
PACIFIC JOURNAL OF MATHEMATICS
Vol. 55, No. 2, 1974

SOME REMARKS ON HARMONIC MEASURE
IN SPACE

WILLIAM P. ZIEMER

The purpose of this paper is to examine the relationship
between harmonic measure and n — 1 dimensional Hausdorff
measure for a class of domains in Rn with irregular bounda-
ries. It is shown for these domains that harmonic measure
and Hausdorff measure have the same null sets.

This investigation was motivated in part by the work of Hunt
and Wheeden, [5], [6]. In these papers they consider Lipschitz
domains, that is, domains whose boundaries are locally representable
by graphs of Lipschitz functions. One of their main results is that
a positive harmonic function defined on a Lipschitz domain has a
nontangential limit at all points of the boundary except possibly those
that belong to a set of harmonic measure zero. In the classical case
where the domain is taken to be the half-space of Rn, the nontangential
limit is known to exist at H71'1 almost every point of the boundary,
c.f., [2], [3]. We will show that for domains Ω satisfying a geometric
measure theoretic condition, Hn~ι (restricted to the boundary of Ω) and
harmonic measure have the same null sets. Therefore, for these
domains, the results of Hunt and Wheeden will represent a general-
ization of the classical case.

By use of the conformal mapping theorem it is not difficult to
prove, for a domain in R2 whose boundary is a simple closed rectifiable
curve, that harmonic measure and H1 measure have the same null
sets. In § 4 it will be shown that the analog of this does not hold
in R3. We give an example of a topological 2-sphere whose boundary
has finite H2 measure and has a tangent plane at each point, but for
which H2 measure is not absolutely continuous with respect to harmonic
measure.

2* Preliminaries* Let Ω be a bounded open subset of Rn and
consider the Banach space C(dΩ), the space of continuous functions
on the compact set dΩ with the norm given by s\ιp{\f(y)\:yedΩ}9

feC(dΩ). For each xeΩ, let Xx: C(dΩ) -> R1 be the bounded linear
functional defined by λ x(/) = uf(x), where uf is the harmonic function
corresponding to the boundary values /. Hence, there is a unit
measure μx on dΩ called harmonic measure, such that

K(f) = uf(x) = j fdμx ,

/ 6 C(dΩ). If G is a component of Ω, the class of Borel subsets of
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dΩ of μx measure zero is independent of x e Ω. Moreover, the class
of μx integrable functions is also independent of x.

The domains under consideration in this paper are contained in
the class of sets of finite perimeter. A measurable set EdRn is
said to have finite perimeter if the gradient of its characteristic function,
when taken in the sense of distributions, is a totally finite vector-
valued measure. A unit vector n is called the exterior normal (in
measure theoretic sense) to E at y if the symmetric difference of E
and the half-space

Rn n {x: (x - y) n < 0}

has density 0 at y. The set of points y where n = n(y) exists is
called the reduced boundary of E and is denoted by d*E. If E has
finite perimeter, then Hn~ι(d*E) < co and

(1) \ div ζdLn(x) = \ ζ(y) n(y)dH*'1(y)
JE Jd*E

for every smooth vector field ζ. Here, Ln denotes ^-dimensional
Lebesgue measure. Proofs of these facts concerning sets of finite
perimeter can be found in [4].

DEFINITION 2.1. For a measurable set Ecz Rn, BcdE, and x e Rn

y

let the variation of B at x be defined by

V(B, x) = ( \n{y) {y-χ)\ dH.-ί(y).
)d*EΓ\B i y —

If v(B, x) < co, then the following is meaningful:

\y)
I x — y \n

In the event E is a domain with smooth boundary, then v(dE, x) can
be regarded as the area of the radial projection

px:dE >Sn~1 ,

and s(dE, x) reduces to the notion of the solid angle.
By means of the Gauss-Green Theorem as given in (1), it can be

easily verified that in case E is a bounded open set with finite
perimeter, then

s(dE, x) = ωn_x , xeE

s(dE, x)= 0 , xeRn - E .

Where ωn_x is the Hn~ι measure of the unit sphere in Rn.
Sets for which v(dEy x) is a bounded function were investigated
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by Krai, [7], for the purpose of giving a geometric meaning to the
normal derivative (taken in the sense of distributions) of the New-
tonian potential.

3* Domains with boundaries having finite variation* Let
Ω c Rn be an open, bounded, connected set, with d(int Ω) = d(Rn-Glos Ω)
and let p e Ω. Then the Green's function for Ω can be written as

(2) G(p, x) = I2*d(p) - I*μp

where I2(x) = ((n — 2)ωn_1)~11 x \2~n and δ(p) denotes the unit measure
concentrated at p. For p fixed in Ω, Gp(x) = G{py x) can be defined
for all x £ Ω and consequently if φ e C°°(Rn) with p £ spt φ,

ΔGV{Ψ) = μ*(<P) ,

where Δ is the Laplacian taken in the sense of distributions. On the
other hand, if Ωk is a sequence of domains with smooth boundaries
invading Ω, we have

AGP{φ) = [ GPΔφdLn = lim [ GpΔφdLn

= -lim ( φFGp-ndH71-1

k-*o° JdΩk

= -lim ( Fφ-FGpdLn

= - ( Vφ* VGPdLn .
)Ω

Therefore,

(3) ^FGp.Fφ= -μP{φ)

whenever p $ sptφ. If h is a harmonic function in Ω whose gradient
is integrable over Ω, then the generalized normal derivative (using the
exterior normal) of h is defined by

Nh(φ) = [ Vh VφdLn
JΩ

for all φeC?(Ift). We shall take the generalized normal derivative
of the right side of (2).

First, it is elementary that

= - 1/ω-χ ( n(y) ( ^ p )

I 2/ —

and as p e β, N(I2*δ(p)) is a measure.
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Now in order to consider N(I2*μP) we impose the additional
hypothesis

(4) \v(dΩ,y)dμf(v)<°θ'

Recall that this condition is independent of p. For any y e dΩ, observe
that

(5) N(I2*δ(y))(φ) = l/ωuj Vφ(x). {y ~ x)dL%{x) .

Also, an application of Fubini's Theorem provides

( 6 ) Wt*μp)(φ) = j N(I2*δ(y))(φ)dμP(y) .

In [7], Krai investigated conditions under which N(I2*μ) is a measure
whenever μ is a measure supported by dΩ. For this purpose he
proved

SUP { ̂  Vφ(x)

^ ωn_t + v(3Ω, y) .

Therefore, in particular, it follows from (4) and (5) that N{I2*μp) is
a measure. In view of the fact that Ω is assumed to be of finite
perimeter, it follows from the definition of the measure theoretic
exterior normal that the Lebesgue ^-dimensional density of Ω is equal
to 1/2 at I P " 1 almost all points of d*ίλ This allows us to conclude
from [7, Lemma 3.2] that

N(I2*δ(y))(f) = £ψ - J - f f(x)n(x). (* " y\ dH«~\x)

whenever / is a bounded Baire function on dΩ. Thus, if Ea dΩ is
a Borel set, it now follows from (6) that

( 7 ) N(I2*μp)(E) - μp(E)/2 - 1/ω^ j s(E, y)dμp(y) .

From (3), (2), and (7) we obtain

~μP(E) - -llωn_ιs{Ef p) - [μp(E)/2 - 1/ω^ j 8(E, v)dμp(y)\

or

= s(E, p) -
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Thus, in summary, we have the following.

THEOREM 3.2. Let Ω be a bounded, open, connected set of finite
perimeter with d (intΩ) = d(Rn — Clos Ω). If peΩ and

v(dΩ, y)dμr(y) < oo ,

then

^μP(E) = s(E, p) - \ s{Ef y)dμp{y)

for every Borel set EadΩ .

COROLLARY 3.3. IfEcdΩisa Borel set with H*-\d*Ω Π E) = 0,
then μp(E) = 0 .

The proof is obvious since s(E9 x) = 0 whenever Hn~ι(d*Ω Π E) = 0
and α? e i2*.

We will now find conditions under which H*"1 restricted to d*Ω
is absolutely continuous with respect to harmonic measure μp. To
this end we first establish

LEMMA 3.4. Suppose Ω is a set of finite perimeter and let
Eczd*Ω be a Borel set of positive H71'1 measure. There is a set
FaE with Hn~\E — F) — 0 satisfying the following conditions: if
s > 0, yeF, and if pe Ω is on the interior normal to Ω at y, then
there is a set Fpcz F containing y such that

lim (diam Fp) = 0

and

lim s(Fp, p) > ωn_J2 - e .

Proof. We refer the reader to Chapters 3 and 4 of [4] for proofs
of the following facts. The set 3*β is (Hn~\ n — 1) rectifiable and
therefore, there is a countable number of class C1 manifolds of
dimension n — 1, Mif such that

Hn~\d*Ω - U Mt) = 0 .

Moreover, for Hn~ι a.e. yed*Ω, the exterior normal to Ω at y is
orthogonal to the tangent plane of some Mt at y. Finally, for H*~ι

a.e. yeE,
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( 7 ) lim Hn~ι{B{y, r) Π E Π Mt)/a(n - l)rn'1 = 1
r-»0

for some M",. Here a(n — 1) denotes the volume of the unit ball
in R%~x and B{y, r) is the w-ball of radius r centered at y. Let F
denote the complement in E of the union of the three Hn~λ null sets
just described.

Now select y e F and ε > 0. Then y e M% for some i. For
convenience, call Mt = M, take 7/ = 0 € Rn, and assume the tangent
plane to M at 0 is Rn~\ Let n denote the exterior normal at y = 0
and for points p on the interior normal at y = 0, write 2) — (0, v^),
0 e JB*"1, vp < 0. Let ^ = η(έ) be a number to be determined below
and consider the cone

C = {x: n x > rj \ x |} .

For x e i2%, write a? = (w, v), % e Rn~\ veR1 and let

Cp = {(%, v):v = w + t?p, (w, w ) e C ) ,

the cone with vertex at p. Since ikί is a manifold of class C\ it is
clear that for η sufficiently small,

( 8) lim s(Mp, p) > ωnj2 - ε ,

where Mv = M Π Cp. Let A = M - F, F p = F D Cp, and Ap = A f] Cp.
Then

( 9 ) | 8 ( A p , p ) | ^ [ \y -

p

If r p = sup {\y\:ye Ap), then from (7)

(10) lim Hn~ι{Ap) rp~
n = 0 .

Furthermore, since A is a subset of a class C1 manifold, there is a
constant iΓ such that | y — p \ :> iΓrp whenever 2/ 6 Ap and | p | is
sufficiently small. The conclusion of the lemma now follows from
(8), (9), and (10).

In the following theorem, a condition is given under which Hn~ι

restricted to 5*i2 is absolutely continuous with respect to harmonic
measure. This condition is similar, although weaker, to the one
introduced by Krai [7, §3] to determine the Fredholm radius of an
operator associated with the classical double layer potential.

THEOREM 3.5 Let Ω be an open set satisfying the conditions of
Theorem 3.2. In addition to the hypotheses of Theorem 3.2, assume
that for Hn~ι a.e. y0 e 3*β, there exists a positive number r = r(yQ)
such that
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lim sup v[B(y, r) Π dΩ, y] < ωn_J2 .
yed*Ω

Then Hn~\E Π d*β) = 0 whenever Ed dΩ is a Borel set with μp(E) = 0.

Proof. Let EadΩ be a Borel set with μP(E) = 0 and assume
that H*-\EΓ[ 3*β) > 0. Let FaE be the set associated with E as
given by Lemma 3.4, and select yoeF that satisfies the hypotheses
of our theorem. Then, with every ε > 0, there is a positive number
* < r(Vo) such that

(11) v[B(y, t) Π dΩ, y] < ωnj2 - e .

As μp(E) = μp(F) = 0, it follows from Theorem 3.2 that

(12) 8(F, p) = j s(F, y)dμp(y) .

Now let p approach y0 along the interior normal and observe that
Lemma 3.4 implies Fp c B(yQ, ί/4) for | p — yQ \ suίBciently small.
Therefore, it follows from (11) that

I s(FPf y) I < ωn_J2 - e

for all yeB(yo,t/2). Moreover, \s(Fp,y)\—+0 uniformly on dΩ —
B(y0, t/2) as | p — y0 \ —> 0. In view of (12) and Lemma 3.4, this
produces a contradiction. Therefore, Hn~ι{E Π 3*β) = 0.

4* An example* In § 3 we imposed certain regularity con-
ditions on dΩ in order to conclude that harmonic measure and Hn~x

restricted to 3*β have the same null sets. In i22, harmonic measure
and H1 restricted to dΩ have the same null sets provided Ω is bounded
by a simple closed curve of finite H1 measure. In this section, we
will show that the analog of this does not hold in R3.

For the purpose of constructing this domain in i23, we first
consider a closed arc, C, in R2 that occupies positive Lebesgue measure
(or equivalently, H2 measure) in R2. It is not difficult to modify the
standard Osgood construction of C in such a way so as to produce
a set, S9 of points on C of positive H2 measure such that every point
of S cannot be joined to any point interior to C by a rectifiable curve.
Now let g be function of class C1 defined on the interior of C with
the properties

(i) g > 0, (ii) \Fg\ is bounded, (iii) g < δ, where δ(x) — distance
from x to C.
Define

f(x) — exp ( — l/g(x)) , x e interior C ,
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and let

Ω = i(x, yY xG interior C, 0 £ y < f(x)} .

Since C is a closed arc, it follows that dΩ is a topological 2-sphere.
Moreover, dΩ has a tangent plane at each of its points and H2(dΩ) < oo.
On the other hand, S c Ω is a set of positive H2 measure with the
property that each of its points cannot be joined to any point of Ω
by a rectifiable curve. Consequently, a result of Brelot and Choquet
[1] states that the harmonic measure of S is zero.

In conclusion we would like to point out that there is no inclusion
relationship between the class of smoothly bounded domains and the
class of domains that satisfy the conditions of Theorem 3.5. However,
if the normal of a smoothly bounded domain is locally Dini continu-
ous, then Theorem 3.5 applies. We are indebted to Grant Welland
for this observation.

To see this, let / : U-+R1 be a function of class C1 defined on
the open set UaRn-\ Let S= {(a?, f(x)):xeK} where Ka U is a
fixed compact set. It will suffice to prove there exists an r > 0 such
that v(B(y, r) Π S, y) can be made arbitrarily small for all yeS. Fix
Vo = (xo, /(O) e S. Then for r > 0,

v(B(y0, r)nS,y)=\ n(y). U/ ~ y»> dBn~ι{y)

= f (P/(a), 1) Ax- XQ, fix) ~ /(O)

= L 11/ — »o Γ

Let /O = x — £0 and let points on the unit sphere in Rn~ι be denoted
by θ. Observe that there is a constant M such that

\χ - χ*\ ̂  \y - y*\ ^M\x - xQ\

for all α?o, a? e K. Then, with pθ = x — x09

v(B(y0, r) n S, y0) £ JSΓj J || F/(a?) | - | F/(α:,) | | ^ - ^

where N is a constant and xθ is some point on interval between xϋ

and x. Hence, if the modulus of continuity of | Vf |, α>, is required
to satisfy
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then the conclusion obviously follows.
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