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A FIXED POINT THEOREM FOR FAMILIES
OF NONEXPANSIVE MAPPINGS

TECK-CHEONG LIM

In this paper it is proved that if K is a weakly compact
convex subset of a Banach space and if K has normal struc-
ture, then any family of commuting nonexpansive mappings
on K into itself admits a common fixed point.

Kirk [5] first proved that if K is a nonempty weakly compact
convex subset of a Banach space and if K has normal structure [3],
then every nonexpansive mapping T: K—+ K has a fixed point. Later,
Belluce and Kirk [1] extend this theorem by showing that any finite
family of commuting nonexpansive self-mappings of such a set K
always has a common fixed point. Their attempts to prove a com-
mon fixed point theorem for arbitrary families resulted in the need
for a strengthening of normal structure called complete normal
structure (see [2]). Since then the problem of whether their theo-
rem is true for arbitrary families under the normal structure setting
remained unsolved. In the present paper, we shall solve this prob-
lem by giving an affirmative answer. A technique used in the proof
is the notion of asymptotic center which was first considered by
Edelstein [4] to obtain a strong version of fixed point theorem in
uniformly convex Banach spaces.

Throughout this paper, we shall denote the diameter of a set
A of X by δ(A).

DEFINITION 1. Let {xa}a<r be a bounded net, ordered by ordinals

less than 7, in a convex set C of a Banach space X, where 7 is an

ordinal ^ 1. For every xeC and every ordinal β < 7, define

rβ(x) = suv{\\x-xa\\:a^j3}

r(x) = inf {rδ(x): δ < 7} = Πϊn || x — xa ||

and

r = inf {r(x): x e C} .

The set {x e C: r(x) = r) (the number r) will be called the asymptotic
center (asymptotic radius) of {xa}a<γ in C.

REMARK. Our main concern in this paper is the case where 7 =
y$δ for some δ ^ 0.

Some basic properties of r(x) and asymptotic center:
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1. For each xeC, {rβ(x)}β<r is a decreasing net with limit r(x).
2. r(x) — 0 if and only if xa —> x.
3. I r(x) — r(y)\ ^ || x — y || for every x, yeC. This follows from

(1) and the fact that | rβ(x) — rβ{y) | ^ || x — y || for every β < 7.
4. r(a ) is a continuous convex function on C. This follows from

(3), (1) and the fact that rβ(x) are convex functions on C for all
β<V.

5. {x 6 C: r(#) = r) is a closed convex subset of C. This follows
from (4).

6. If C is weakly compact convex, then {x e C: r(x) = r} is non-
empty. This follows from (4), the equality {x e C: r(x) = r} =
Π"=i {# € C: r(#) ^ r + 1/n} and that closed convex subsets of weakly
compact set are weakly compact.

DEFINITION 2. A convex subset C of a Banach space is said to
have normal structure [3] if every bounded convex subset D of C
with IDI > 1 contains a point x such that sup {\\x — y\\:yeD} < d(D).
A convex subset C of a Banach space is said to have y^-normal
structure, d ;> 0, if for every nonconstant bounded net {xa}a<χδ in C,
the asymptotic center of {xa}a<^δ in Co(α;α)α<^ is a proper subset of
Co (xa)a<xδ> in case that C has ^-normal structure for every 3 ^ 0,
we say that C has asymptotic normal structure.

In their original paper [3], Brodskii and Milman characterized
normal structure as follows: A convex subset of a Banach space
has normal structure if and only if it contains no diametral sequences.
(A diametral sequence is a nonconstant bounded sequence {â }~=1 such
that d(xn+1, Cofo, , #„))—* S({a;,J~=1).) The following lemma is a
simple variation of the above characterization.

LEMMA 1. A convex subset C of a Banach space has normal
structure if and only if it does not contain a sequence {xn} such that
for some c > 0, || xn — xm \\ <L c, || xn+1 — xn \\ ;> c — 1/n* for all n^l,
m ^ 1, where xn = 1/n Σ?=1 xt.

Proof. If C contains a bounded convex subset such that | D \ >
1 and sup {|| x — y ||: y e D} — δ(D) for every x e D, then it is easy to
choose, by induction, a nonconstant sequence {xn} £ D satisfying the
condition in the lemma with c = δ(D). On the other hand, assume
that {xn} S C is a sequence satisfying the condition in the lemma.
If x 6 Co (xu , xn), it is not difficult to show that x = XχXn + X2xi2 +
• + Xnxin for some i2, , in e {1, , n} and Xit 1 ^ i ^ n, with
2 J L 1 \ = ί, 0 < λt ^ n, and λ, ^ 0 for 2 <L j <L n. It follows that
c ^ || α;Λ+1 — # || ^ c — 1/n for every ^ ^ 1 and every #e Co (xu , α?J.
Hence d(xn+1, C o ^ , •••, xn))~->c and c is necessarily equal to S({xn}).
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In what follows, we shall use rβ(x), r(x) and r as is defined in
Definition 1 without referring to the original net {xa}a<r if no am-
biguity can arise.

PROPOSITION 1. A convex subset C of a Banach space has normal
structure if and only if it has ̂ -normal structure.

Proof. Suppose C has y$0-normal structure and suppose on the
contrary that it contains a diametral sequence {uj?^ with diameter δ.
For every x e Co (u%)?=u there is an integer iVsuch that x e Co (uί9 , um)
for all m ;> N. Since d(ui+u Co (uu , u%)) —*δ as i —• oo, we have
r(x) — lim, | | ^ — x\\ — δ for every xe Co (iOS=i This implies that
r = δ and the asymptotic center of {u^i in Co {uτ)T=ι in Co (%*)£=!
itself—a contradiction. Hence C has normal structure by Brodskii-
Milman's characterization.

Suppose now that C does not have fc^-normal structure. Then
there exists a nonconstant bounded sequence {ut}?=1 such that r(x) =
r for every x e Co (%)Γ=i. By the basic property (2) following Defini-
tion 1, we have r > 0. Denoto Co (tOJLi by D.

Let #! be an arbitrary point in C. Since r{x^) — r, there exists
#2e {̂ JΓ=i such that \\Xι — x2\\^ r — 1; move #2 towards ^ along the
line segment joining x1 and x2 if necessary, we may assume that
\\xx — χ2 II <: r. Suppose now that {̂ , •••,»„}£]), n ̂  2, has been
chosen such that

(1) || xt - α?,-1| g r (1 ^ i ^ n, 1 ̂  i ^ n)

and

r - (n - I)2

where xn^ = Σ ί ί ί #i We proceed to choose xn+1 e D as follows: Let
m be an integer such that

(2) rn(xt) ^ r + -1 (l^i^n)

and

( 3 ) rm(xn) ^ r + -
» + 1)

Choose ^o^ {̂ m, ̂ m+i, •} so t h a t

(4) r.(».)-|l*o-aU|£
n\n + 1)
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Since max(| |^ 0 - x%\\, r) ^ rjβn), we have, from (3) and (4),

( 5 ) III a — x II — r\< ^
n\n + 1)

Let {zu , zn] be defined recursively by the formulae

where

t% — max

for each 1 <^ i <^ n. We then define xn+1 = zn.
Geometrically, xn+1 is obtained by first moving z0 along the line

segment joining xγ and z0 so that its distance with x, becomes r
(keeping z0 unmoved if its distance with x1 is already not greater
than r) and then moving the resulting point towards x2 in the same
manner and continuing so on, up to n times.

It is geometrically clear and can be easily proved that || xn+L — xt | | ^
r for all 1 ^ i ^ n. By making use of (1), (2), (6) and the fact that
zQe {um, um+1, •}, one can easily show that

( 7 ) \\xi-zι.1\\^ X

n\n + 1)

for all 1 <* i ^ n. Since

| | ΛT „ | | f | | / v » /y Π < Γ m C ί v / Ί I / V /y II 4 » f U

| | ££ — 3Z_! II — ιι\\ x% — £,_! \\ ^ m a x ^ | xt — 3^21| — ?, u;

by (6), we have, by (7),

nII «n+i - «o II ^ II «o - «i II + + II «- i - «n II ^ -

and therefore

II />. _ _ ^ | | > | | / r _ ^ | | — - I I T _ ^ | | > r —
II 3 V κ ^ « II = II * o ^ w II II ^ « + i ^ 0 I I ^ ' f

by (5). Clearly, xn+ιeD. Thus, by induction, we have constructed
a sequence {xn} satisfying the condition in Lemma 1 with c — r > 0.
This implies that C has no normal structure and the proof is complete.

PROPOSITION 2. A convex subset C of a Banach space has normal
structure if and only if it has asymptotic normal structure.

Proof. The sufficiency part follows from Proposition 1. For
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necessity, suppose that C has normal structure. Suppose on the
contrary that C does not have y^-normal structure for some λ ^ 0.
By Proposition 1, we must have λ ^ 1. Then there exists a noncon-
stant bounded net {αα}β<K; in C such that r(x) = r for all x e Co (xa)a<χλ9

where r is the asymptotic radius of {xa}a<χλ in Co (xa)a<χλ. Again r > 0.
For each xe Co (xa)a<χλ, we associate with it an ordinal β{x) < fc^

as follows: Since r(x) = r, {supβ^ || x — xa | |: β < #λ} is a decreasing
net in ϋ! with infimum r so that there exists an increasing sequence
{βi)T=i of ordinals less than Vta with limz sup α ^ 4 \\x — xa\\ = r. We
then put β(&) = sup 1/9*: i ^ 1}. Since λ ;> 1, /3(#) < y^.

It follows from the definition of β(x) that sup {|| x — xa ||: a ^> 7} =
r for every 7 ̂  /3(#) This implies that for every ε > 0, for every
7 ^ β(x), there exists an ordinal a > 7 such that r ^ | | α ; α — # | | ^ r — ε.

Let Wj. = x0. Choose a > β{ux) such that r ^ | | a ? β — w J l ^ r — l
and put ̂ 2 = α?β. Suppose that uu , un, n^ 2, have been chosen
such that ut e {α?β}β<Hjl, || ̂  — wy || ^ r (1 ̂  ί ^ n, 1 ^ j ^ w) and
||%w - ΰn^\\ ^ r - l/(w - I)2, where ^ _ x = Σ f ί ^ L e t ^ =
max (/S( î), , >S(̂ »), /9(^)), where %Λ = Σ?=i^i Choose uw + 1 e {a?β},,<β<K;

such that ||wΛ+i — ϊt Λ | | ^ r — l/^2; this is possible since p ^ β(ύn).
That || uw + 1 — Ui || ^ r for every 1 ̂  i ^ ^ is also true since p ^ Ŝ(w<)
for each i — 1, ••-,%. Hence, by induction, we have constructed a
sequence {i&JΓ=i S {xa}a<*λ such that the condition in Lemma 1 is
satisfied with c = r. This is a contradiction to the assumption that
C has normal structure by Lemma 1 and the proof is complete.

REMARK. One can also define 7-normal structure for ordinals
7 ^ 1 and prove that a convex set has normal structure if and only
if it has 7-normal structure for all ordinals 7 ^ 1 .

We are now in the position of proving the following theorem:

THEOREM 1. Let K be a nonempty weakly compact convex subset
of a Banach space and assume that K has normal structure. Let
^ be an arbitrary family of commuting nonexpansive maps from
K into itself. Then ^ has a common fixed point.

Proof. The theorem is true for | ̂  \ < y$0 by Belluce-Kirk's
theorem [1], so we assume that Jf is infinite. We shall first prove
the theorem for | ̂  \ = y$0 and assume that it is true for | &" \ = #a

for every a < 7, then prove it for the case | ^ " | = fc$r. This would
complete the proof by transfinite induction.

Suppose that |J*Π = Ko and let &~ = {fuf2, •}. Since closed
convex subsets of K are weakly compact, we can apply Zorn's lemma
to obtain a subset M of K which is minimal with respect to being
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nonempty, closed, convex and mapped into itself by every member
of ^ 7 Suppose M is not a singleton. For each n, let xn be a com-
mon fixed point in M of {flf •••,/»}; this is possible by [1]. Since
M is minimal, {xt}T=ι is not a constant sequence. Let B be the as-
ymptotic center of {Xi}7=1 in M. By weakly compactness of M, B Φ 0.
If B — M, then r(x) = r(#) for every x, y in ikf, in particular r(x) —
r(y) for every x, y e Co (-Σ",)JLi. This implies that the asymptotic cen-
ter of {Xi}T=i in Co (Xi)T=i is Co (xt)Γ=i itself—a contradiction to normal
structure of K by Proposition 1. Hence B is a proper (closed con-
vex nonempty) subset of M. For every xe B, every fn e ̂ 7 we have
II &. - Λ(αOJI_f= IIΛ(O - Λ(a?) ll_£j|«. - a? II for every m^n so that
r(fn(x)) = limm || α?m - /„(&) || ^ limm || am - α II = r(#) = r, and therefore
fn(x)eB. This shows that B is also mapped into itself by every
member of ^"—a contradiction to the minimality of M. Hence M
consists of a single point which must be a common fixed point of ^ 7

Suppose that the theorem is true for all such families J^ with
I j?r j _ ^ α for gome a < 7. Let J?~ be a family satisfying the con-
dition in the theorem and | ^ " | = ^ r . By previous reasoning, K
contains a subset M which is minimal with respect to being non-
empty, closed, convex and mapped into itself by each member of _^7
If M is not a singleton, define a net {xa}a<^ a s follows: For each
α < Hπ either | {fa}β^a \ = ^ α o for some a0 < 7 or | {Λ}^α | < No,
so that by induction hypothesis or Belluce-Kirk's theorem, {fβ}β^a

has a common fixed point which we call xa. An argument parallel
to the previous one together with Proposition 2 shows that the
asymptotic center of {xa}a<κλ in ikί is a proper subset of M and is
closed, convex, nonempty and mapped into itself by each member
of ^ 7 This is a contradiction. Hence M consists of a single point
which is a common fixed point of _^7 completing the proof.

The special feature of the above proof leads to the following

THEOREM 2. Let K be defined as in Theorem 1. Let J^ be a
family of nonexpansive self-mappings of K such that every finite sub-
family of J?~ has a common fixed point in every ^-invariant closed
convex nonempty subset of K. Then J?~ has a common fixed point.

REMARK. The technique of asymptotic center can also be applied
to prove, by induction, Theorem 1 for finite families through the
following facts which had been implicitly used in [4] in the case of
uniformly convex Banach spaces,

1. If / is a nonexpansive mapping on a bounded convex set C
into itself and xeC, then the asymptotic center of [x, f(x), f\x), }
in C is mapped into itself by /.

2. If flf , fn are commuting nonexpansive mappings on a
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bounded convex set C into itself, and x is a common fixed point of

/ i , •••,/»-!> then the asymptotic center of {«,/*(&),/»(«), •••} in C is

mapped into itself by each fi9 1 <£ i <^ n.
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