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A FIXED POINT THEOREM FOR FAMILIES
OF NONEXPANSIVE MAPPINGS

TECK-CHEONG LIM

In this paper it is proved that if K is a weakly compact
convex subset of a Banach space and if K has normal struc-
ture, then any family of commuting nonexpansive mappings
on K into itself admits a common fixed point.

Kirk [5] first proved that if K is a nonempty weakly compact
convex subset of a Banach space and if K has normal structure [3],
then every nonexpansive mapping T: K — K has a fixed point. Later,
Belluce and Kirk [1] extend this theorem by showing that any finite
family of commuting nonexpansive self-mappings of such a set K
always has a common fixed point. Their attempts to prove a com-
mon fixed point theorem for arbitrary families resulted in the need
for a strengthening of normal structure called complete normal
structure (see [2]). Since then the problem of whether their theo-
rem is true for arbitrary families under the normal structure setting
remained unsolved. In the present paper, we shall solve this prob-
lem by giving an affirmative answer. A technique used in the proof
is the notion of asymptotic center which was first considered by
Edelstein [4] to obtain a strong version of fixed point theorem in
uniformly convex Banach spaces.

Throughout this paper, we shall denote the diameter of a set
A of X by d(A).

DEFINITION 1. Let {x,},., be a bounded net, ordered by ordinals
less than v, in a convex set C of a Banach space X, where 7 is an
ordinal = 1. For every x€C and every ordinal 8 < 7, define

ra(@) = sup {||@ — z.[|: @ = B}
r(z) = inf {ryx): 6 <7} = Iim ||o — x,]|
and
r = inf {r(x): xc C} .

The set {x e C: r(x) = r} (the number r) will be called the asymptotic
center (asymptotic radius) of {#,}.., in C.

REMARK. Our main concern in this paper is the case where v =
W; for some ¢ = 0.
Some basic properties of r(x) and asymptotic center:
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1. For each xeC, {ry(x)}s, is a decreasing net with limit r(x).

2. r(x) =0 if and only if z, — 2.

3. |r@) —r)| = |lx — y]| for every z, ye C. This follows from
(1) and the fact that |rx(x) — rs(¥) | < ||z — y || for every 8 < 7.

4. r(x) is a continuous convex function on C. This follows from
(3), (1) and the fact that r4(x) are convex functions on C for all
B <.

5. {xeC:r(x) = r} is a closed convex subset of C. This follows
from (4).

6. If C is weakly compact convex, then {xe C:r(x) = r} is non-
empty. This follows from (4), the equality {xeC:r(x) = r} =
N> {xreC:r(x) = r + 1/n} and that closed convex subsets of weakly
compact set are weakly compact.

DEFINITION 2. A convex subset C of a Banach space is said to
have normal structure [3] if every bounded convex subset D of C
with | D| > 1 contains a point « such that sup {||x — y||: y € D} < 6(D).
A convex subset C of a Banach space is said to have ¥;,-normal
structure, 0 = 0, if for every nonconstant bounded net {x,},<y, in C,
the asymptotic center of {%,},<x, in Co0 (¥,).<x, IS @ proper subset of
Co (%,)z<x,; in case that C has ¥;-normal structure for every 6 = 0,
we say that C has asymptotic normal structure.

In their original paper [3], Brodskii and Milman characterized
normal structure as follows: A convex subset of a Banach space
has normal strueture if and only if it contains no diametral sequences.
(A diametral sequence is a nonconstant bounded sequence {z,};, such
that d(x,., Co(x, ---, #,)) — d({x,}o=)).) The following lemma is a
simple variation of the above characterization.

LEMMA 1. A convex subset C of a Banach space has mormal
structure if and only if it does mot contain a sequence {x,} such that
for some ¢ >0, ||z, — 2. || S ¢, ||@pry — Tl = ¢ — 1/0* for all m = 1,
m =1, where %, = 1/n 3%, x;.

Proof. If C contains a bounded convex subset such that | D| >
1and sup{||* — y||: y€ D} = 6(D) for every x€ D, then it is easy to
choose, by induction, a nonconstant sequence {x,} & D satisfying the
condition in the lemma with ¢ = 6(D). On the other hand, assume
that {»,} & C is a sequence satisfying the condition in the lemma.
If cCo(®, -+, x,), it is not difficult to show that x = AT, + Ny, +
<o 4+ N, for some 4y ---,4,€{l, -, mn} and N\, 1=91=mn, with

=1, 0<N=mn, and A; <0 for 2=<j < n. It follows that
¢ = || — || = ¢ — 1/n for every n = 1 and every z€Co (%, - -, 2,).
Hence d(,1, Co (2, -+, ®,)) —¢ and ¢ is necessarily equal to o({z.}).
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In what follows, we shall use 7r,(x), r(xz) and r as is defined in
Definition 1 without referring to the original net {x,.., if no am-
biguity can arise.

ProprosITION 1. A convex subset C of a Banach space has normal
structure iof and only if it has YWr-normal structure.

Proof. Suppose C has W,-normal structure and suppose on the
contrary that it contains a diametral sequence {u,}5, with diameter 4.
For every z € Co (u;)7,, there is an integer N such that x € Co (%, -+ -, %,)
for all m = N. Since d(u;,,, Co (%, -+, %;)) >0 as ©—> oo, We have
r(x) = lim, ||u, — || = 6 for every weCo(u;,),. This implies that
r =0 and the asymptotic center of {u.,}i, in Co (u,)z, in Co (%),
itself—a contradiction. Hence C has normal structure by Brodskii-
Milman’s characterization.

Suppose now that C does not have Y,-normal structure. Then
there exists a nonconstant bounded sequence {u}3, such that r(x) =
r for every € Co (u,)z,. By the basic property (2) following Defini-
tion 1, we have r > 0. Denoto Co (w,):2, by D.

Let », be an arbitrary point in C. Since r(z,) = 7, there exists
@, € {4}z, such that ||z, — ,|| = » — 1; move x, towards x, along the
line segment joining x, and x, if necessary, we may assume that
[|#, — .|| = r. Suppose now that {x, ---, z,}) & D, n = 2, has been
chosen such that

(1) o, —a;ll=r (QA=i=n1Zji=n)
and
@y = Byl 27 — —

(n — 1)
where Z,_, = >\75'x,. We proceed to choose z,.,€ D as follows: Let
m be an integer such that

1 .
2 (@) E 17+ ——— 1<i<n
(2) () =r P — l=si=mn
and
3) @) S+t
= n(n + 1)
Choose 2, € {Um, Umsr, =+ +} SO that
1

(4) /rm(ﬁn)_—”zo_gnném’
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Since max (|| z, — %, ||, 7) = r.(Z,), we have, from (3) and (4),

_ 1
(5) ”'zo_‘xn”_')"lémo

Let {z, ---, z,} be defined recursively by the formulae
(6) zo=ta, + (L—t), (Q1=i=n)

where

— ”xt — zz—l“ -7
tl*max( ”xz_ zi—l” ,O>

for each 1 <4 < n. We then define z,,, = z,.

Geometrically, «,., is obtained by first moving 2, along the line
segment joining 2, and z, so that its distance with 2, becomes r
(keeping z, unmoved if its distance with «, is already not greater
than #) and then moving the resulting point towards 2, in the same
manner and continuing so on, up to n times.

It is geometrically clear and can be easily proved that || ©,.,—2, [|=
¢ for all 1 <7 =< n. By making use of (1), (2), (6) and the fact that
20€ {Umy Umyy, -}, ONe can easily show that

1
7 N |y e N
(7) o= mall S 74 ot

for all 1 < ¢ < n. Since
”zz - zz—~1 ” - t’L”xl - zz—l “ é max (”xz - zz—l” - T? 0)
by (6), we have, by (7),

n

@wir — 2ol =20 — 2| 4+ ¢+ + Hzn—l—znném

and therefore

_ _ 1
”mn-‘rl_xn”g”zo'—"xn”__Ilmn-%—l_zongr—-?

by (5). Clearly, x,.,€D. Thus, by induction, we have constructed
a sequence {x,} satisfying the condition in Lemma 1 with ¢ = » > 0.
This implies that C has no normal structure and the proof is complete.

PROPOSITION 2. A convex subset C of a Banach space has normal
structure 1f and only if it has asymptotic normal structure.

Proof. The sufficiency part follows from Proposition 1. For
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necessity, suppose that C has normal structure. Suppose on the
contrary that C does not have ¥;normal structure for some ) = 0.
By Proposition 1, we must have A = 1. Then there exists a noncon-
stant bounded net {&,}.<y, in C such that r(z) = r for all © € Co (¥u)acy,
where r is the asymptotic radius of {Z,}.<y, i CO (¥o)acy,- Again >0,

For each x € Co (%,).<x,, We associate with it an ordinal g(») < W
as follows: Since 7(x) = 7, {SupP.ss |2 — . ||: B < Wi} is a decreasing
net in B with infimum » so that there exists an increasing sequence
{Bi}z, of ordinals less than W, with lim, sup,.;, (¢ — «.[[=7r. We
then put B(x) = sup {8;:4 = 1}. Since M = 1, B(x) < W..

It follows from the definition of 8(x) that sup {||z — .| a =7} =
r for every v = B(x). This implies that for every € > 0, for every
Y = B(x), there exists an ordinal & > v such that » = ||z, —2||=r —e.

Let u, = %, Choose @ > B(u,) such that » = ||z, — w,||=r—1

and put u, = #,. Suppose that u, ---, u,, n = 2, have been chosen
such that u;€{Tecny i —u;ll=r 1212 1=<j=<n and
Nw, — o]l = r — 1/(m — 1)), where #u,, = 3= u,. Let »p =
max (8(w,), « -+, B(,), B(#,)), where %,=>7 u;,. Choose U, € {Ta}pcacn,

such that ||w,,, — @,|| = » — 1/n% this is possible since p = B(%,).
That || %,,, — ;|| £ r for every 1 < 1 < n is also true since » = B(u,)
for each ¢ =1, ---, n. Hence, by induction, we have constructed a
sequence {u;}, S {¥.Jacy, such that the condition in Lemma 1 is
satisfied with ¢ = . This is a contradiction to the assumption that

C has normal structure by Lemma 1 and the proof is complete. '

REMARK. One can also define v-normal structure for ordinals
v =1 and prove that a convex set has normal structure if and only
if it has v-normal structure for all ordinals v = 1.

We are now in the position of proving the following theorem:

THEOREM 1. Let K be a nonemty weakly compact convex subset
of a Banach space and assume that K has mormal structure. Let
F be an arbitrary family of commuting nonexpansive maps from
K into itself. Then & has a common fixed point.

Proof. The theorem is true for |.&# | < W, by Belluce-Kirk’s
theorem [1], so we assume that & is infinite. We shall first prove
the theorem for | & | = W, and assume that it is true for | & | = W.
for every a < v, then prove it for the case | & | = W,. This would
complete the proof by transfinite induction.

Suppose that | # | =W, and let & = {f,, f,, ---}. Since closed
convex subsets of K are weakly compact, we can apply Zorn’s lemma
to obtain a subset M of K which is minimal with respect to being
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nonempty, closed, convex and mapped into itself by every member
of &#. Suppose M is not a singleton. For each n, let %, be a com-
mon fixed point in M of {f, ---,f,}; this is possible by [1]. Since
M is minimal, {z;}2, is not a constant sequence. Let B be the as-
ymptotic center of {x,};2, in M. By weakly compactness of M, B = .
If B= M, then r(x) = r(y) for every x, y in M, in particular »(x) =
r(y) for every z, y € Co (X;)2,. This implies that the asymptotic cen-
ter of {x;}, in Co (x,)i, is Co ()i, itself—a contradiction to normal
structure of K by Proposition 1. Hence B is a proper (closed con-
vex nonempty) subset of M. For every x¢€ B, every f, €., we have
| Zm — fu@) || = | fo(@n) — ful@) || = || % — || for every m = n so that
r(fu®)) = Tim,, || @, — f.(@) | = Tim, || 2, — @ || = 7(z) = r, and therefore
f.(®)e B. This shows that B is also mapped into itself by every
member of & —a contradiction to the minimality of M. Hence M
consists of a single point which must be a common fixed point of .#.

Suppose that the theorem is true for all such families &% with
| & | = W. for some & < 7. Let # be a family satisfying the con-
dition in the theorem and | & | = W,. By previous reasoning, K
contains a subset M which is minimal with respect to being non-
empty, closed, convex and mapped into itself by each member of .#.
If M is not a singleton, define a net {xa},,q,; as follows: For each
a < xry either l{fa}ﬂsal = xao for some a, <7 or I{fﬂ}ﬁsal < Roy
so that by induction hypothesis or Belluce-Kirk’s theorem, {fs}s<.
has a common fixed point which we call z,. An argument parallel
to the previous one together with Proposition 2 shows that the
asymptotic center of {%,},x, in M is a proper subset of M and is
closed, convex, nonempty and mapped into itself by each member
of #. This is a contradiction. Hence M consists of a single point
which is a common fixed point of &, completing the proof.

The special feature of the above proof leads to the following

THEOREM 2. Let K be defined as in Theorem 1. Let F be a
family of monexpansive self-mappings of K such that every finite sub-
family of Z# has a common fixed point in every F -invariant closed
convex nonempty subset of K. Then F has a common fized point.

REMARK. The technique of asymptotic center can also be applied
to prove, by induction, Theorem 1 for finite families through the
following facts which had been implicitly used in [4] in the case of
uniformly convex Banach spaces.

1. If f is a nonexpansive mapping on a bounded convex set C
into itself and x € C, then the asymptotic center of {x, f(x), (), ---}
in C is mapped into itself by f.

2. If f, .-+, f. are commuting nonexpansive mappings on a
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bounded convex set C into itself, and x is a common fixed point of
iy v+, fu_1, then the asymptotic center of {x, f.(x), fix), ---} in C is
mapped into itself by each f,,1 <1 < n.
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