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RIGHT SIMPLE CONGRUENCES ON A
SEMIGROUP

FrANCIS E. MASAT

The purpose of this paper is to investigate necessary and
sufficient conditions on an algebraic semigroup in order that it
have non-trivial right simple homomorphic images. Relative to
this, the relation between the structure of S and the structure of its
right simple homomorphs is characterized.

The main questions considered are:

(1) What characterizes a right simple (right group) con-
gruence on a semigroup?

(2) Can the conditions found for question (1) be made min-

imal in order that a maximum right simple homomorph occurs?

In §2, question (1) is answered in terms of right neat subsets of a
semigroup. The concepts of minimal right neat subsets and minimal right
ideals are used in §3 to obtain some sufficient conditions in order that
question (2) may be answered in the affirmative. Relative to the stated
sufficient conditions, a structure theorem is given. Also in §3, left cancel-
lative congruences are used to generate right group homomorphs of a
semigroup.

The right-left duals of all results established will be taken for granted
without further comment. For basic concepts, definitions, and terminology,
the reader is referred to Clifford and Preston (1). Also, S\\/ denotes set
difference, | S| denotes the cardinality of the set S.

2. Right simple congruences. A semigroup S is called right [left]
simple if it contains no proper right [left] ideal. A group, then, is just a
semigroup that is both left and right simple, [1, p. 39]. A semigroup S is
called a right group if it is right simple and left cancellative. This means that
for any a and b in S there exists a unique x in S such that ax = b.

A semigroup S is said to be regular if for each a in S, a is also in aSa.
When S is regular, the set of idempotents of S is nonempty and will be
denoted by Ej. If there is no danger of ambiguity, E will be used instead of
ES.

The following results are stated for later application.

Lemma 2.1. [1, Lemma 1.26, p. 37]. Every idempotent element of a
right simple semigroup S is a left identity element of S.
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LEMMA 2.2 [1]. The following assertions concerning a semigroup S are
equivalent:

(1) Sisaright group.

(2) S isright simple, and contains an idempotent.

() Sisadirect product G X E of a group G and a right zero semigroup
E.

(4) S is a union of isomorphic disjoint groups such that the set of
identity elements of the groups is a right zero subsemigroup of S.

(5) S isregular and left cancellative.

ReEMARK 2.3.  When a congruence p is such that S /p is the maximal
homomorphic image of S of type C, as in [2, p. 275] and [2, Theorem 11.
25(A), p- 276}, then p will be called the minimum congruence on S of type C
and S/p will be called the maximum homomorphic image of S of type C.

In other words, S /p is the maximum C-image if and only if p is of type
C and p C o for each congruence ¢ which is of type C. Moreover, the
phrases “right group congruence” and “group congruence” will be denoted
by RGC and GC respectively. When such a congruence is minimum, it will

be denoted by MRGC and MGC respectively.
The preceding proposition, (2.3), would seem to indicate that the

minimum right simple [right group, group] congruence on a semigroup S
could be found by considering the intersection of all the right simple [right
group, group] congruences on S. However, the intersection of the right
simple congruences on a semigroup .S need not be a right simple con-
gruence on S.

ExaMPLE 2.4. Let S be the additive semigroup of positive integers.
The group images of S are exactly all the finite multiplicative cyclic groups
and there is no maximal group among these. The intersection of the
induced congruences on S is the identity congruence ¢, but ¢ is not a right
simple congruence since S is not right simple. Hence ¢ is neither a right
group congruence nor a group congruence.

PROPOSITION.  Every homomorphic image of a right simple semigroup
is right simple.

Alternately, a semigroup is right simple if and only if its minimum
right simple congruence is the identity congruence.

A subset X of a semigroup S is said to be a right [left] neat subset of S if
for each ain S there exists sin S such thatas € X [sa € X]. Right [left] neat
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subsets may also be viewed as those subsets of S which meet (have non-
empty intersection with) each right [left] ideal of the form aS[Sa] where a is
in S. A set Uis a cross-section of a collection {X, : a € A} of setsif and only
if(lUN X,| = 1forallain 4.

If a semigroup S has proper right ideals, define the subset U of S to be
any cross-section of the set of all (proper) right ideals of S. The set U meets
each principal right ideal of S and hence U is a proper right neat subset of
S. The converse is false since each singleton subset of a right simple
semigroup is right neat.

The next theorem shows the close relationship between the right neat
subsets of a semigroup S and the right simple congruences on S.

THEOREM. A homomorph SO of a semigroup S is right simple if and
only if each congruence class of S modulo 6 ° § =" is right neat.

The following theorem characterizes those right simple congruences
on a semigroup which are right group congruences.

THEOREM 2.5. A necessary and sufficient condition that a right simple
congruence on a semigroup S be a right group congruence is that some
congruence class contain a subsemigroup of S.

The next theorem generalizes a result due to Fontaine [4, Thm. 12, p.
784].

THEOREM 2.6.  Suppose a semigroup S has a right neat subset K. Let p
be a congruence on S such that for each b in S and for each k in K, there exists
an x in S such that (kx)pb. Then S /p is a right simple semigroup.

Proof. Forain S, there exists y in S such that ay € K. Hence for b in
S there exists x in S such that (ayx)pb. Thus ap - (yx)p = bp,so S /pisa right
simple semigroup.

CoROLLARY [4, Thm.12,p.784]. Let p be'a congruence on a semigroup
S containing a right neat subset K. If (kb)pb for each b in S and for each k in
K, thenp is a right group congruence on 8.

The next result shows what happens to the right ideals of a semigroup
under a right simple homomorphism.

THEOREM 2.7.  If 0 is a homomorphism of a semigroup S onto a right
simple semigroup S', then 8 maps every right ideal of S onto S'.
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Proof. 1If I is a right ideal of S, then (/)@ is a right ideal of §’, and
therefore (I)6 = §'.

COROLLARY 2.8. If a semigroup S has a left zero, then the minimum
right simple congruence on S is the universal congruence w.

Semigroups with a right zero are considered in §3. A second corollary
is the following theorem of Lefebrve [6, Lemma 1, p. 2277},

COROLLARY 2.9. If @ is a homomorphism of a semigroup S onto a
group S*, then 0 maps every ideal of S onto S*.

The following result is a partial converse for Theorem 2.7.

THEOREM. If 0 is a homomorphism of a right ideal R of a semigroup S
onto a right group S*, and if R has a right identity, then 6 can be extended to
a homomorphism of S onto S*.

Proof. Define a mapping g from S to S* by (s)g = (is)f, where i is the
right identity of R. It is evident that g is well-defined, maps S homomor-
phically onto S*, and equals § when restricted to R.

3. Minimum right simple congruences. If X is a right [left] neat
subset of a semigroup S and if x is in X, then the set of all s in S such that xs
€ X [sx € X]is denoted by x'~1X [Xx ="} I the following development
the set xS N X[Sx N X] will be denoted by x(x'~"X) [(Xx = x].

- The following theorem of Dubreil [3, Thm. 1, p. 34] characterizes those
right neat subsets of a semigroup which are minimal.

THEOREM 3.1.  In order that a right neat subset K of a semigroup S be
minimal, it is necessary and sufficient that for each k in K, k(k'""K) = {k}.

Additionally we need the following results from Lefebvre concerning
semigroups possessing MRN (minimal right neat) subsets and MRD’s
(minimal right ideals).

THEOREM 3.2.  Every minimal right neat subset K of S has the following
properties:

(i) Foreachk € K, there exists x € S such that kx = k.
(ii) Foreacha € S and for each k € K, there exists x € S such that
kax = k.
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(iii) Foreachk,, k, € Kand foreachx,,x, € S, ifk,x, = k,x, then
k| = k2.
(iv) Foreacha € S, Ka is a minimal right neat subset of S.

Proof. [5, Properties 1, 2, 3 and Theorem 2, p. 394].

THEOREM 3.3. Let S be a semigroup with minimal right neat subsets.
Then:

(1) Every right neat subset of S contains a minimal right neat subset of

(ii) S contains a minimal right ideal.
(iii) Any two minimal right neat subsets of S correspond bijectively.

Proof. [5, Thm. 4, Cor. 2, and Thm. 3, pp. 394-395].

THEOREM 3.4. If a semigroup S contains a minimal right ideal, it
contains a minimal right neat subset. Moreover, the union of the minimal
right neat subsets of S coincides with the union of the minimal right ideals of
S.

Proof. [S, Theorem 7, p. 395]. It should be noted that the MRN
subsets of S are formed by taking cross-sections of the MRI’s of S. Denote
the union of the MRN subsets of S by N, and the union of the MRI’s of S by
R. That R = N follows from [5, Corollary 3, p. 395].

The next result shows the cardinality and structure relationship
between minimal right ideals of S and minimal right neat subsets of S.

COROLLARY 3.5. Let S have a minimal right ideal. Then:

(i) Every minimal right neat subset of S is a cross-section of the set of
minimal right ideals of S.
(ii) The number of elements in any minimal right neat subset of S
equals the number of minimal right ideals of S.
(i) The following are equivalent:
(A) The minimal right neat subsets of S are mutually disjoint.
(B) The minimal right neat subsets of S are singletons.
(C) S contains exactly one minimal right ideal.

Proof. Denote the set of MRI’sof Sby {R, : a € A} for an index set
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A, and denote the set of MRN subsets of S by {K; : i € I} for an index set
I

(i) By Theorem 3.4, any cross-section of {R, : a € A} is a MRN
subset of S. Conversely, foriin I, K; N R, # O foreachain4.Ifain 4
and b, k € K; N R,, then kR, = hR, = R,. It follows from Theorem 3.2
(iii) that k = h.

(ii) By Theorem 3.3 (iii), the number of elements in any K; is inde-
pendent of i in 1, and hence, by (i), is equal to |4].

(iii) Proceeding indirectly, assume some (and hence every) K; con-
tains more than one element, and consider the set K defined by K =
(Ki N R, U (K;\R,), for a fixed i, jin I, a in A. By part (i), K is a MRN
subset of S, but K N K; # 0. Thus (A) implies (B).

If the K;’s are all singletons, then by (ii), (B) implies (C).

If |[A| = 1, then by (i), a cross-section of the MRI is precisely a MRN
singleton subset and therefore (C) implies (A).

The following theorem relates the MRN subsets of a semigroup S to
the right simple congruences on S.

THEOREM 3.6. Let S be a semigroup with minimal right ideals. Then:

(1) Sisadisjoint union of right neat subsets.

(ii) The decomposition of S in (i) induces a right congruence p on S.
(iii) p can be characterized as follows. For some minimal right neat
subset K of S and for a fixed x in K,

p={(1)€ESXS:xs=xt}
(Accordingly, we write p= p,.)
(iv) p, is right simple in that for each a, b in S there exists u in S such

that (au)p, = bp,.

Proof. (i) Let x be fixed in some MRN subset K. For each sin S, xsin
Ksimplies that s € x!~"Ks. For convenience, denote x = Ks by [s]. Thus

(3.7) S=U{[s]:s €S}

If[s] N [r] # O for some r and s in S, then there exists b in S such that
xb € Ks N Kr. Hence there exists A, k in K such that xb = hs and xb = kr.
But then by Theorem 3.2 (iii), # = x = k and so xr = xb = xs. Hence if ¢
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€ [s] then x¢ = xs = xr, s0 ¢ € [r]. Therefore [s] C [r], and similarly [r] C
[s]. Hence [s] = [r] and the decomposition (3.7) is a partition of S.
Let Y denote a set of representatives for {[s] : s € S}. Thus

(3.8) S=U{l:yevr}

and this union is disjoint. For @ in S and y in Y, the set Ky is right neat and
so there exists z in S such that (xa)z € Ky, i.e., az € [y] and therefore [}] is
right neat.

(i) Let p, denote the equivalence relation induced on S by the
partition (3.8). If (s, #) € p, and ¢ € S, then there exists y in Y such that s,
t € [y] and hence xs = xt = xp. Thus xsc = xtc = xyc, so sc, tc € [yc].
Assuming [yc] meets [y’] for y € Y, implies by part (i) that p, is right
compatible.

(iii)) If (s, #) € p, then xs = xt = xy for some y in Y. Conversely,
suppose xs = xt. Forsome yin Y, s € [y] and thus xs = xt = xy, i€, (s, ?)
€ p,.

(iv) Since x € K, a MRN subset of S, x liesin a MRI R of S; thus xS
= R For any a, b in S, there exists u in S such that xau = xb since xS =
xaS = R. Hence by the definition of p, , aup, b.

The following definitions will be used frequently. Let S be a semi-
group and let X be a subset of S.

3.9 Forxin S,letp, = {(a,b) € S X S: xa = xb};
(3.10) px = {(a,b) E S X S:xa = xbforall xin X}.

ReMARK 3.11.  Note thatpy = N {p, : x € X}, and that for each x in
X, py is aright congruence on S. Hence, py is also a right congruence on S.

The above definitions are motivated by the observation that a right
simple congruence is a right group congruence if and only if it is left
cancellative. The following remark easily generalizes to the left [right]
cancellative case.

REMARK 3.12. [2, Lemma 9.49, p. 164]. Let {0, : i € I} be the family
of all cancellative congruences on a semigroup S. Theno = N {0, :i € I}
is a cancellative congruence on S.

Since w is a cancellative congruence on any semigroup S, the foregoing
remark shows that there exists a (unique) minimum left cancellative con-
gruence on S.

Define A by
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(3.13) A ={(a b) € S X S:xa = xbforsome x in S}.

Itis evident that A is a reflexive, symmetric, and left cancellative relation on
S.If o is any left cancellative relation on S and (g, b) € A, then xa = xb for
some x in S, so (xa, xb) Eo. By the left cancellativity of o, (a, b) € o;
therefore A C ¢. Thus if A is a congruence on S, then it is the minimum left
cancellative congruence on S. A major difficulty with X is in its being
transitive for an arbitrary semigroup S.

In the following development, the approach used to overcome the
transitivity problem of A is to fix the element x in the definition of A. Thus
for a fixed x in S, A = p,. Relabeling A as p,, p, (and hence py) becomes a
tight congruence on S. Moreover, py C p, C A for all x in X. It remains
then to find conditions on S such that p, is left compatible and right simple.
A result in this direction is the following theorem.

THEOREM 3.14. Let A be a subset of the semigroup S and let o be a
congruence on S. Define 64 by

64 = N{o, :x €A}

where, for each x in A
o, = {(a,b) € S X S:(xa xb) € o}.
(1) IfAisarightideal of S, then a4 is a congruence on S.
(2) Ifey, is left cancellative, then 6, = o, for each x in A.
(3) If A is a minimal right ideal of S, then o4 is left cancellative if and
only if it is a right group congruence on S.

Proof. (1) The relation o, is a right congruence on S for each x in 4.
Thus it suffices to show that o, is left compatible since the intersection of
right congruences is a right congruence. If (g, b) € o4, then (g, b) € o, for
allxin A.If ¢ € S, then xc € AS C A, so that as,. b, that is, xcasxch. But
then by the definition of o, cao, cb, i.e., (ca, cb) € o, foreach xin A. Hence
(ca, cb) € o4 and o4 is a congruence on S.

(2) Suppose g, is left cancellative. Clearly o4 C o, for all x in 4.
Conversely let (a, b) € o, and y € A. Since xaoxb and o is a congruence,
then (yxa, yxb) € o and therefore (xa, xb) € o, for every yin 4, i.e., (xa,
xb) € a,4.Since a4 is left cancellative, then (a, b) € o,. Thus for each x in
A,0, Co,4Co0,ie,04 =0,

(3) IfAisa MRIof Sthen x4 = A for each x in 4. Suppose o4 is left
cancellative. If a, b € S then for any x in 4, xa and xb are in 4 and
therefore there exists y in A4 such that xay = xb, that s, ayo, b. By (2) above,
ayo,b. This shows that S /o, is a right simple semigroup.
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If x is in A4, then there exists y in 4 such that xy = x. Therefore xy? =
xy which implies that y’s,y and hence that y’s, Y. Thus, yo, is an
idempotent in § /04 and therefore by Lemma 2.2 (2), 04is a RGC.

Conversely, if 6, is a RGC on S then, by definition, it is a left
cancellative congruence on S.

ReMARK. The converse of Theorem 3.14 (1) is false. Let S be the
additive semigroup of positive integers, and let6=tand 4 = {1}. Then for
a,b € S,(a b) € o ifand onlyif (a, b) € o), thatis,ifand onlyifl + a =
1 + b.But this last equation is true if and only if a = b and hence 0, = 0,
= 0 = t.So g, is a congruence but 4 is not a right ideal of S.

The converse of Theorem 3.14 (2) is also false. Consider for example,
the multiplicative semigroup of the integers modulo four, i.e., S = {0, I’
2', 3'}. Choose the subset {2’} of Sto be 4 and seto = ¢. Theno, = 0, =
tU {0 2),(20),(1,3),3 D}.Now (00 - 2,0 - 3) €04 but(2,3) &
04,1.e., 0, is not left cancellative.

The following special case of Theorem 3.14 is worth noting,.

COROLLARY 3.15. Let A be a minimal right ideal of a semigroup S, let
o be the identity relation on S and define p, by equation (3.10). Then: 6, =
p4. Moreover, p, is left cancellative if and only if p4 is the minimum right
group congruence on S.

Proof. Certainly o, is equal to p,. Now suppose p, is left
cancellative. Then by part (3) of Theorem 3.14, p4 isa RGC on S.

If6is RGCon S, then by Theorem 2.7, 6 maps 4 onto S/¢. Hence there
exists y in A4 such that yo € Es/,. Fora, b € S'such thatap, b, xa = xb for
all x in 4. In particular then, ya = yb. Thus under o, yas = ybo. Since yo is
a left identity for S/e, aoc = bo, thatis, p, C o. Hence p, is the MRGC on
S.

The converse is evident.

It is now logical to consider necessary and sufficient conditions on §
such that p, of equation (3.9) is a congruence. The next theorem charac-
terizes those p, which are left compatible.

THEOREM 3.16. Let S be a semigroup containing minimal right ideals,
let K be a minimal right neat subset of S and let x € K. Let Y denote a set of
representatives of the set of disjoint right neat subsets of S. Then the relation
px, as defined by equation (3.9), is a congruence on S if and only if the
Jollowing condition is satisfied:
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(C) Foreachcin S andforeachyin Y, there existsuin Y such that x'=" Ky
= (x¢)!™" Ku.

Proof. By Remark 3.11, p, is a right congruence on S. Thus to prove
the theorem it suffices to show that condition (C) is necessary and sufficient
for p, to beleft compatible. Assume that p, is a left congruence on S and let
s, t € [y] where for convenience x|~ Ky is denoted by [y]. Thus xs = xy =
xt and therefore (s, f) € p,. Forany cin S, p, being left compatible implies
that (cs, cf) € p,. Hence there exists )’ in Y such that cs, ¢t € [y’], thatis, xcs
= xct = xy’. Thus s, t € (xc)[‘"Ky'.

Conversely, let (s, /) € p,, ¢ € S, and assume condition (C) holds.
Since (s, f) € p,, there exists y in Y such that xs = xt = xy. By hypothesis
then, there exists )’ in Y such that xcs = xct = xy’. This last equation
implies that cs, ct € [)'], thatis, (cs, ¢f) € p,.

THEOREM 3.17.  Let S be a semigroup containing minimal right ideals
and denote their union by R. Then the relation pr defined by

pr ={(a,b) ES X S:ra=rbforallrinR},
is a congruence on S. Moreover, the following are equivalent:

(1) p, is a congruence for some x in R.

(2) px is a congruence for every x in R.

() px = pr forsomexinR.

(4) px = pr foreveryxinR.

(5) px =p, forallx, yinR.

(6) pr is the minimum right group congruence on S.

Proof. ByRemark 3.11, py is aright congruence on S with X = R. To
show that py is left compatible, let (a, b) € pg andc € S.Foranyr € R, rc
isin R. Hence rca = rcb, and therefore (ca, cb) € p, for allrin R.

(1) implies (3). Assume that for some x € R, p, is a congruence on S.
For r € R there exists u € S such that rxu = r since rxS is the MRI of S
containing r. If (a, ) € p,, then (ua, ub) € p, and therefore xua = xub.
Multiplication by r yields rxua = rxub, i.e.,ra = rb. Hence (a, b) € p, and
therefore p, C p, for all 7in R. Thus pi = p,.

(3) implies (6). There exists u € S such that xu = x and therefore xu 2
= xu. Thus (42, u) € pg and Es,, is nonempty. By part (iv) of Theorem
3.6, p, is right simple and hence S/pyis a right group by Lemma 2.2 (2).

Nextleto be any RGCon S. By Theorem 2.7, 4 maps xSonto S/o and
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hence there exists e € xS such thates 4 = eoc € Ej,, say e = xs. If (g, D)
€ pg, then since py is a congruence and equal to p,, (sa, sb) € p,. Hence
xsa = xsb and applying o 1 yields (xsa)o = (xsb)o, that is, (ea)o(eb). But by
Lemma 2.1, eo is a left identity for S/o and therefore aob. Hence pg C 0 50
pg isthe MRGC on S.

(6) implies (5). Let (a, b) € p, for some k in R. Then ka = kb and
therefore (ka)pr = (kb)pg. Since pg is a RGC it is left cancellative and
therefore app = bpg,i.e., (a, b) € p, forall rin R.

(5) implies (1). Since p, = p, forall x, rin R, then px = p, forsome x
in R. By the first portion of the theorem, p, is therefore a congruence on S.

(5) implies (2). Since py is a congruence and p, = p, forallx, yin R,
then pr = p, for each x in R, i.e., p, is a congruence for each x in R.

It is evident that (2) implies (4) and that (4) implies (5).

CoroLLARY 3.18.  If'S is a commutative semigroup with kernel R, then
Jor any x in R, p, is the minimum group congruence on S and S /Px is
isomorphic to R.

Proof. For every x in S, p, is a right congruence on S and thus a
congruence on S. In particular, taking x in R, Theorem 3.17 and its left-
right dual imply that p = p, is the minimum right simple and left simple
congruence on S, i.e., p is the MGC on S.

The kernel R of § is also a group and if x denotes the identity of R,
then xr = xt for r, ¢in R if and only if » = ¢ Thus p" is one-to-one on R, so,
by Theorem 2.7,

S/px = prh = Rpxh =R
ReMARK. The converse to the first conclusion of Theorem 3.17 is

false. For example, let S(-) be the semigroup defined by the following
table:

c
c
d
e

f

The unique MRIof S'is dS = fS = {d, f},s0 R = {d, f}. Neither p; nor p,
are congruences on S. However, p; is a congruence, but not a right simple
congruence on S.
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Another condition which is sufficient to insure the left compatibility of
px is given by the following theorem.

THEOREM 3.19.  Let S be a semigroup and assume there exists an x in S
and a subset A of S such that Ax = xS. Then p, is a congruence on S, and
moreover, if A is a subsemigroup of S, then S /p, is a homomorphic image of
A.

Proof. Since p, is a right congruence on S, it suffices to show that p,
is left compatible. Let ¢ € S and suppose ap, b, i.e., xa = xb. There exists y
in A such that yx = xc and therefore xca = yxa = yxb = xcb, that is,
(ca)ps (cb).

Next, suppose that A4 is a subsemigroup of S and define the mapping 6

from 4 to §/p, by
0:a— cp,,forallain 4,

where c is an element of S such that ax = xc. Ifa € 4 and ax = xc, ax =
xd, where ¢, d € S, then xc = xd, i.e., cp, = dp, and 0 is well defined.

Ifa, b € A thenab € A, and hence there exists an rin S such that (ab)x
= xr. Corresponding to a and b there exist s, ¢ in S such that ax = xsand bx
= xt. But then:

xr = (ab)x = a(xt) = x(st),
and therefore rp, = (st)p,. Hence:
(@b)d = rp, = (sO)px = (spx)(tpx) = (ab)(b0),

i.e., @ is a homomorphism of 4 into § /Px-

Lastly, for any s in S, there exists @ in 4 such that ax = xs and
therefore 6 is a homomorphism of 4 onto S/p, .

THEOREM 3.20. Let S be a semigroup and let I be a right ideal of S
which contains a right identity x. Then the relation p, defined by equation
(3.9) is a congruence on S. Moreover the following are equivalent:

(1) [Iisaminimal right ideal of S.

(2) Iisagroup.

If this is the case then, in addition,

(3) px is the minimum right group congruence on S.

(4) py is the minimum group congruence on S.

(5) px = p, forallyin R, where R is the union of all the minimal right
ideals of S.

(6) S/px is isomorphic to 1.

Proof. (1) implies (2). If Iis a MRI of S, then I is a right group. Ife €



RIGHT SIMPLE CONGRUENCES ON A SEMIGROUP 139

E, then, by [1, Lemma 1.26, p. 37], e is a left identity for /. In particular, ex
= x. On the other hand, ex = esince x is a right identity for I. Hence |E, |
= 1 and therefore, by [1, Theorem 1.27, p. 38], [ is a group.

(2) implies (1). For alliin I, il = I. Thus I'isa MRI of S.

Now assume that 7'is a MRI of S.

Proof of (3). By (2), I is a group and hence also a right group.
Therefore, by Theorem 2.7, S /Px is ahomomorph of J, i.e., p, isaRGCon
S.If (a, b) € p,, then xa = xb, so (xa)o = (xb)o for any right congruence ¢
on S. But xo is then a left identity for § /o and therefore as = bo, i.e., (a, b)
€ 0. Thus p, Co.

(4). Combining the proof of (3) with condition (2), we conclude that
px isthe MGCon S.

(5). Since p, is a congruence on S, it follows from Theorem 3.17 that
px = p, forall yin R.

(6). By (1), xS = I = Ix and hence by Theorem 3.19, S/p, is a
homomorph of I. If (i, j) € p, and i, j € I, theni = ix = jx = j,i.e.,,p, is
one-to-one on 1.

If a is an element of a regular semigroup S, then the set of all inverses
of a is denoted by V(a).

COROLLARY 3.21. If S is a left group, say S = G X L, where G is a
group and L is a left zero semigroup, then for any x € S, p, is the minimum
group congruence on S and S /p,. is isomorphic to G.

Proof. Foranyain S, aSis arightideal of S containing a. If b € aS,
then b = at for some ¢in S. By the dual of Lemma 2.2, S'is regular and thus
bt' = att’ for every ¢’ in V(). Since #’ is idempotent, by the dual of Lemma
2.1, ¢ is aright identity for S, so b#' =a. Thus bS = aS, soaSisa MRIof S.
Therefore each element of S is contained in some MRI of S, i.e., S = R,
where R denotes the union of all MRI’s of S.

If e is an idempotent of S then by the above paragraph, eS is a MRI of
S, and eis a right identity since (eS)e = eS. By Theorem 3.20, eS is a group,
px = pr(=ps) is the MRGC on S, and S/p, = eS. By Lemma 2.2 (4),
eS=G.

A homogroup is a semigroup S containing an ideal 4 which is a
subgroup of S; A is sometimes called a group ideal of S.

CoROLLARY 3.22. Let S be a homogroup, with group ideal I. For every
xinl, p, is the minimum group congruence on S and S /p, is isomorphic to I.
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THEOREM 3.23. Let S be a semigroup which contains a right zero. Denote
the set of all right zeros of S by R, and define pg as in equation (3.10). Then:

(1) R is the (unique) minimal right ideal of S.

(2) Every right simple homomorph of S is a right zero semigroup.

() pr isacongruence on S.

(4) Ifpg isright simple then it is the minimum right group congruence
on S, and S/pg is isomorphic to R.

Proof. The proof of (1) is evident. For (2), let o be any right simple
congruence on S. By Theorem 2.7, the induced homomorphism 0" maps R
onto S/o and therefore o is a RZC.

(3) ByRemark 3.11, it suffices to show that p is left compatible. For
anycin Sand rin R, rc € R. Thus if apgb, then (rc)a = (rc)b forallcin S,
rin R. Hence (ca, cb) € p, for all rin R so (ca, cb) € pg.

(4) Ifpp isrightsimple, then since r2pgrforallrinR,p, isa RGC.If
oisany RGCon S and (g, b) € pg, then ra = rb for r in R implies that (ra,
rb) € o.Butr® = rimplies that ro € E/, and therefore ra is a left identity
for S /0. Thus aob and p; C o.

Lastly,if (s, f) € pr ands, ¢ € Rthens = rs = rt = tforallrin R.
Thus pgt is one-to-one on R and pz® maps R isomorphically onto S /Pr-

For comparison, recall that in Corollary 2.8, S having a left zero
implied that the MRGC on S was w.

The next theorem is closely related to Theorem 3.17 in that p, is
assumed to be the MRGC on S and the structure of S is then determined.

THEOREM 3.24. Let S be a semigroup containing minimal right ideals
and denote the union of the minimal right ideals of S by R. Suppose the
relation pr on S defined by

pr = {(a,b) €ES X S:ra=rbforallr € R}
is the minimum right group congruence on S. Then:

() Es =+ 0.

(2) Every minimal right ideal of S is isomorphic to S/pg.

(3) Each equivalence class A of pg contains a unique minimal right
neat subset of S, that is, A contains exactly one element of each minimal right
ideal of S.

(4) Let B be an index set for the collection of minimal right neat subsets
of S specified in (3). Then pr can be characterized as follows:

pr = {(a, b) € S X S: K;a = K,bforeachiin B}.

Proof. For convenience, p will be denoted by p in this proof.
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(1) Letep € Eg/,. Since S/p is right simple, ep is a right neat subset
of § and hence contains a MRN subset of S meeting each MRI of S. Let x
€ I N ep for some MRI, 7, of S. Since x € ep, then xx = xe and therefore
xex = x°. Butepis aleft identity for S/p and hence (ex)px, which implies
xex = x 2. Combining this with xex = x? yields x> = x°. Since x*I = I,
then to each x in I N ep there corresponds u in I such that x>« = x. Thus

x=xu=xu= x(x*u) = x°.
So x € Eg and in particular, x is a left identity for 1.

(2) LetIbeaMRIof Sand let x be a left identity element of 1. For
anyiin I, il = I and hence, since E; # [J, I'is a right group. By Theorem
2.7, Iis mapped onto S /p by the natural homomorphism pt . If g, b € I and
apb, then xa = xb. But x is a left identity for I and therefore p is the identity
relationon 7, i.e., I = S/p.

(3) Letap be any p-class of S and suppose that i, j € I N ap, where I
and x are as defined in (2). Since p = p,, then xi = xj = xa. Since x is a left
identity for I, i = j = xa, that s, |I N ap| = 1. Hence ap contains exactly
one cross-section of the MRI’s of S.

(4) If(ag b) € pthen xa = xb forall x in R. Hence for each iin B and
for each x in K}, xa = xb, i.e., K;a = K;b.

Conversely, if a, b € S are such that K;a = Kb for each i in B, then
there exist A, k in K; such that ha = kb and therefore, by Theorem 3.2 (iii),
h = k. Thus ha = hb for each i in B and for each 4 in K. By (3), R =
U {K;:iin B}. Thus ha = hb for each hin R, i.e., (a, b) € p.

The following result is a partial converse to Theorem 3.24.

THEOREM 3.25. Let S be a semigroup containing minimal right ideals.
Assume that for some minimal right neat subset K of S, and for some x in K,
px satisfies the following two conditions.

(1) Each p, -class of S contains a unique minimal right neat subset of
S.

(@ If(a, b) € p,, then Ha = Hb, where H is any of the unique
minimal right neat subsets from condition (1).

Then p,, is the minimum right group congruence on S.

Proof. Let C be the set of MRN subsets of S provided by hypothesis
(1). Index Cby aset B,say C = {K; : i € B}. Thus Bis also an index set for
the p, -classes of S. We first show that:
(3.26) R=U{K,;:i€ B},

where R denotes the union of all MRI’s of S. Clearly the right side of (3.26)
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is contained in the left. Conversely, if r € R, then r lies in some MRN
subset of S.

Since p, is a right congruence on S, it remains to show that p, is left
compatible. By (3.26), x in K implies that x € K; for some i in B. Let (a, b)
€ p, and ¢ € S. The set K;c is a MRN subset by Theorem 3.2 (iv), and
hence, by hypothesis (2), K;ca = K;cb. But then by Theorem 3.2 (iii), xca
= xcb and therefore p, is a congruence. Moreover, by Theorem 3.17 (6), p,
is the MRGC on S.

At this point it would seem natural to ask if the existence of MRN
subsets is a necessary and sufficient condition for a minimum right simple
congruence to exist. The necessity of this condition is an open question,
whereas this condition is not sufficient. Consider, for example, the full
transformation semigroup Ty on the set X = {1, 2}. The constant trans-
formations of X form a MRI of Ty, say R, but the only right simple
congruences on Ty are ¢ and w. In fact pp = .
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