PACIFIC JOURNAL OF MATHEMATICS
Vol. 54, No. 1, 1974

ON FUNCTIONAL EQUATIONS CONNECTED WITH
DIRECTED DIVERGENCE, INACCURACY AND
GENERALIZED DIRECTED DIVERGENCE

Pr. KannaprrpaN AND C. T. Ng

The measures directed divergence, inaccuracy as well as
generalized directed divergence occurring in information
theory can be characterized by the symmetry, expansibility,
branching, and additivity properties together with some
regularity and initial conditions. In this paper some func-
tional equations generalizing those implicit in these charac-
terizations shall be treated.

1. Introduction. Let 4,={P = (p, ps -+, P.)|p: =0 and
‘l’gb=lpz‘ = 1} a'nd A’In = {P = (ply Day =y p’n) I D > 0 and 2?=1pi é 1} be
the set of all finite complete and incomplete probability distributions

respectively. In 1948 C. E. Shannon [16] introduced the following
measure of information

(LD H(P) = — 3 p.log p;

on 4, which is now known as Shannon’s entropy. This has been
generalized to inaccuracy [10]. Inaccuracy and the related quantities
directed divergence or information gain [11,15] and generalized
directed divergence [3] are given by

(L2)  H(PIQ=-3plgq, (Ped,Qed, ord),
3 LPIQ=Snlegl, (Ped,Qed, or ),
and

(1.4) DJ(P|IQIR)= gpilogg—:, (Ped,, Q, Red, or 4)

respectively. While characterizing these measures we come across
the following functional equations
L5) XX F(pg) = X F®) + X F(9) (Ped,, Qe dy),

=1 j=

-

n

w8 35 Fwa, 5w = 3 F. ) + 5 F@, ),

=1 j=1
(Ped,, Qe d,, Xed, or 4, Yed, or 4,)
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158 PL. KANNAPPAN AND C. T. NG

and

(1'7) Z 2 F(p’qu’ LY 5y %ﬂ)j) = Z F(pz’ Ly uz) + Z F(qja Yiy ,UJ') ?
=1 j=1 i=1 =1
(Ped,, Qed,, X, Ucd, or 4, Y, Ved, or 4,)

(ct. [2], [4], [5], [6], [7], [8], [9], [13D).

For the motivation to consider (1.6) and (1.7) and the application
of this result, refer to the Remark at the end of this paper.

In this paper we consider the functional equation

(1.8) > S F s wy) = 3 Gp, @) + X His 05
=1 j=1 =1 =1
(Ped, Qe 4y, Xe 4y, Yedi)

for unknown functions F),, G,, H;. Then this gives the measurable
solutions of (1.6) for all Pe 4, Q¢ 4, X 4, Ye 4, as a special case.
The measurable sclution of (1.7) for Pe 4, Qe 4, X, Ue 4, Y, Ve 4
can also be obtained by a reduction to (1.8).

In solving (1.8) we make use of the following result of C. T. Ng
[13]:

THEOREM 1.1. The measurable solutions of the functional equation

(1.9) > S Fpa) = X 6p) + X H)

1=1 j=1
for ¢ll Pe 4, Qe 4, are given by

(H{q) = aqlog q + b,q + ¢, HYq) = aqlogq + (b, + d)g + ¢,
Hy(q) = aqlog q + (b, + e)q + ¢;, Fi(p) = aplogp + b0 + ¢,
I (p) =aplogp + (b, + d)p + ¢,
F,(p) =aplogp + (b, + e)p + ¢,
(1.10) ( F,(p) = aplog ® + bsp + ¢;, Foo(p)=aplogp + (b + d)p + ¢,
F,{p) = aplogp + (by + €)p + ¢, Gi(p) = 9(0) ,
Gyp) = —g(L — p) + a[plog p + (1 — p)log (1 — p)|

by —by)p + (b, — b)) — ¢, + €, + €3 — ¢+ + G

— ¢+ Gt G,

where a, by, by, by, ¢, €y -+, Co, d, € are arbitrary constants and g is an
arbitrary measurable function.

2. Measurable solutions of the functional equations (1.6) and
(1.8). We first suppose that equation (1.8) is to hold for all Pe 4,,
Qe 4, Xe 4, Ye 4, where F, ;, G,, H;: [0, 1] x 10, 1[ — R are functions
measurable in their first variables.
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For arbitrarily fixed z,, y; in ]0, 1[ with 3% 2, <1, 3¢, 9; < 1,

equation (1.8) is of the form (1.9) in the p,’s and ¢;’s. Therefore, by
Theorem 1.1 there exist ‘ constants’ a(x,, @, ¥y, ¥z, ¥s), bi(@s, T2y Yy Y2s¥s)s
1= 1,23, Cj(xu Loy Y1y Yoy Ya)y J = 1,2 ...,9, d(x, L2y Y1y Yo ys), 6(931, Lay
Y1, Y5 ¥s) and a measurable function g(-, x, @, ¥, ¥, ¥s) such that

2.1)

(2.2)

H(q, ¥,) = ala, @, Ui, Ys, ¥2)q log q + by(x, ) ¥y, ¥sy Ya)T
+ ey, Ty Yy, Yoy Vi)
Hy(q, y.) = alx,, %2, Y., Yo, Y5)q log q + (b, + )., ) Y, Ysy Ys)d
+ @y, T2y Yy, Yoy Ys)
Hyq, ys) = a(x,, @y Yy, Yo, Ys)qlog @ + (b, + €)@, X2y Yy, Yoy Yo)A
+ ey, x, Yy Yo Ys)
F\ (v, 2y,) = a(x, 2 Y, Yo, Y2)p log D + by(@, T2, Yy, Yay Ys)D
+ ey, %2 Y, Yo, Ys) 5
Foo(p, 2.:9) = a(@,, &, Yy, Yo, Yo)p log p + (b, + d)y, 22, Yy Yy Y)P
+ (21, Toy Ysy Ysy Ys) s
Fo oD, 2.y5) = a(@,, sy Yy, Yo, Y2)P 10g D + (b, + €)@y, Ty Yy, Yoy Y)D
+ ¢s(, Tay Yy Yoy Ys) »
Fou(p, 2:9)) = a(,, &, Yy, Yo, Y2)p log D + by, %2y Ui, Ysy Ys)D
+ (@, 5 Y, Yoy V)
Fo (0, @:9:) = (@, @y Yy, Yoo Yo)P log D+ (b; + d) (2, 2 Yy, Yoy Ya)P
+ 06(901, Loy Yiy Yo, ys) ’
Fo o0, ¥y5) = a(,, &2 Y, Y, Y)p 1og D + (b; + €)@, Zoy Yoy Y, Ys)D

+ o(®yy X5y Yy Yoy Ys) -

(Gi(p, ) = 9(D, iy Tay Y, Yy Ys)
Gop, %) = —g(1 — D, T4y Tsy Yy, Yor Ys) + (@, Ty Y, Yo, Ys)[D10g D
+ (1 — p)log (1 — )] + (bs — bo)(@y, @y Y1y Yoy Ys)D
+ G, —b,—c,t+etes—cit+estc—c
+ €)@y Loy Y1y Yoy Ys) -

From (2.1) we get

(2.3)

and

(2.4)

a(xly x27 yl) y2y Z/a) = COIlStant =a

b,(x, 3, Yy, Yo, ¥s) = a function of y, only = b,(v,) ,
b(y)) + d(xs, %, Yy, Y, ¥s) = & function of y, = 0,(y,) ,
b.(y.) + e(®, o Yy, Yo, ¥s) = a function of y; = ¢,(vs) ,
bo(,, X2y Yy Yo, Y¥s) = & function of xy, = b(x,y,) ,
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ba(,y,) + d(x,, s, Yy, Ys, ¥s) = @ function of z,y, = 0x(x,,) ,

bo(x,y) + e(xy, oy Yy, Ys, ¥s) = a function of x,y; = ¢(2,¥s) ,
(2.4) A by(z,, x5, Yy, Y, ¥:) = a function of z,y, = by(x.y,) ,

by(xy) + d(x,, X, Yy, Ys, ¥s) = a function of x.y, = 04(.¥,) ,

by(xy) + e(xy, X, Y, Ys, ¥s) = @ function of x,y; = 34(2.¥s) ,

where z,, y; are in 10, 1] with >z, <1 and 3}, y; = 1.
Similarly

(@, Ty Yy Yo Ys) = (ys)
iy, X3y Y1y Yo Ya) = C(2,Y1) 5
cs(@yy Xy Y1y Yo Ys) = C5(T:Y1)
@y, T3 Y1y Yy Ys) = C(¥s) »
(2.5) (T, Loy Yiy Yy Ys) = C(T1Ys) 5
(@1, Xoy Y1y Yoy Ys) = Co(%:Y3)
@y, Ty Yy Yoo Ys) = €(Ys) 5
(s, T2y Y1y Yoo Ys) = C(21Y5)
(X1, Xoy Y1y Yoy Ys) = Co(X5Y3)

where «,, y; are in ]0, 1] with >, 2, <1 and 3}, y; = 1.
The simultaneous equations (2.4) are equivalent to

A&y Toy Ys Yoy Ya) = 01(Yo) — DY) = Ou(,92) — bo(@.9)
= 04(%Y:) — by(229) »

ey, Ty Y1, Yz, Ys) = $1(Ys) — bui(y)) = S(w,Ys) — bo(,9,)
= ¢5(%:Ys) — bs(%:91) ,

(2.6)

where z,, y; are in |0, 1] with «, + #, <1, v, + ¥, + ¥, < L.

We shall give the general solutions of equation (2.6) through the
following lemma.

LEMMA 2.1. The general solutions of the functional equation
(2.7 f(rs) — g(rt) = h(s) — k(t) ,
for all r,s,t€]0, 1] with s+ ¢t < 1, are given by

f@) =)+ A,
9(x) = y(x) + A+ C,
h(z) = ¥(x) + B,
k() = v(@) + B+ C,

Sfor all x€]0, 1], where A, B, C are constants and +: |0, [ — R (reals)

(2.8)
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is a solution of the Cauchy equation,
(2.9) Y(rs) = ¥ (r) + ¥(s) .
Proof. We rewrite equation (2.7) as

(2.10) F(rs) — h(s) = g(rt) — k(t) ,
for all »,s,¢t€]0, 1[ with s + ¢t < 1. Thus f(rs) — h(s) is a function
of » only, say
(2.11) flrs) — h(s) = Ur),
for all »,s€]0,1]. Thus by [11, p. 59] there exists +:]0, o[ = R
satisfying
(2.9) P(rs) = ¥ (r) + ¥(s),
for all r,s€]0, o[ such that it represents f, h, and [ through the
equations
F@) = (@) + A,
(2.12) h(x) = Y¥(z) + B,
Wx) = 4(x) + A — B,

for all €10, 1[, where A and B are arbitrary constants. Similarly
g and k are given by

2.19) {mw=wm+A+c,

fe(x) = v(x) + B+ C,
for all x€]0, 1] and where C is an arbitrary constant. This completes

the proof of Lemma 2.1.
Thus the general solution of the equations (2.6) is given by

b(x) = ¥(x) + A, , i=1,23
(2.14) 0(x) = v(x) + 4, + B, i=1,23
(x) = Y(x) + A, + C, i=1,23

for all €10, 1[, where A4,, B, C are constants and + is a solution of
the Cauchy equation (2.9).

Now we shall determine the function ¢ and the ‘constants’ ¢,’s
in equation (2.2). We prepare our result by the following lemma.

LEMMA 2.2, Let k:]0,1]— R, ¢ =1, 2, 3 be functions satisfying
the functional equation

(2.15) u(r) + kyrs) + ky(rt) = T(s, t)
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Jor all r,s,te]0, 1] with s + ¢t < 1. Then, and only then, there exist
Sunctions r, ¢: ]0, o[ — R which are solutions of (2.9) and constants
A, B, C such that

k(x) = —v(x) — ¢(2) + C,
(2.16) kf(x) = ¥(x) + A,
kfx) = ¢(x) + B.

Proof. As the right side of (2.15) is independent of », we have
(2.17) k(r) + kao(rs) + ky(rt) = k(1) + ky(r's) + ky(r't)

for all », 7', s,t€10, 1] with s + ¢ <1. For arbitrary s, s'€]0, 1[ we
can choose £€]0, 1] such that s+ ¢, 8+ ¢t <1 and thus from (2.17)
we get

(2.18) ky(rs) — ky(r's) = ky(rs’) — Eky(1's"),

for all », 7', s,s’€]0,1[. We can now fix ' and s’ arbitrarily and
then equation (2.18) reduces to

(2.19) ky(rs) = 1(r) + l(s) ,

for all », s€]0, 1[, (for some functions /,), which is an equation similar
to (2.11). Thus there exists a function +: ]0, o[ — R satisfying (2.9)
such that

ko(x) = v(x) + A,

for all 2€]0,1], where A is a constant. Similarly there exists
$: 10, o[ — R satisfying (2.9) such that

kfx) = ¢(x) + B,

for all x€]0,1[. If we replace k., k; by 4, ¢ respectively in equation
(2.17) while fixing 7' we get k, as is in (2.16). This proves our
lemma.

From equation (2.2), we see that g is a function of p and =z, only,
say

(2.20) 9D, @1, T2y Yyy Yoy Ys) = 9(D, 21) .

Now, from equation (2.2), we see that —e,(y) + c(xy,) + cx(2.y,)
is independent of y, and therefore by Lemma 2.2 we have

cl(x) = ¥(x) + ¢1(x) + D,,

(2.21) ci(x) = ¥y(x) + B,
c(x) = ¢y(x) + F,,
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for all x€]0, 1[, where v, and ¢, are solutions of the equation (2.9)
and D, E, F, are arbitrary constants. Similarly we have

c(x) = ¥ix) + ¢(x) + Dy,
(@) = Yo(x) + B,
cs(x) = Pux) + F,,
(@) = Vo) + 85(x) + D5,
c(x) = vs(x) + iy,
¢o(@) = ¢o(2) + F,

(2.22)

where v, 8, ¥y, ¢, are solutions of (2.9) again. If we replace the
¢,’s in the second equation of (2.2) by equations (2.20), (2.21), and (2.22)
we see that —g(1 — p, x,) — ¥(@)p + V(@) + V() + Vo) + Vo)) is
independent of x,, say

g(1 — D, ;) = 91 — p) — ¥ (x,)p + ¥(x)
+ (@) + o) + Pra(w)

for all pe[0,1] and x,€]0, 1[, where ¢:[0, 1] — R is an arbitrary
measurable function.

Combining equations (2.1), (2.2), (2.3), (2.4), (2.5), (2.14), (2.21), (2.22),
and (2.23) we are ready to conclude the following theorem.

(2.23)

THEOREM 2.1. Let F,;, G, Hi:[0,1] x 10, 1[—-R( =1, 2, J =
1,2, 3) be functions which are measurable in their first variables.
Then these functions satisfy the functional equation (1.8) if and only
1f there exist +, 4, 6,: 10, o[ — R all satisfy the Cauchy equation (2.9)
such that

Hy(q, y) = aqlog ¢ + [v(y) + Alg + v.(v) + 6.(¥) + D, ,
Hyq, v) = aqlog ¢ + [y(y) + A, + Blg + ¥u(y) + ¢y) + D,
Hyq, y) = aqlog g + [v(y) + A, + clg + vs(y) + ¢(¥) + Dy,
Fi(p, y) = aplog p + [v(y) + A.lp + v.(v) + E\,
Fiop, y) = aplog » + [¥(y) + A: + Blp + ¥(y) + E:,
Fiop, y) = aplog p + [y (y) + A, + clp + ¥(y) + By,
(2.24) \ F, (p, y) = aplog p + [v(y) + As]p + 6.(y) + F,
F,(p, y) = aplog p + [¥(y) + 4s + Blp + ¢:(y) + F’,
F.ip, y) = aplog p + [v(y) + 4; + clp + ¢(y) + F3,
Gp, ) = 9(p) + V(@)p + Vi(2) + V(@) + Vo) ,
Gop, ) = —g(1 — p) + alplog p + (1 — p)log (1 — p)]
+ [V(x) + As — Aup + 8u(%) + ¢:(2) + go(x) + A,
—A4,~-D,—-D,—D,+E +E, +E+F +F,+F,,
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Jor all p,qe|0,1], 2, ye]0, 1], where a, A,, B,¢, D, E,, F,, 1 =1,2,3,
are all constants, and g is an arbitrary measurable function.

THEOREM 2.2. If F:[0,1] x 10, 1] — R is measurable in its first
variable, then it satisfies the functional equation (1.6) for all Pe 4,
Qe d,, Xe d, Ye 4, if and only if F is of the form

(2.25) F(p, ») = aplog p + [v(x) + Alp,

for all pel0,1], x€]0, 1], where v 1s a solution of the Cauchy equa-
tion (2.9) and a, A are constants.

3. On the measurable solutions of the functional equation
(1.7). Let F:[0,1] x ]0,1[ x 10, 1] — R be measurable in its first

variable and satisfy the equation (1.7) for all Pe 4, Q¢ 4;, X, Ue 4,
Y, Ved,.

For each fixed u,, v; equation (1.7) reduces to the form (1.8). Thus
by Theorem 2.1 there exist in particular v, v, ¥, ¢, ¢, satisfying the
Cauchy equation (2.9) in their first variables and A4, 4, 4, a, B, D,
D, E, E, F, such that

F(q, y, v.) = a(Uy, %, v, Vs, v:,)q log q@ + [V (Y, Uy, Us, V1, Vs, V)
+ AUy, Uy, vy Vs, V)G A (Vr F SIY, Uy U, Vs, Vs, V)
+ D,(w,, U, v, ¥s, Vs) ,
F(q, y, v.) = a(u,, ty, v, vy, v,)q log q + [V (Y, %, Us, ¥,y Vs, Vs)
+ (4, + B)(Uy, U, v, Vo, v)]q + (V2 + )
(Y, Uy, Uy, Vy, Vg, V3) + Dy(Uy, Uy, ¥,y Vs, Vs)
F(q, y, w,v,) = au,, u, v, vy, v5)qlog q + [V (y, w, ts, v, Vs Vs)
(3.1) + As(uyy s, Vi, Vs V)G A (Y, Uy Uy Uiy Vyy Vs)
+ E.(vy, Uy, v, vy, Vs) ,
F(q, y, w,v,) = a(u,, U, v, Vs, v5)q log q + [V (Y, wy, Us, V1, Vo, Vs)
+ (4, + B)(uy, Uy, v, Vs, v5)lq
+ (Y, Uy Usy U,y Vs, Vs) + Ea(uy, Uy, V1, sy Vs)
F(q, ¥, wv,) = a(y, U, v, vy, v:)¢ 10g g + [V (¥, %, Us, Vi, Vs, V)
+ AUy, sy Vs, Vo, V]G F S(Y, Uy e, V1, Dy V)
+ F(uy, ws, v, Vo V) «

(3.2) a(u,;, U, v, v,y V5) = @ constant = a .

Hence it follows that

(3 3) P‘/f(yy uly uz, /Uly /027 ’03) + Al(uly uz, /vl! ,UZ, 173)
' = a function of y and v, only = 4(y, v) ,
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(3.4) Y (Y, Uy s, ¥y, Vay V) F+ A (Uyy Ugy Vs, Vs, V) + B (U, s, V1, Vs, V) =0(Y, 02)
(3'5) qt'/(yy uly ?’[/27 vly /UZ’ /03) + A?.(uly ?'{/27 ’Uu /027 vs) = 6(/!:/7 u’lvl) ’

3.6) V(Y Wy Uy sy Vo V) + As(Wy, U, 0, Vyy V) + By, U, Uy, Vs )
= 0(y, wv,) .

From equations (3.3) to (3.6) we have

3.7 0y, v2) — 0y, v,) = 0(y, ww,) — 0(y, ww,)

and

(3.8)  Au(wy, sy vy, ¥y, V) — AWy, U, v, ¥y, V) = Ny, wv,) — Oy, V1) .

For (3.7), by Lemma 2.1 there exists, for each fixed y, a function
6.(-, y) satisfying the Cauchy equation (2.9) and a constant 6,(y) such
that, we have

(3.9) 0y, v) = 0.(v, y) + 6(y) .
Now equations (3.8) and (3.9) yield

(3.10) 0.(v, y) = a function of v alone = 6,(v) .
Thus we can rewrite the first equation of (3.1) as

F(q, y, v.) = aqlog q + [0.(v,) + 0(n)lq

(3.11)
+ (Y oY, Uy Uy Uy Vs, Vo) + DUy, Uy U, V2 Vo)

From (3.11) we see that (v, -+ ¢.)(Y, Uy, %sy V15 Vs, Vs) + Dy, sy V1, Vsy V)
depends on y and v, only. Since 4, ¢, satisfy the Cauchy equation
(2.9), (v + ¢)(Y, wy, Uy, v, v,y v5) and D,(u,, us, v, v, v;) depend on (y, v,)
and v, only respectively. Thus we can write (3.11) in the form

F(q, y, v) = aqlog q + [0.(v) + 6(¥)]lq

(8.12) + a(y, v) + a(v),

where 0, and «, (-, v) satisfy the Cauchy equation (2.9).
From the first, third, and fifth equations of (3.1) and (3.12) we
have

a,(y, v) = a(y, wv,) + a(y, wv,) ,

for all w, u,, v,€]0, 1] with %, + u, < 1. Hence «, is independent of
the second variable and we may write the equation (3.12) as

(3.13)  F(q, v, v) = aqlogq + [0.(v) + 0n)]qg + a.(v) + ay(v),

for all ¢ 0, 1], y, v ]0, 1] where 6, and «;, are sclutions of the Cauchy
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equation (2.9). If we interchange the roles of the second and the
third arguments of F' in the above procedure we see that 6,, «, are
also solutions of the Cauchy equation (2.9).

Substituting (3.13) into (1.7), taking into account that 4, @, are
solutions of the Cauchy equation (2.9) we get , = 0. Thus we have
proved the following theorem.

THEOREM 3.1. Let F:[0,1] x ]0,1] x ]0, 1[ — R be measurable
in its first variable. Then F satisfies the functional equation (1.7)
if and only if F has the form

(3.14) F(q, y, v) = aqlog q + [0,(v) + 6.(¥)]q ,

where 6,, 6,: 10, o[ — R satisfy the Cauchy equation (2.9).

COROLLARY 8.1. Let F:([0,1] x ]0, 1[ x ]0, 1[) U {(0, 0, [0, 1[)} U
{@@, 1,]0, 1D} U{(0, [0, 1[, 0)} U{(1, 10, 1], 1)} — R be measurable in its first
variable. Then it satisfies the equation (1.7) if and only if F has
the form given by (3.14) on [0, 1] x 10, 1[ x 10, 1[ and on the boundary
F@©,0,-)=0, F(1,1, -) =6,-), F(0,-,0)=0 and F(, -, 1) = 6,(-).

REMARK. The measures H,, I,, D, in (1.2), (1.3), (1.4) possess in
particular properties: (a) Symmetry: H,, I,, D, are symmetric in the
pairs (p;, ¢.), (»;, 0.), (0s, q;, 7;) respectively, (b) Expansibility: If P =
(pu Day =y ?n): Qz(qu Qo *** 1 Q) R:(Tu Tay ooy Tr) and P,:(pu Dzy *+ -y
Das 0)’ Q = (QL, Q2 =y Qny 0)’ R = ('ru Toy =y Ty 0)’ then Hn(P ” Q) =
H,.(P'||Q), I(P||Q)= I,.(P'||Q) and D,(P||Q| R) = D,..(P'||Q'| R),
(C) Branching: If P = (pu Day =y pn)r Q= (QL, Q2 * 0y qn)f R = (fru T2
ceo,r,) and P = (D, + Py D5, 00, Pa)y @ = (00 + 4 @5, +++, ¢,) and
R =(r + ryrsy -+, 7,), then H(P|Q)— H,.(P'||Q), L(P|Q)—
I, (P'||Q)and D,(P||Q| R) — D,_(P'||Q'| R) depend on (p,, D, ¢, @),
(1, Do €1, ¢:) and (D, Dy, @y @,y 71, 72) Tespectively. It is shown by
C. T. Ng [14] that these three properties are equivalent to the
representability of H,, I,, D, in the form H,(P|| Q) = X%, f(v;, 0,),
L(P||Q) = X 9(», ¢)) and D,(P||Q|R) = 3 k(p,, ¢, 7)) Where f,
g, h are any function satisfying f(0, 0) = g(0, 0) = 2(0, 0, 0) = 0. From
these representations, the additivity property of these measures
motivates the study of the functional equations (1.6) and (1.7).

The Theorems 2.2 and 3.1 lead to a characterization of directed
divergence and inaccuracy and of generalized directed divergence
respectively. These three measures are determined by (a) Symmetry,
(b) Expansibility, (¢) Branching, (d) Additivity, and (e) Regularity
conditions such as Lebesgue measurability and appropriate initial
conditions.
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