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A NOTE ON COMPACT SEMIRINGS WHICH ARE
MULTIPLICATIVE SEMILATTICES

P. H. KARVELLAS

The topic of this note is the structure of a topological
semiring in which a semilattice (commutative, idempotent
and associative) multiplication, with identity and connected
upper sets, has been postulated. Assuming the topology to
be compact, additions compatible with the multiplication can
be characterized for certain canonical subsets of the semiring.
In particular instances the characterization of addition can
be extended to the entire semiring itself.

Certain subintervals, arising naturally from the analysis when
the underlying space is the interval [0, 1], are generalized to con-
tinuum subsemirings of an arbitrary semiring possessing a semilattice
multiplication with identity. The addition in the minimal additive
ideal can be specified precisely and each additive subgroup is a single
element. If the minimal additive ideal and the set of additive
idempotents coincide, a complete description of the semiring addition
is possible in terms of homomorphisms of the multiplicative semigroup.
The same procedure can be employed when the space is an interval
on the real line.

A topological semiring (S, +, -) is a Hausdorff space S on which
are defined topological semigroups (S, +) and (S, ), for addition and
multiplication, such that z(y + 2) = zy + 22z and (v + y)z = 22 + Yz
for all z, ¥y, and 2z in S. This structure will be investigated under
the restrictions that (S, -) is a topological semilattice, with identity
1 and multiplicative zero element 0, the set S is compact and upper
sets M(x) = {y: 2y = x} are connected for each « in S. Such a semi-
ring will be called a semilattice semiring or SL-semiring. Multiplica-
tion is therefore commutative and idempotent in a semilattice semiring
and an induced partial order, with closed graph, results from defining
<y if ©x = xy.

Unless specifically altered, both (S, +, -) and S shall refer to
semilattice semirings in the analysis which follows.

Particular examples of SL-semirings appear in [5], where S is
the real number interval [0, 1]. The characterization of such interval
SL-semirings is given in Example 1 and employs two continuous
functions satisfying certain required conditions on subsets of [0, 1].
A more general space and analysis will, of course, be subject to
rather more exaggerated ambiguities.

Ideals will be semigroup ideals in the sense of [1] and kernels

195



196 P. H. KARVELLAS

(minimal ideals) with be written as K[+] and K[-]. In the compact
case kernels are nonvoid and closed [7], as are the idempotent sets
E[+] ={z:x =2 + z}and E[-] = {x: 2 = 2?}. The union of all addi-
tive subgroups will be written as H[+] and for ¢ in E[+] the mawxi-
mal additive subgroup with identity element ¢ is H[+](t). For a
positive integer » and element x, nx denotes the n-fold sum of z.
Equivalently nx is the product of two elements of the semiring.
The element (1 + 1) will be written as p.

For an element « let L(x) = {y: 2y = y} and M(x) = {y: 2y = x}.
If <y, that is if x = xy, then define C(x,y) ={zix =2 =y} =
M(x) N L(y) = y - M(x). In any SL-semiring, M(x) is connected, im-
plying the connectivity of C(x, ) for x < y. It is trivial to verify
that C(x, y) is a subsemiring if and only if ze E[+]. Lastly, from
S=E[-,r+y=(@+ y)?=2x+ plxy) + y for all z, yeS.

2. Connected subsemirings of a semilattice semiring. In Ex-
ample 1 is given the characterization, obtained in [5], of all SL-
semirings on the interval [0, 1]. The resulting subintervals [0, ¢],
[e, f1, [f, »], and [p, 1] have obvious generalizations to an arbitrary
SL-semiring defined on a general topological space.

ExamMpPLE 1. Let S =[0,1] with multiplication 2y = min (x, ¥).
Any compatible semiring addition, with « + y =y in K[+], can be
characterized as follows. Pick arbitrary elements e, f, and p in [0, 1],
where 0 <e<f<p<1. Let F:][0, p] —[e 1] and G: [0, p] — [f, 1]
be continuous functions such that

(1) F is the identity on [e, p];

(2) F decreases on [0, ¢] and G decreases on [0, f];

(3) for x¢€|0, p], pG(x) = max (f, pF(x)).

The addition on S is defined by

r+y=9p T, Y=ZD
=xF(ly) y=x,y<p
= yG(x) r<y,z<p.

The subintervals [0, ¢, [e, f], [f, ], and [p, 1] are connected subsemi-
rings with the additions below.

x+y=max(x,y) = ycl[0,e] s+k=k kele fl,seS
T+ y =2y v, yelf,p] s +y=p» =9e[p1].

The additive kernel K[+] is the subinterval [e, f], while E[+] = [0, p].
In any SL-semiring (S, -) is commutative and the kernel KJ:]

must reduce to a singleton, denoted hereafter by 0 [4]. It is easy
to verify that 2¢ = 42 for each x in S and from [3] both E[+] and
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H[+] are multiplicative ideals, requiring 0¢ E[+]. Because (S, -)
has an identity, E[+] is closed under addition [3], and both E[+]
and H[+] are connected [8]. Alternatively p=1+1=p*=p+p
and px =« + 2 for each «# in S. The mapx — px is continuous and
M(0) = S is connected. Hence E[+] = pS is connected. As will be
proven subsequently, E[+] = H[+]. Noting that S = M(0) and is
connected, we have the result below.

THEOREM 1. Let (S, +, -) be a semilattice semiring.

(1) K[]={0}< E[+] and S is a connected set.

(2) E[+] ={z + 2: 28} and is an additive subsemigroup.
(3) E[+] and H[+] are connected multiplicative ideals.

The next result characterizes the operations in the minimal ad-
ditive ideal K[+].

THEOREM 2. Let (S, +, -) be a semilattice semiring. Then:

(1) K[+] is a subsemiring of S contained in E[+].

(2) There exist elements e and f in S such that K[+] = C(e, f)
and f=14+k+ 1 for each element ke K[+].

(8) K[+]1=(S+e)+ (¢ + 8S), with each element z in K[+]
uniquely of the form 2z, + z,, where z,€S + ¢ and z,ce + S. More-
over, for elements %, x, in S+ ¢ and ¥y, Y, in e + S, the kernel
operations are given by

(xl + yl) =+ (.’1/’2 + yz) =2 + Y.
(@, + y) - (@ + Y,) = 2.2, + Y.Y,
e+S)N(ES+e) ={e}.

Proof. Because S*N K[+] is nonvoid, the additive kernel is a
subsemiring using a result from [6]. From S = E[-] and Theorem 1
of [7] each additive subgroup is totally disconnected. However,
K[+] is the union of the connected maximal subgroups H[+](f) =
t+ S+t for ¢ in K[+] N E[+] [8]: hence H[+](¢) = {t} for each
te K[+] N E[+] and thus K[+] < E[+]. The compact, commutative
subsemigroup (K[+], -) has a multiplicative kernel which is a single
point. Let {e} denote this kernel. Then f=14 ¢+ 1 is in K[+]
and, for each element k in K[+], ¢ < k while

fk=k+e+kek+ S+ k= H[+](k) = {k}
1+k+1=fA+k+1)=f+k+ feH[+If) ={f}

proving that 1 + K[+] + 1 = {f} and K[+] & C(e, f). For any ele-
ment xeCle, f), x=af=2(l+e+1)=2+¢e¢+xecCle f) N K[+]
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and hence K[+] = C(e, f). The characterization of addition in K[+]
follows directly from Theorem 1.3.10 of [4] and the triviality of
maximal additive subgroups in K[+]. For z, x, in S+ ¢ and y,, ¥,
in e+ S we have that o, =2, +e¢, ¥y, =¢ + y, and H[+](e) = ¢ +
S + e = {e¢}, implying therefore that (¢ + S) N (S + ¢) & H[+](¢) and
that
(@ 4+ y) - (®2 + ¥2) = % + Y% + Y2 + YiYe

=22, + (e + Y)%: + (T, + &)Y + ViY2

=X, + e+ Y, + XY, + €+ Yl
X + €+ Yy,

= X% + Yi¥Ys -

The subsets of interest are the following: E[+] = »S, K[+] =
Cle, 1), M(p) = {x: px = p}, L(e) = eSand 1 + S+ 1. Both E[+] and
K[+] have been shown to be connected subsemirings from the preced-
ing arguments. As proven in Theorem 4, the requirement that M(x)
be connected for each z in S results in p = p + 1 and implies trivi-
ality of addition in M(p). If the restriction on upper sets is removed,
partial results can still be obtained.

I

THEOREM 3. Let (T, +, -) be a compact semiring, with E[+] =
{q}, such that (T, -) is a semilattice with identity 1. Then:

(1) 1+ax=2+1and g=1+1=2+q + x for all  in T.

(2) (T, +) is commutative.

(8) T+ T is the additive kernel.

Proof. Since T=E[-],1+1=01+1)¢=01+1)+QQ+1)eE[+]
and thus ¢ =1+ 1. Moreover, K[-] < E[+] = {q}. Hence q = qx
for each z in T. It iseasilyshownthatl +ax =01+ 2)=1+ 32 =
q + 1 + x for each element x of T. Analogously x +1=2+ 1+ q.
As a result one obtains the equations

@+ -QI+2)=20+2)+(1+2)=¢+1+a=1+w
=@+D+@+lx=2c+1+q¢g=2+1.

Moreover, ©* + ¢+« =2 + qr + © = 2(29) = ¢. In a similar manner
it can be proven that z + y = (x + ¥) - (¥ + ) = y + = for all x and
y in T. Addition in T is therefore commutative.

Lastly, because (T, +) is a compact semigroup with a single
idempotent element, K[+] = H[+1(¢) = T + q + T [8]. Thus, for «
and ¥y in Te+y=@+yP=a+quy)+y=2+q+yecK[+]
Therefore T+ T< T + q + T = K[+], implying that K[+] = T + T.

THEOREM 4. Let (S, +, -) be a semilattice semiring, p =1 + 1.
Then:
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(1) (M(p), +, *) is a subsemiring with trivial addition.
(2) L(e) = eS is a distributive topological lattice.

Proof. From M(p) = {x: px = p} it is clear that M(p) is a con-
tinuum subsemiring with a single additive idempotent. Theorem 3
applies and it is now only necessary to note that the additive kernel
of the subsemiring M(p) is the connected additive group M(p) + » +
M(p). However, M(p) & E]-] and from [7] this group must also be
totally disconnected. Consequently M(p) + M(p) = {p} and »p =1+

=p+1=1+ p.

Recall that K[+] = C(e, f) where {¢} is the multiplicative kernel
of the subsemiring K[+]. The subcontinuum eS = L(e) is a subsemi-
ring with identity ¢ and e=e¢ + 2 =x + ¢ for each 2 =ex in eS.
Thus for elements « and y of ¢S we obtain

@+y)xr=xet+zy=al+y =xe=x
@t+tyy=aytey=@+ey=ey=y.

Therefore,  + y € M(x) N M(y) and for any te M(x) N M(y) it follows
that ¢(x + y) = te + ty =« + y. That is, « + y is the least upper
bound of 2 and y in the partial order defined by the semilattice
multiplication and consequently (eS, +, -) is a lattice. Since multipli-
cation distributes over addition, both lattice distributive laws hold.

COROLLARY 5. Let (S, +, ) be a semilattice semiring. If
E[+] = {0} then S + S = {0}.

THEOREM 6. Let (S, +, +) be a semilattice semiring and let f
denote the maximal element of the additive kermel, while p =1 + 1.
Then:

(1) These are equivalent statements.

(a) (E[+], +) is commutative.
(b) 2+ p=p+ 2z for all x in E[+].
(¢) x+p=p+ 2 for all x in S.

(2) If (E[+], +) is commutative, then (E[+], +, -) is a top-

ological lattice if and only if f = p.

Proof. Recall that E[+] is a connected subsemiring. For any
v in S we have that t + p = (@ + p)*=(p + 1) + p and (p + Dz e
E[+]. Thus if « + p = p + = for z in E[+], the same result holds
in S, and vice versa.

Clearly, (a) — (b). Assume that elements of S commute with p
under addition. Forz,yeE[+], 2 =2 + 2 = px, 2y = pxy, Yy =Y +
y = py and thus the equations below are obtained.
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r+y=@+y=cv+ay+y=c@+y)+y=ay+@+y)
=r+@+py=@+y) +ay

y+to=@W+ay=y+taryt+ar=xy+ (y +2)
=W+ +ay.

It follows that

@+y) - W+ar)y=2y+x)+yy +2)=2y + @ +y) + 2y
=@+y)w+E@+y)r=2y+@w-+2x)+2y

which implies that (E[+], +) is commutative.

Assume now that addition in E[+] is commutative. Because
distinct idempotents in K[+] do not commute in the compact case
[4], we obtain K[+] = {f}. If f= p then, from Theorem 4, E[+]
is a distributive topological lattice. Conversely, if E[+] is a lattice
then, since one distributive law holds, E[+] is a distributive lattice.
Therefore, because a = a(a + b) = a + (ab) for all ¢ and b in the
lattice E[+], we obtain

p=p+of=p+of=p0+ f)=0f=f.

The following example illustrates the general idempotent semi-
lattice semiring with commutative addition which can be constructed
on an interval.

ExaMpLE 2. Let S = [z, p] be an interval of real numbers with
min multiplication. Fix an element fin S and denote the subintervals
[2, f]1 by A and [f, »] by B respectively. If {f}is the additive kernel
of an idempotent and commutative addition semiring on [z, p], then
B=p+ B and ¢ + ¥y = min(x, ¥) in B, while # + y = max(z, ¥) in
A. The map f: S— B defined by f(x) =1 + z is continuous and is
the identity on B. Moreover, f reverses order on A (zy =2 in A
implies f(x) - f(¥) = f(y) in B). Any such addition on S is therefore
given by the characterization

r+y=xF@y) y=w
=yFlx) z<y

where F: S— B is continuous, the identity on B and order-reversing
on A.

The existence of the three elements (=1 + 1), e and f, where
K|[+] = C(e, f), has allowed the characterization of addition in M(p),
K[+] and L(e). The next result completes the description of con-
nected subsemirings which are analogues of the subintervals appearing
in Example 1.
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THEOREM 7. Let (S, +, ) be a semilattice semiring, p =1+ 1
and K[+] = Cle, f) for elements e < f in E[+]. Then:

(1) H[+] = E[+] and each additive subgroup is a single point.

(2) 1+S+1=1+E[+]+1& M(f)NE[+] with addition
given by x +y =2y =y + w.

(8) Forxel+S+1, yeMp), x+y=ac=y+ .

(4) M)+ K[+]+ M(f) = {f}

(5) e+l=e+sandl+e=s+e for all s in S.

(6) S+p»p+ Ss E[+].

(7) The boundary B of E[+] is connected.

Proof. For te E[+] the maximal additive subgroup H[+](¢) is
a subsemiring since ¢ = t* [2]. Moreover, H[+](t) = M(t) since for
each ze€ H[+]1(#), tre E[+]N H[+]() = {t}. Consequently z + x =
px =t and therefore * =z + t = (1 + p)x =t for each x in H[+](¢).
Hence H[+] & E[+] and each additive subgroup is a single element.

Clearly 1 + E[+] S 1+ Sand, becausel + 2 =1 + 2)* =1+ px
for each element z, the reverse inclusion also holds. Similarly S +
1= E[+] + 1 and for each element x of S we have that

l1+2+1=Q4+2z+1y=0+2+1)+3x+Q+2+1)
=p(l + ) + p(x + 1)
=pl +x+ 1eE[+].

In addition it follows that f = f+ « + f = f(1 + = + 1), implying that
1+ S+ 1< M(f)N E[+]. For any two elements 2 and v of 1 +
S+ 1, px =px + 1 and py = 1 + py and hence

r+y=@+yP=2a+py) +vy=o1+py)+y
= p(xy) + ¥ = p(ry) = zy

and in a similar manner y + x = 2y. Moreover, for xel + S+ 1
and y € M(p) we obtain

rt+y=xy+y=@€+Dy=ay==x.
For elements k€ K[+], and m, n € M(f), we have that
Ek+n=fk+n)=k+m=k+7f
myk+n=(+k+n=Ff+k+f=Ff.

Consequently M(f) + K[+] + M(f) = {f}.
For any element se S it follows that (e + s) < (¢ + 1) since

(e+1)e+s)=e+es+e+s=e+s

and similarly (s + ¢) < (1 + ¢). In addition, for elements = and y of
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S,pr+1=2+1,1+y =1+ py and therefore « + » + ¥y = p(x +
1+ y)e E[+], implying S+ »p + S& E[+].

Lastly, consider the set T = S\E[+], which is connected since
for each ¢ in T the interval C(¢, 1) & T. Consequently pT is also
connected and pT & E[+]. For xzin T let R(x) = {y: pr = py}. Then
R(x) N E[+] = {px}, x € R(x) and it is easily verified that R(x) is a
compact subsemiring of S. Moreover, C(pz, y) & R(x) for each y in
R(z), implying that R(x) is connected. Suppose now that px is con-
tained in the interior of E[+]. There then exists an open set U,
containing px, and contained in E[+]. However, UN R(x) = {px} is
an open and closed subset of the connected set R(x). Consequently
pT is contained in the boundary B of E[+]. It is now only necess-
ary to note that if re B, then for any open set W containing 7
there exists an open set V, containing 7, such that pVES W. Thus,
since V' N T is nonempty, r is a limit point of the connected set pT
and B is connected.

Identification of the various connected subsemirings of a general
semilattice semiring with the subintervals obtained in Example 1 yields
the correspondences: L(e) with [0, ¢]; M(p) with [p, 1]; and, 1 + S+ 1
with [f, »]. The addition in the additive kernel K[+] of a general
SL-semiring is that of a rectangular band [1], while the existence
of a cutpoint in the Example 1 case produces either a left- or right-
trivial addition [4].

The construction of “characterizing functions”, as given in Ex-
ample 1, is apparently futile for a general semilattice semiring.
However, as demonstrated below, the situation K[+] = E[+] is
amenable to this approach.

3. Semilattice semirings with K[+] = E[+]. In the case of
SL-semiring with K[+] = E[+] it is possible to obtain a complete
characterization of the addition in terms of semilattice homomor-
phisms on the multiplicative semigroup. The following lemma estab-
lishes some preliminary results.

LEMMA 8. Let S be a semilattice semiring with K[+] = E[+].
Then:

(1) S+SgE[+].

(2) For z,yel, {c+yl=2+S+y, 0+220+1<z+1
and x +0=1+0=1 + z.

(3) For ke K[+], k+ M(f) ={k + 1}, {f} = M(f) + k + M(¥).

(4) The maps x £, 1+ 2) and « G, (x + 1) are semiring
homomorphisms with F(x + y) = F(y) and G + y) = G(x). Addi-
tion im S is given by
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x+y =Gk Fy).

(5) For z,yeS, M(x+ 0)nN MO + z) = M(pz) and M(f) =
MAL+2)NMy+ 1) = Mx + 1) M1 + y).

Proof. Noting that p = f and that E[+](= K[+]) is both an
additive and multiplicative ideal, we have the result

x+y=(+y)=2+pky) +yecK[+]

for each # and y in S. Recall that H[+](px) =2 + S+ = = {px}
and therefore, using both distributive laws, we obtain

@+ @+0+)=@+2)+0+@+1)=2+1
=pr+@+0+1)=2+0+1.

Analogously 1+ 2 =140+ x. Using {p(xy)} =2y + S+ ay the
following equations hold.

c+f+y=p@x+rf+y)=pe+1l+y)=ac+1+y
=@+frt+ay)+ @ +f+yf)+ @y +fy+v)
= fr + fley) + fy
=z+ply) +ty=2+y-

Therefore, for any z and y in S, it follows that

t+S+y=f+S+y)=@@+S)+(S+ )
=@+1+8)+E S+1+1y
=rx+f+y=c+y.
For each z in S, 0 + 2z = 2(0 + 1) <0 + 1. Similarly we have
that (@ +1)- 0 +1)=0+2+0+1=0+1=<z+1. Forkin K[+]
and m in M(f)( = M(p)), k + m = p(k + m) =k + 1. Analogously

M(f) + k ={1 + k}, thereby establishing (3) as a special case of
Theorem 7 (4).

Consider the maps F, G: S— K[+] defined by F(z) = 1 + z, G(x) =
2 + 1. Both are semiring homomorphisms and addition in Sis given
by
r+y=r+l+aoy+y=@E+1-1+y)=G=)-F@).
Lastly,  + 0, 0 + 2 < px. And, if t€ M(xz + 0) N M(0 + z), then
tr+0=2+4+0, 0+ 2 =0 + tx, implying the result
tpr) =te +0+te=xc+0+xece+ S+ 2= {px}.

Similarly, M1 + 2) N M(y + 1) = M(x + 1) N ML + y) = M(f).
The next example describes a general semilattice semiring under
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the restriction that the additive kernel K[+] is the set E[+] of
additive idempotents.

ExampLE 3. Let (S, -) be a compact topological semilattice, with
identity element 1 and connected upper sets. Let » be any fixed
element of S. If F and G are continuous semilattice homomorphisms
from S into pS such that

(@) (FoF)x) = F(x), (GoG)(x) = G(x) for all z in S;

(b) F(x)G(x) = px for all x in S;

() (FoG)x)=(GoF)x)=op for all z in S:

(where “o” denotes composition) and an addition is defined on S by

x+y = G@)F(y)

for all x and y in S, then (S, +, -) is a semilattice semiring with
additive kernel K[+] = E[+] = »S.

THEOREM 9. Let (S, -) be a compact topological semilattice, with
identity element 1 and connected upper sets.

(a) For any fixed element » of S, and homomorphisms F and
G into pS defining an addition (+) as in Example 3, (S, +, +) is
a semilattice semiring with K[+] = E[+] = »S.

(b) Conwversely, if (+) is the addition of a semilattice semiring
on the set S, with K[+] = E[+] and addition compatible with the
given semilattice multiplication, then the maps F, G: S—E[+] defined
by F(x) =1+ x, G(x) = 2 + 1 satisfy the properties of Exrample 3
when p ts taken to be the element (1 + 1) of S.

Proof. The verification of part (a) is trivial, albeit tedious. If,
on the other hand, (S, +, -) is a semilattice semiring with E[+] =
K[+], and the maps F and G are as defined, then both are con-
tinuous multiplicative homomorphisms, as proven in Lemma 8. Clearly
FF)=1+F@x)=p+x=1+ 2= F(x) and G(G()) = G(z) for
all # in S. Analogously Fi(z)-Gx) =1 +2)- x+1)=x+1+2z=
px. Moreover, (FoG)x)=14+G(@) =1+« +1=p. Lastly, as
shown in Lemma 8, addition satisfies the definition given in Example 3.

The final two results, presented without proof, describe a SL-
semiring in which E[+] = K[+] and S\E[+] & M1 + 0) U M(0 + 1).
Note that the latter condition is not sufficient to describe the char-
acterization on the interval given in Example 1.

LEMMA 10. Let S be a semilattice semiring with E[+] = K[+].
Then these are equivalent statements for an element x of S.

(1) 1+a=flx+1=f]:

(2) zeMO+ 1) [xe MO + 0)]:
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(3) pr=2+1[px=1+ x].
THEOREM 11. Let (S, +, -) be a semilattice semiring, with

E[+] = K[+], in which S\E[+] S M1 + 0) U M(0 + 1). Then addi-
tion in S is given by:

4y =9y x,y€ M1 + 0)
= px x, ye MO + 1)
=f xe M1 + 0), ye M0 + 1)

= p(xy) xe MO+ 1), ye M1 + 0)
=Gx)-y zeE[+], ye M1 + 0)
= F(y) rxe M1 + 0), y e E[+]
= G(x) xe E[+], ye M(0 + 1)
=x-F(y) xe MO + 1), ye E[+]

where F, G: S— E[+] are defined by F(x) =1+ z, Gx) =2 + 1.

The author would like to express his appreciation to Professor
Michael Friedberg for his suggestions and criticism.
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