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SPECTRA, TENSOR PRODUCTS, AND LINEAR
OPERATOR EQUATIONS

M. R. EMBRY AND M. ROSENBLUM

Suppose #i and #2 are complex Banach spaces with uθ1 ,
un in «^(36i), v 6 =^(#2), and suppose (x) is a uniform crossnorm.
The spectra of the operators Σ?=o % ® v* on 36X (g) #2 and R: x ->
2?=o UjXvJ, x e ̂ (X2,36i), are studied in the context of a general
theory. Explicit representations are set down for the resolv-
ents of these and more general operators.

()• Introduction* A classical result of Stephanos [9, p. 83] can
be phrased as follows:

Suppose u and v are complex n x n matrices and p0, , pm are
complex polynomials. Let (x) denote tensor product, and σ spectrum.
Then

( 1) tf(Σ PJ(U) (X) vή = U {*(Σ PAΦ')- *

In 1966 Datuasvili [3] gave the following generalization of Ste-
phanos' result. Let u0, - *,um and v be complex n x n matrices.
Then

( 2 )

Stephanos' theorem can be interpreted as a result on linear operator
equations. It implies that the operator T on n x n matrices defined
by Tx = ΣΓ=o Pj(u)xvj has

σ{T) = U {^(ΣPi(^y): z e σ(v)} .

Similarly Datuasvili's result yields that the operator R defined by
Rx = Σ?=o Ujxv* has

(4) σ(R) =

Lumer and Rosenblum [8] proved that (3) holds if u, v e
where 36 is a complex Banach space and T is considered as an operator
on £f($) to Sf(3E). R. E. Harte [6] has recently shown that (4)
holds if u0, , um and v are in =Sf (£>)> where § is a complex Hubert
space.

Brown and Pearcy [1] proved that σ{u (x) v) = σ(u)σ(v) in case
u, ve^f(ίg) and u®v acts on the Hubert space © ® §. This was
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generalized by Schechter [12] and Dash and Schechter [2]. It was
further generalized by Harte in [6].

In this paper we shall set down explicit representations for the
resolvent of each of

(i) Σ , % % ® ^ ,
where uθ9 , une J5f ($,,), v e J2^(X2), and (x) is any uniform crossnorm,
and

(ii) R: x -> Σi=o Ujxv\ x e JS^(X2, ΪJ ,
where uQ, - , une £?(%}) and ve^f(H2). For a survey of explicit
solutions of linear matrix equations, see [7].

The theory for the representations is presented in §1. In §2
we prove a spectral mapping theorem that subsumes conclusions such
as those of (2) and (4) in one unified theory. In §3 we give some
applications.

The notation and terminology used in the paper are as follows.
21 will denote a complex Banach algebra with identity 1 or I. If
ae%, σ{a\%) is the spectrum of α; that is, σ(a\%) is the set of com-
plex numbers z for which z — a is singular in 21. In case there is
no ambiguity involved we shall use the simpler notation σ(a) for the
spectrum of α.

If X and Y are Banach spaces, -Sf (X, 2)) is the space of all con-
tinuous linear transformations from X into 2), and ^f(£) = =Ŝ (X, X)
If Ω is an index set we sometimes use \J {aλ\ XeΩ} to mean {JxeΩ^x-

!• Integral representation of inverses* Throughout this section
{^j}]=o and {vj}f=1 are subsets of 21 that satisfy the following commu-
tativity relations: vάvk = vkv3 and v3 uτ = utv3' for j , k = 1, , m and
i = 0, , n. It should be noted that we do not require the u5 to
pairwise commute. p0, — , pn shall be polynomials in m variables.

LEMMA 1.1. If

(*i, ' , «»): Σ tyPifa, , sw) ^ invertibleV ,

3=0 JΣ
3=0

Σ?=o % ^ ( ^ • v ) is ίnvertΣ?o %^i(^i, •••, v») is ίnvertible and its inverse is

where Ck is the boundary of a Cauchy domain Dk (see Taylor [13])
that contains σ(vk) for k — 1, , m α?wZ sucA ίfeαί Σi=o%Pi(^i, •>
«w) is invertible for (zlf , zm) in Dι x x Z>m.

Proof. The proof is by induction on m.
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Assume m = 1. We shall show by direct computation that

Σ UjPsiyS) = —— I ( Σ u&faS) («i - v^-'dz, .
?=o / 2π% JcΛi^o /

(Σ UkVu{vS)^τ \ (Σ
( 6 )

= -^T \ ( Σ ί**[P*(ί>i)"3)*(«i)

\ Σ
Since ^ — z1 and Σ?=o %ί>i(«i) commute, the penultimate term has
an analytic integrand, and thus equals the zero element. The last
term reduces to

2π%

Thus the right term of (6) is a right inverse of Σi=o^ Pi( î) A
similar computation shows that it is also a left inverse, which com-
pletes the proof for the case m = 1.

Assume that the lemma is true when m = k, and that tf^) x
• x Φk+d S {fa, , zk±1): Σ]=o UsPAzi, , ZA+I) is invertible}.

Then for each zk+1 e Dk+1 the induction hypothesis yields

( 7 )

" ' ' \ ( Σ % ί > ί ( Z i , , « A + I ) ) Π ( s * - VicY'dz, ••• dzk

However, (Σ?=o UόPAvi, * #, vfc, 2)) x is analytic for 2 in a neighborhood
of σ(vk+1). Thus, if we multiply (7) by l/2πi(zk+1 — vk+1)~\ integrate
about Ck+1, and apply (6), we deduce that the lemma is true for
m = k + 1.

We cite one special case of Lemma 1.1.

COROLLARY 1.2. Suppose {%}J=0 is a subset of the Banach algebra
SI and v in % commutes with {%}y=0. If

: 2 U3ZJ i s invertible \ ,
i=o j

invertible and

where C is the boundary of a Cauchy domain D that contains σ(v)
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and such that Σy=o WjZ3' is invertίble for each z in D.

Lemma 1.1 enables us to infer the following general result about
spectral inclusion as well as to write an explicit representation for
the inverse of Σi=o MjPj(vlf , vm) — λ for certain complex numbers λ.

THEOREM 1.3.

( 8 ) σ ( ± u i P i ( v l t • • • , < > ) S Λ ,

where

Δ =f (J |α ( Σ ^Py(slf , θ ) : zk e σ{vk\ k = 1, , mj .

If λ g Δ, then

Σ
i=o

= (^y \ . • • t (Σ
V 2πι I Jci Jcm\j=

x Π is* - VkY1dzι •-• dzm,

where CIΰ is the boundary of a Cauchy domain Dk that contains
G(Vk) for k — 1, •••, m α ^ ώ such that ]ΓJ= O usps{zu •••, 2m) — λ i s m -

vertίble for (zlf , ^ m ) 6 S x x x S m .

Proof. If λ g z/, then it is immediate that ^(^0 x x ί7(^m) S
{fe, ••*, «»): Σi=o UjPjfa, •••, jsm) — λ is invertible}. Define ^w + 1 = —λ
and p w + 1 = 1. Lemma 1.1 is now applicable to Σ?=ί ^iPiO^ •••, v«).
Thus the theorem follows from that lemma.

Simple finite dimensional examples show that the spectral con-
tainment conclusion of (8) need not hold, if the vs do not commute
with {uk}. Consider

1 0\ (0 1\ /0 0

o o> * = lo oj and Vί = [i o
In this case σ(u0 + tt^J = {0, 2}, but (J {σ(u0 + ^2): ^ e φ j } = {0, 1}.

Even when the required commutativity relations hold one cannot
in general hope for equality in (8). For example, consider commuting
elements u and v of a Banach algebra, set vγ = v2 — v. Then σ(uv1 —
uv2) = {0}, but U {σ(uzλ — uz2): zl9 z2eσ(v)} is in general not {0}.

2 A spectral mapping theorem* In §1 we showed that under
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certain commutativity conditions (8) holds, but that in general
equality does not hold. In this section we find conditions sufficient
to imply equality in (8). For a different attack, see Harte [5], [6].

DEFINITION 2.1. Let % be a complex Banach algebra with closed
subalgebras 2t0, %, •••, %Jm ^ 1) such that the identity 1 in SX is
also in Sly, j = 0, , m. Then 2t0, , 2tm are independent algebras
in SC if the following conditions hold for j , k — 0, , m:

( i ) If a e Si,-, b e 2tfc, j Φ k, then ab = ba;
(ii) There exists a real number M such that whenever

aά e 3Xif j = 0, , m, then

Π I K H ^ MWdoCL, ••• α w | | ;
i=o

(iii) If aάe%5, then fffo ISt,-) - σ{aό\%).

LEMMA 2.2. Lei SC0, •••, 3tm 6e independent algebras in SI
}?=o S 2Co αwd f̂c € 2tfc / o r k = 1, , m. Lei eαc/z, o/ p^, i = 0, ,
be a polynomial in m variables. If

0 e U jcr(Σ %^ fe, , «„)): zk e σ(vk), k = 1, , ml,

ίλere ea?isί λfc e σ(vΛ), A; = 1, , m such that Σ* = o u>sPs(\, » λm)
is singular in 21 α^rf either

( i) vk — Xk is the limit of invertible elements of 3I& /or fc = 1,
• , m, or

(ϋ) Σ?=o ̂ iί>i(λ!, , λm) is the limit of invertible elements o/2t0.

Proof. Select a point (ζ1? , ζw) in ^(^i) x x σ(vm) for which
Σi=o%Pi(Ci, •••, ζ») is singular. The select components Wk of σ(i;fc)
containing ζfc for /b = 1, , m, and set W = W1 x x Wm. Clearly
W is a connected set in complex m-space. Let K be the set of all
points (zlf •••,£») in "FT for which Σ?=o W/PiOsi, , ««) is invertible in
Sto Note that i£ is open in W and iΓ ^ W. Thus since TF is con-
nected, either K is empty or there exists a point (Xlf •••, λw) in

Case (a). If if is empty, then Σi=o%P;(Zi, , 2«) is singular for
all (zl9 , zm) in T7. In particular it is singular for (zlf •••,»«) chosen
so that f̂c is in the boundary of σ(vk) = σ(vk\Wik), k — 1, , m. Thus,
(i) follows. See Rickart ([10], p. 22).

Case (b). Assume (λx, , λm) e K — K. This means that
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3=0

is singular, but is the limit of invertible elements of 2C0. Thus (ii)
holds.

We shall use the following terminology in the rems Inder of this
section. An element u of %3 is an §£,- generalized divisor of zero if
there exists a sequence {xd} of unit vectors in %• such that lim.,-^ ux3- =
0 or l i m , ^ χ3 v, — 0. In the first case we say that {#,-} right zero
divides u and in the second {x3-} left zero divides u.

THEOREM 2.3. Assume that 2to, StL, , St» are independent
algebras in §1 and that each singular element of Sly is an %3-
generalized divisor of zero. If {%}-U S %, vke %k, k = 1, , m,
and each of pl9 , pm is a polynomial, then

(10)

- U {<Γ(Σ %2>/(Si, , θ ) : «*G σ(^X A; = 1, f mj .

Proo/. Theorem 1.3 gives the containment £ in (10). To prove
the reverse containment it is sufficient to assume that 0 e σ(yk), k =
1, , m, Ps(0, , 0) = 0 if j ^ 1, and 0 e σ(u0), and deduce that R =
Έt7=oUjPj(vlf --,vm) is not invertible. By hypothesis we know that
there exist left or right zero-dividing sequences {^ 0)} £ 2C0 of u0 and
{Vjk)} £5 %k of vk, k = 1, , m. By Lemma 2.2 and the nature of
limits of invertible operators (Rickart [10], p. 22) we may assume
that either yf left divides uQ or {yf]) right divides vk for k = 1, ,
m. Thus the following two cases exhaust all the possibilities.

Case (a). {yf>} left divides u0, {yf]} left divides vk for k = 1, ,
r, and ^ &) right divides ^fc for fc = r + 1, , m.

Assume that i2 is invertible and set gd = R~xy{[+1) yf\ Then
if fc = r + 1, , m, R{ykgs) = vkRgj - ^fc?/ir+1) vT ^ ° a s 0 -^ °°
Thus since i? is invertible lim^ -,̂  v*^ = 0 for Λ = r + 1, , m. Then

= yf y{P\ uQ + Σ %2>iθi, , vm) \g3- • 0 as j

However, by condition (ii) of Definition 2.1,

Π l l t f Ί I | Γ
fc=o

which is a contradiction, so R cannot be invertible.
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For the remaining case u0 does not have a left zero dividing
sequence.

Case (b). {yf]) right divides vk for k = 1, , m and {yf]} right
divides u0.

In this case

R(vT i/ΓO = ^ 0) vT + Σ ^ 0 ) ί > ; K •, v*)vψ i/Γ

> 0 a s j > co .

This shows that R is not invertible since, as shown in the proof of
case (a), yψ yljm) is bounded away from 0.

We note that the "uniform crossnorm" condition (ii) of Definition 2.1
cannot be omitted in the hypotheses of Theorem 2.3. For, consider
a Hubert space φi and let § = & ® φL. Let 2C0 and & be defined by

2 1 0 = (Λ τ ) : A e ^ ( £ i ) > α c o m p l e x ,

c o m p l e x } '
and let 51 = -Sf(§). Clearly £>, φ0> and ϊd satisfy all of the conditions

of Definition 2.1 except possibly (ii). If we let uQ — ί Q Λ and vL =

A, E e ^ ( ^ ) , then σ(u0^) = {0}, but \J {σ(u<fi): z
5) U {0}. Thus in general σ(u0Vj) Φ σ{n^σ{y^, and for this

simple example the conclusion of Theorem 2.3 does not hold.

3 Applications* Our first two applications of Theorems 1.3
and 2.3 generalize results of Rosenblum [11, Theorem 3.1] and Lumer
and Rosenblum [8, Theorem 10].

THEOREM 3.1. Suppose that {%}?=0 ϋ 2ί and suppose {vk}ΐ^ is a
commutative subset of St. Let each of pjy j = 0, , n, be a polyno-
mial in m variables. Define R: 2t —> 21 by Rx — Σi=o UjXPj(vu , ^ m ) .

S //, where

if X g J, x e A,

(R - xy'x =

x x Π («* - v ^ - ' d z , --- d z m
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where the Ck are chosen as in Theorem 1.3.

Proof. Let S3 =

aso = {uL: ue$t and uL: x >ux, xe%}

SBj. = {vR: veWi and vR: x > xv, xe%} .

By hypothesis $8L is commutative, and clearly each element of 33O

commutes with each element of SŜ  Thus we may apply Theorem
1.3 to Σ ? = o ^ « •••, vl). Since σ(R) = σ(Σi=oUJPi« •••, O)
and o{vk) = σ(vR), we have the desired conclusions.

A result analogous to that in Theorem 3.1 can be obtained if
one fixes complex Banach spaces Xo and 3£x and defines R on £f(£l9 Xo)
by Rx = Σi=o%^ft(^i, , Vm), where {%}J=0 is a subset of Jzf(%0) and
{i>*}£=i is a commutative subset of ^fi^). Indeed, if we consider
the case where m = 1 we get a stronger result.

THEOREM 3.2. Let 3£0 and ΪL 6e complex Banach spacesf {%}J=0 S
and v e £f{&). Define R: £?{%,, ϊ 0 ) -> ̂ 3 ^ , Xo) 6»

(11) σ(R) =

αm£ if \$ β{R),

(12) (β - λ)-\τ - - ί - ( (Σ %^5* - λ V ' φ - ΐ Γcfe ,
27ΓΪ J(7\i=o /

where C is the boundary of a Cauchy domain D that contains σ(v)
and such that Σi=o UjZ3' is invertible for z in D.

Proof. Let SI - .Sf(J2f(3^, ϊ 0)),

Sto = {uL: u e ^f(ϊo) and %L: a? > m , α? e

and

Sto = {vB: v e £f(&) and vR: x > xv, x e

It is easily checked that conditions (i) and (iii) of Definition 2.1 are
satisfied by SI, SI0, and SIX. The following argument will show that
the "uniform crossnorm" condition (ii) is also satisfied and thus by
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Theorem 2,3

σ(R) = σ{± uf(vR)^ = \J | σ ( s *Φ3'): * e σ(v*)} .

This is the desired conclusion since σ(vR) — σ(v) and

Choose uni t vectors {αw} in Xo and {/9J in X? so t h a t | |wα Λ | |—*
| and | |v*/8n | | -* | |v ||. Then, upon se t t ing xn = < , &,>α:», we have

So), I N I - 1}

Consequently we have | |uL /yβ | | ^ | |wL | | | |vΛ | |, which proves that Theorem
2.3 is applicable.

(11) was proved by Harte ([6], Theorem 3.5) under the assump-
tion that ϊ 0 = SEi is a Hubert space.

Next we give an application of Theorem 2.3 similar to the one
above to obtain a generalization of a result of Brown and Pearcy [1],

THEOREM 3.3. Let φ be a complex Hubert space and let cP be
the class of compact operators u in £f($3) for which

I N I P = [tr{u*v)Plψ* < o o if l ^ p < c o

and ||%IU = \\u\\. Fix u0, , unf v in £?(§) and define R:
-Sf (cp), 1 ^ p ^ co by Rx = X;=o %^^5'. Then (11) &o£cZs α^ώ i/ λ g σ
so does (12).

Indication of proof. Let 2t — .^(cp) and proceed as in the proof
of Theorem 3.2.

The remaining applications deal with tensor products. The authors
were led to the formulation of Definition 2.1 and Theorem 2.3 through
efforts to unify these results and the preceding applications. In the
next theorem (13) can be deduced from Harte ([6], Theorem 2.3),
and (14) is new.

THEOREM 3.4. Let Xo, #i, •••, #™ be complex Banach spaces and
let 36 be the completion of 3£0 (x) \ (x) ® Xm with respect to some
uniform crossnorm. Let {%}J=0 g -Sf (XQ), vk e ^f(3ίk), k = 1, , m and
let each of p0} •• , pn be a polynomial in m variables.
Define
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vim) = J ® ••• ( x ) / ®

(13) = u i=o

Moreover, if λ 6

(14)

tυhere Cί9 •••, Cm is in Theorem 1.3.

Proof. L e t 9X = Sf{Έ) and

(Σ
cm\i=o

, then

dzm

&W = {I® ••

Each of Sl0, , 2tm is a closed subalgebra of a containing the identity
/ ® ® I' Since the crossnorm is uniform,

(|αo . . α m | | = | | α o | | | | α w | | for α. e ^ i - O , . . , m

and thus it is easily seen that SL0, , 2Xm are independent algebras
in SX. Each singular element of %- is an 3t, generalized zero divisor
(Rickart [10], p. 279). Then by Theorem 2.3

3=0

- U {*
k = 1, , mj .
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The result now follows since σ(v{k)\£f(X)) = σ(vk\£f(Xk)), k = 1,
m and σ(uw\n) = σ(u\%>) for any ^(0) in SX of the form

As in the proofs of the preceding applications the representation
formula (14) is a consequence of Theorem 1.3.

If in Theorem 3.4 we choose u0 — voe ^f(3c0) and % = 0 for j =
1, •••, n, we obtain Schechter's result [12, Theorem 2.1]:

zd e σ(vj I^f (Xy)), j = 1, , m} = p(σ(v0), σ(^), , (j(vm))

for any polynomial p of m + 1 variables. More specifically we have
the following result.

COROLLARY 3.5. Let 3̂ , , 36m satisfy the hypotheses of Theorem
3.4 απd Zβί ^ e *£f(£j), j — 1, , m.

^ ® (g) vw) - Π σ(vb

and if Xg σ(vι (x) (x) vm), then

- v m ) - ι d z x -•• d z m

where Cί9 , Cm is as w Theorem 1.3.

Proof. Let ϊ 0 be a one dimensional Hubert space and set % =
0, j ^ 1, Wo = 1, Po(zl9 -", zm) = z1 '" zm in Theorem 3.4.

Next we consider a complex Hubert space £ and let Hl{U™) be
the Hardy space of £?($£)-valued functions holomorphic in Um = U x
• x U (m factors), where U is the unit disk in the complex plane.

COROLLARY 3.6. Let n be a nonnegative integer, and assume
teii.—.jV 0 = ii> " '> 3m < °°} § -Ŝ (C£), where all but a finite numbers
of the\lt...,Sm are equal to 0. Define T: Hi(Um)->Hl{Um) by

T: f(zlf , zm) > Σ cilf...fim«ίi zimf(zl9 , zm) .

Then

σ(T) = \σ( Σ c i l , . . f i m ^.. .«
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Proof. Hl{Um) is the completion of © (g) H\U) <g) (x) £P(£7)
under the Hubert tensor product norm. If S is the unilateral shift
on H\U) defined by (Sf)(z) = zf(z), then one can view T as

The corollary now follows by applying (13) of Theorem^3.4 and noting
t h a t σ(S) = {z:\z\ ^ 1}.

Theorem 3.4 also leads to the following result:

COROLLARY 3.7. Let & be a complex Hilbert space, {%}J=0 S
and define V on Σ"«o Θ& δy

v u \~ Jv « „ Γ
U=o Ji=o

/ u0 uγ %w 0 0

0 uQ ut un 0

0 0 ^o Ui ^ w

\ : : .
σ(ι ) = U W B = o ^ : l«l ^ 1}.

Proof. "ΣiJLo ΘK is isomorphic to the Hilbert space E (g) H2( U)
under the isomorphism that sends {cy}JL0 into Σ"= o c3- (x) ̂ . If S is the
unilateral shift on H2( U), Sf(z) = zf(z) then V is mapped into

Σ % Θ S*J'.
3=0

Thus the corollary follows from Theorem 3.4. (14) can be used to
set down a formula of (v — λ)"1 if λ g σ^).
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