-simple) groups recently discussed by R. A. Beaumont
and D. A. Lawver. A group is faithful if it admits some
associative ring structure with trivial left annihilator. Fully
faithful groups are the nonnil groups such that every non-
trivial associative ring structure has trivial left annihilator.
Several of the results of Beaumont and Lawver are generalized
and it is shown that fully faithful groups arise naturally in
classifying strongly indecomposable torsion free groups
according to the ring structures they support.

Several authors have considered the question of what sorts of
ring structures a given additive abelian group will support. The
comments which follow were inspired by a recent paper along these
lines of Beaumont and Lawver [3]. Our aim is to obtain the results
of [3] in as self-contained a way as possible. We do this by focusing
on the relation between a group and its endomorphism ring and, as
it turns out, we can base our whole discussion—almost—on certain
general facts and ideas taken from [5]. Aside from the fact that
we obtain in one instance (Theorem 1) a more general result, with
a shorter proof, than in [3], and in another instance (Theorem 5)
more information than in [3], we hope that the adoption of a single
point view provides better insight into what is involved. We also
include a few results not found in [3]. In the last few theorems
our resolve crumbles somewhat and we admit one additional piece of
evidence—the Beaumont-Pierce analogue of the Wedderburn Principal
Theorem (cf. [1]).

Finally, we would like to thank the authors of [3] for a preprint
of their paper.

If R is a ring with additive group G we have available the regular
representation of R—i.e., the map @ of R into the endomorphism ring
E = E(G) of G such that, for z, ye R, (x)y = xy. This map @ is
a ring homomorphism of R into E, but we may describe it in other
terms. The associative law gives

(1) P(p)y) = P@)p(y) «,yelG.

This equation carries with it the information that (@) is closed under
the multiplication in E. Conversely given ® € Hom, (G, E) satisfying
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(1), we may define x-y = @(x)y for z, y € G and obtain an associative
ring with additive group G and left regular representation . Thus
motivated, we make the

DEFINITION. A ring on the abelian group G is an element
@€ Hom, (G, E) such that o(o(x)y) = @(@)P(y) for all z, yeG.

Given any subring A of E = E(G), an element @ € Hom, (G, 4)
is always a ring on G. Conversely, if @ is a ring on G then #(G)
is a subring of F and @ € Hom,q (G, 2(G)).

It is easy to show that two rings @, ¢’ on G give isomorphic
ring structures if and only if @'(x) = 8~'¢(Bx)B, € G holds for some
unit 8¢ E. This, and most of the above, has been observed in
Fuchs [4].

NOTATION. Write (G, @) for the associative ring given by the
ring @ on G.

COROLLARY 0. If the left amnihilator of G in (G, ¥) is trivial,
then @ is 1 — 1.

Proof. K = ker @ = left annihilator of G in (G, 9).

Special cases. (i) (G, ®#) has no nilpotent ideals = is 1 — 1.
(Proof. K®*=0.) '

(i) (G, ®) semi-simple =@ is 1 — 1. (Proof. Radical 2 all nil-
potent ideals.)

This suggests our basic distinction.

DEFINITION. An abelian group is faithful if there is some ring
® on G with ker = 0. An abelian group G is fully faithful if G is
nonnil (i.e., G admits some nonzero associative ring structure) and
every ring @ on G has kero = 0.

Beaumont and Lawver call a group G semi-simple (strongly semi-
simple) if G has some semi-simple ring structure (respectively if G
is nonnil and every nonzero ring on G is semi-simple). Clearly,
faithful groups are nonnil, semi-simple groups are faithful and
strongly semi-simple groups are fully faithful. The following theorem
(essentially) generalizes Theorem 4.2 of [3]. But first we need a

LEMMA. Let R be a ring with a trivial left anwihilator:
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(R)={aeR|aR=0}=0.
Suppose A and B are subsets of R such that
R=A+B={ae+blacd, beB},
A’ ={aa'|a, '€ A} =0 and B> = {bb"|b,b'e B} =0.
Then R = 0.

Proof. Our hypotheses yield A =1(4), B&I(B), and I(A) N UB)<
I(R) =0. Since R = A + B we now have R = [(A) @ U(B). Clearly
now, l(A) = A and I(B) = B. Since l(A) is a left ideal, A is a left
ideal. But then [(A4) is a 2-sided ideal, so A is too. Similarly B is
a 2-sided ideal. We now have R=A@B, A’=B*=0, A and B
2-sided ideals of R, so R*=0. Thus R < I(R) = 0 as required.

THEOREM 1. A fully faithful group is indecomposable.

Proof. Let G be fully faithful and let @ be a nonzero ring on
G. Suppose G = AP B with projections a:G— A and =1 — a.
By the lemma, we cannot have both 4> =0 and B* =0, without
G = 0 in which case we agree that G is indecomposable. Thus either
both A and B are subrings of G with one, say A, satisfying A* == 0;
or one of A, B, say A4, is not a subring of G.

In the former case (i.e., @(a)a’e A for all a, a’e A), for each
ae A, ar(a)a = @(a)a holds in E. TUsing this it follows that the
definition

v(x) = plav)a

yields 2 nonzero ring on G with B < ker +.

In the latter case (and here we follow Beaumont-Lawver), since
p(a)a'e A for some pair a, a’e A, the map v: G — E given by

v(x) = Bp(ar)a

is nonzerc and satisfies V(2)G S B, ¥(x)B = 0 for all xeG. Thus
Y(P@)y) = 0 = r(x)v(y) for all x, ye G so that (1) holds for .

Thus in any case a nontrivial decomposition of G leads to a
nonnil nonfaithful ring on &, proving the theorem.

COROLLARY 1.1. Awn abelian group 1is torsion and fully faithful
if and only if G = Z(p) for some prime p. Fully faithful groups
cannot be mixed.
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Proof. By the above, a torsion fully faithful group G has the
form Z(p*) for some k, 1 <k < . If 1 <k < oo, the obvious ring
on Z(p*) can be modified to x-y = (px)y, giving a ring on Z(p*) with
nontrivial left annihilator; if k& = -, Hom (Z(p~), E) = 0. Hence
indeed G = Z(p). The converse is trivial. The last statement comes
from the well known fact that there are no indecomposable mixed
groups.

CoroLLARY 1.2. (cf. [3], Theorems 2.1, 2.2, Corollary 2.3). An
abelian group G is torsion and strongly semi-simple if and only if
G = Z(p) for some prime p. Every mixed group admits a ring struc-
ture with nonzero nilpotent ideals.

Proof. This is essentially a special case of Corollary 1.1.

Two Quasi-Remarks. Beaumont and Lawver prove the theorem
above for torsion-free strongly semi-simple groups, but obtain strong
indecomposability as a conclusion. A torsion free group is quasi-
decomposable (the negation of strongly indecomposable) if Q ® E
contains an idempotent ¢, in which case mec E for some nonzero
integer m. The above proof goes through using me in place of a.

Secondly, if G is torsion free and H is a subgroup such that
mG & HZ G for some integer m = 0 (i.e., H =G), and if @ is a ring
on H, then m®*p is a ring on G. It is clear from this that full
faithfulness is a quasi-isomorphism invariant.

Using one or the other of the above remarks we get

THEOREM 2. ([3]) If G is a torsion free fully faithful abelian
group then G s strongly indecomposable.

We can get a weak converse to this result as follows. For a
strongly indecomposable torsion free group of finite rank each element
of Q® E is either nilpotent or a unit; and the radical, N, of Q Q E
is the set of nilpotent elements (cf. [5], Theorem 4.2, Corollary 4.3).
Therefore, if R is a nonnilpotent subring of E, then R Z N so for
some pe R, p7'e QR E. Then mG & oG & G with meZ. Apply ¢
to obtain mR < pR S R, so mp = po for some ¢ € R. Since o is monic,
m = ¢. Thus R contains a nonzero integer m. This remark is the
basis of the proof of

THEOREM 3. If G is torsiomn free of finite rank and strongly
indecomposable then for every ring ® on G, either ¢ is faithful or
o(G) 1s nilpotent.

Proof. Suppose @ is a ring on G and R = ®(G) is not nilpotent.
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As above R contains a nonzero integer m, and we denote by K the
kernel of @. Choose xe€ G such that @(x) = m and define a map
VR—G by v(0) = oz, pe R. Then p(v(0)) = P(0z) = pP(3) = mp.
This shows that v is 1 — 1 and that v(RB) N K = 0 so that K + v(R) =
EDvR)=G. Now for geG, o(vp(9)) = P(P(9)x) = P(9)p(z) =
mp(g) = P(myg) so that v¢(g9) — mge K. Thus mg S 7 (R)PD K S G so
G = K®v(R). Since Y(R) + 0 we must have K = 0 as required.

We note that (@) is nilpotent if and only if the ring (G, ) is
nilpotent; perhaps this latter is a more natural hypothesis. We note
also that the two alternative conclusions of the theorem can hold
simultaneously for no group, for if R = @(G) is nilpotent, and = is
least such that R" = 0, choose x¢ G such that @(x)e R, ¢(x) = 0.
Then @(x)R = 0 so for all ye G,

0 = 2@)P(y) = P(P(r)y) .

If ¢ were 1 — 1, we would have @(x)y = 0 for all y € G; i.e., (x) =0,
contrary to the choice of .
The proof of the theorem above suggests that of the following.

THEOREM 4. Suppose @ is a ring on G such that (G, ) has an
iwdentity. Then @ s faithful and o(G) is a direct summand of K
(as abelian groups).

Proof. Let x be the identity of (G, #). Then it is well known
(and obvious) that the left regular representation of (G, ), namely
@, is 1 — 1. Moreover, @(x) =1c BE. Put R = 9(G) and define a
Z-map y: E— R by v(e) = @(ex). Viewing E as left R-module, equa-
tion (1) states that ye Hom, (E, R), and clearly v is an epimorphism.
Since R is projective over itself, our conclusion follows.

In [5] we called a torsion free group irreducible provided it had
no pure fully invariant subgroups (except 0 and itself). Let us call
such a group G strongly irreducible provided G = H whenever H
is a nonzero fully invariant subgroup of G. Then we can state the
following theorem, which contains part of the main result of [3].

THEOREM 5. Let G be a strongly indecomposable torsion free
abelian group of finite rank. Then the following are equivalent:

(i) G is semi-simple.

(ii) G 1is strongly semi-simple.

(iii) G s quast-isomorphic to the integrally closed subring J,
of an algebraic number field K determined by an infinite (or empty)
set T of primes in K, and [K: @] = rank G.



234 J. D. REID

(When these conditions hold, Q Q E = K, E = J. and the class of
rings (G, #) on G coincides with the quasi-equality class determined
by J. in K. Moreover, G is strongly irreducible.)

Proof. First let G be semi-simple and let ¢ be a semi-simple
ring on G, with R = ¢(G). We know then (Corollary 0) that o is
faithful. By the remarks preceding Theorem 3 and the fact that R
is semi-simple, so has no nilpotent ideals, R consists of quasi-auto-
morphisms (and 0) and Q@ Q R is a division algebra. Since ¢ is 1 —1
and R is a full subring of Q ® R, it follows from [5], Theorem 5.4(i),
that G is irreducible and from [5], Theorem 5.5(iii), that QQR=QR E
so @ ® E is a division algebra. Moreover, the latter reference gives
[QR E: Q] =rankG. Now G being strongly indecomposable, the
same is true of R, hence by [5], Corollary 5.7, Q ® E, and with it
E, is commutative. Thus K = Q ® E is an algebraic number field
with [K: Q] = rank G.

Now let H be a nonzero subgroup of G such that RH < H. Then
equation (1) implies that @(H) is an ideal of R, nonzero, and hence
contains some integer m(o € @(H), o # 0 imply mp~" € R for some non-
zero m s0 mp~'p = me @(H)). Thus ¢(H) = R, so H=G. This has
two consequences. In the first place G is strongly irreducible since
if H is fully invariant then certainly RH & H. Secondly, if z¢@G,
x# 0 then Rx = G. Combining these two remarks we obtain Ex =
G = Rx. Clearly now R = E.

The relation R = E or, say, mE < R, implies that E is semi-
simple since mFE, as an ideal of both R and E satisfies (rad E) N mE =
rad (mE) = (rad R) N mE = 0, R being semi-simple. Clearly now any
ring in the quasi-equality class determined by E is semi-simple. In
particular the integral closure, J,, of K is semi-simple, (that E = J,
is not hard to see; cf. also [2]), so 7 is infinite (or empty—but then
J. = K so F = K and G is not strongly indecomposable except in the
trivial case G = @, which we now ignore). We now have (iii).

Now let ¢’ be any ring on G, ¢ %= 0. By Theorem 3, ¢’ is
faithful since E contains no nilpotent elements. Thus R’ = @'(G) is
a full subring of E. The map @(x)— @'(x), xe G is clearly a well
defined additive map of R onto R’ and, viewing R, R’ as modules
over RN R’, this map is a module map. Since RN R’ is full in K,
this map extends to a K-linear map of K onto K, hence is given by
multiplication by some element of K. Thus R’ = aR for some « € K.
Since R and R’ are full in K there is a nonzero integer n such that
na e RNR. Then R 2na'R =na(«R)=nR. Similarly nR'S R
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so R = R'. Thus too R’ = E, so is semi-simple and (ii) holds. We
have evidently established the last statement of the theorem as well.

We have now shown that (i) implies all other statements in the
theorem. Clearly (ii) implies (i) as does (iii) in view of the fact that
the J, in (iii) is semi-simple and semi-simplicity is a quasi-isomorphism
invariant. (This follows from the second quasi-remark and the
argument given above showing that R semi-simple and R = E implies
E semi-simple. Beaumont-Lawver give an explicit proof as well.)

Our discussion so far has been based solely on fairly general
facts drawn from [5]. Using the Beaumont-Pierce analogue of the
Wedderburn Principal Theorem [1] we can obtain our final results.
The Beaumont-Pierce Theorem states that any torsion free ring is
quasi-equal to the group direct sum of its maximal nilpotent ideal
N and a subring S.

In the following theorem we give an alternative proof of the
part of the main results of [3] not included in Theorem 5. A group
is anti-radical if (G, ¢) is never a radical ring for all rings @ +# 0
on G.

THEOREM 6. A strongly indecomposable torsiomn free group of
finite rank is semi-simple if and only if it is monnil and anti-
radical.

Proof. A semi-simple group is trivially nonnil and anti-radical.
Conversely let @ be a ring on G such that (G, #) is not a radical
ring. Then ®(G) is not nilpotent so by Theorem 3, @ is faithful
and G = ®(G) = R as groups. By the Beaumont-Pierce Theorem,
strong indecomposability of G and the fact that R is not nilpotent,
the maximal nilpotent ideal of R is zero. By arguments used before
(e.g. Theorem 3, or [5] Theorem 4.2, Corollary 4.3) R consists of
quasi-automorphisms of G. By other arguments used before (Theorem
5) any nonzero ideal of R is quasi-equal to R. If rad R # 0 then
mR S rad RS R for some integer m = 0. This implies as in the
proof of Theorem 5 that rad mR = mR. But then me is a nonzero
radical ring on G.

As another application of the Beaumont-Pierce Theorem we
strengthen Theorem 3 in

THEOREM 7. Let G be a strongly indecomposable faithful group
of finite rank. Then G is strongly irreducible, fully faithful and its
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endomorphism ring E is a subring of an algebraic number field whose
degree ts the rank of G. Moreover, the class of rings on G coincides
with the quasi-equality class of K.

Proof. Let @ be a faithful ring on G and put R = #(G). Then
R is strongly indecomposable as a group and by the remark following
Theorem 3, R is not nilpotent so by the Beaumont-Pierce Theorem
the maximal nilpotent ideal of R is zero. By familiar arguments
we conclude that R consists of quasi-automorphisms of G and that
therefore every nonzero ideal (left, right or two-sided) of R.is quasi-
equal to R. Clearly R is strongly irreducible as a group, so G is
too. But then ([5], Theorem 5.5(iii)) Q@ X E is a division algebra with
[@ ® E: Q] = rank G, and in fact ([5], Corollary 5.7) commutative. As
in the proof of Theorem 5, R = E. Finally, since E has no nilpotent
elements, Theorem 3 implies that G is fully faithful.

COROLLARY 7.1. Let G be a strongly indecomposable group of
finite rank. Then exactly one of the following hold:

(1) G is fully faithful.

(ii) G 1s mal.

(iii) G is nonnil and for every ring @ on G, (G, ) is nilpotent.
Moreover, the first alternative holds if and only if G s strongly
irreductble. If G is irreducible but not strongly irreducible, then G
18 wil.

Proof. Theorems 3 and 7 show that exactly one of the three
alternatives hold; and that if (i) holds then G is strongly irreducible.
Conversely if G is strongly indecomposable and strongly irreducible
then @ ® E is a division algebra of dimension equal to the rank of
G. If xe@G, 2+ 0 then the map e—cex, cc E, is a monomorphism of
E into G whose image is fully invariant, hence quasi-equal to G. Thus
G is quasi-isomorphic to K, and E is patently faithful, so G is faithful
too. Finally, if G is irreducible but not strongly irreducible, then
(iii) cannot hold as @ ® E is a division algebra and (i) cannot hold,
so (ii) alone remains.

These last results make it convenient for us to exhibit a class
of fully faithful groups which are not strongly semi-simple, thus
indicating that various of our results are indeed generalizations of
some of those in [3]. We start with an algebraic number field F' and
choose a rational prime p such that F is contained in the field of
p-adic numbers. The condition for this is that p be unramified and
of degree 1 in F, and it is well known that such primes p exist.
Let P be the ring of p-adic integers and put R = FNP. Then R



ON RINGS ON GROUPS 237

is not semi-simple and, as an additive group, R is pure in P so is
strongly indecomposable. By Corollary 7.1 the additive group of R
is fully faithful.

COROLLARY 7.2 [6]. If G is strongly indecomposable and admits
one nilpotent monzero multiplication, then G is radical (i.e., every
ring on G is nilpotent).

It is also shown in [6] that a torsion free group of finite rank
is radical if and only if @ ® E(A) is never a field, for A a quasi-
summand of G. In our case (G strongly indecomposable) this simply
means that Q ¥ E is not a field. This result too follows from
Corollary 7.1. In closing we note that Fuchs [4, p. 311] has asked
for a survey of the rings on strongly indecomposable torsion free
groups of finite rank. Our results at least give such a survey in
case (i) above.
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