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PRERADICALS AND INJECTIVITY

LADISLAV BICAN

Recently, the (p, o )-injectivity of modules with respect to a
couple of preradicals has been investigated. In the general case,
the study of all the (p, o )-injectivities reduces to that with o a
torsion preradical. For a special class of rings the
(p, o )-injectivities are completely described. The description of
all quasi-injective modules over a Dedekind domain appears as a
simple corollary.

J. A. Beachy [1] has introduced a new concept of p-density of a
submodule N of a module M and he has investigated the (p,o)-
injectivity of modules with respect to a couple of preradicals. In this
paper we shall show that to any couple (p, o) of preradicals there exists
a torsion preradical o' such that the (p,o)-injectivity and (p,o')-
injectivity have the same meanings. Further, in the study of (p,o)-
injectivity, where p is a torsion preradical, p can be replaced by a
torsion radical. Finally, the (p, o)-injectivities are completely deter-
mined for a class of subcommutative rings (containing all Dedekind
domains) and this yields a characterization of all quasi-injective mod-
ules generalizing a result of Harada [7] (the methods are quite different).

We start with some basic definitions. A preradical p for the
category g of left R-modules over an associative ring R with unity is
any subfunctor of the identity, i.e. p assigns to each module M a
submodule p(M) in such a way that every homomorphism M — N
induces p(M)—p(N) by restriction. A preradical p is said to be
idempotent if p° = p, torsion if p is left exact and it is called a radical if
p(M/p(M))=0. It is well-known that p is torsion iff L C M implies
p(LY=LNp(M) (see e.g. [10], Prop. 1.4). For a preradical p, a
module M is called p-torsion if p(M)=M and p-torsion-free if
p(M)=0. Following J. A. Beachy-[1] a submodule N of a module M
is called p-dense in M if M/N C p(K/N) for some module K contain-
ing M, or, equivalently, if M/N gp(M /N) where M denotes the
injective hull of M. Finally, for a couple (p, o) of preradicals a module
Q is said to be (p, o)-injective if for every diagram f | 5N with N,
p-dense in N and Ker f o-dense in N there is g : N — Q making this
diagram commutative. If p is a preradical and M a module then the
module Q is said to be (p, M )-injective if every diagram f | ¥™ with M,
p-dense in M can be made commutative by some homomorphism
M- Q.
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For a preradical o let o’ be the smallest torsion preradical which
contain 0. Then ¢’'(M)=M N o(M), so o' (M) = o(M) if M is injec-
tive, and M is o-torsion iff 0 is o-dense in M. For a preradical p one
can construct an ordinal sequence of preradicals in the following way:

p'(A)=p(A),

p " (A)p (A)=p(Alp*(A)),

p(A)=U p?(A), a a limit ordinal.
B<a

As it is well-known (see [10]), the preradical p* defined by p*(A) =
p“(A) whenever p“(A) = p**'(A) is a radical and, in fact, the smallest
radical containing p (we put p =o whenever p(M)Co(M) for all
modules M).

LEMMA 1. Let p, o be preradicals for x#. A module Q is (p,o)-
injective iff it is (p, M)-injective for all modules M having 0 as a o-dense
submodule.

Proof. See [1], Theorem 23.

THEOREM 2. Let p, o be preradicals for M and let Q € x#M. Then

(@) Q is (p,o)-injective iff it is (p, o')-injective,

(b) if p is a torsion preradical, then Q is (p, o)-injective iff it is
(p*, o)-injective.

Proof. For to prove (a) it suffices to use Lemma 1, since 0 is
o-dense in M iff 0 is o’-dense in M.

If Q is (p* o)-injective then it is (p,o)-injective since p =
p*. Assume that Q is (p, o)-injective, and let NyC N be p*-dense,
with f: Ny— Q and Ker f o-dense in N. By a well-known argument
using Zorn’s lemma there exists a maximal extension f,: N,— Q. Then
p(N/N,) =0, since otherwise f, could be extended to the p-closure of
N, in N (by (a), o can be assumed to be a torsion preradical), and so
therefore p*(N/N,) = p(N/N,) =0, which implies N, = N.

THeOREM 3. If R is left hereditary, then the following equivalent
conditions hold for each preradical p for M.

(1) M,C M is p-dense iff it is p'-dense,

(2) if M,CM is p-dense and M/M,=N/N,, then N,CN s
p-dense.
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Proof. The equivalence of condi}ions (1) and (2) is obvious. If R
is left hereditary, then if A:IOQM, M/]\:!0 is injective, and so M, is
p-densein M iff M/M,C p(M/M,) = p'(M/M,) iff M, is p’-dense in M.

Before proceeding we recall some basic definitions (see e.g.
[2]). Let = be the set of all pair-wise non-isomorphic simple left
R-modules. For every module M and every subset #’' C 7 let us
define S, (M) as the submodule of M generated by all simple sub-
modules of M isomorphic to some module from #'. It is easy to see
that S, is a torsion preradical. The smallest radical S* containing S,
(defined above) is torsion and is said to be .the fundamental torsion
radical. A ring R is said to have primary decompositions (PD) if
S*(M) =30, SHM) for every module M. It is well-known that for a
subcommutative ring with (PD) for which M/M? is either 0 or a simple
module for every maximal ideal M there is S*¥ = S where o is the first
infinite ordinal (see e.g. [9]). Recall ([9], Def. 7.1) that a S*-torsion
module M is said to be quasicyclic if S2*'(M)/S2(M) is either 0 or
simple for all ordinals « and S, (M) ¥ M for all natural integers n. For
further purposes we denote by 0 the zero functor and by = the identity
functor. In the rest of this paper we shall deal with a subcommutative
ring R having (PD) such that M/M?* is either 0 or a simple module for
every maximal ideal M, every proper homomorphic image of R is
S*-torsion and every preradical for g# satisfies condition (2) of
Theorem 3. For easy references we shall call such a ring a BS-
ring. The last condition is independent from all others as shows the
following example: Taking as R = Z/(p’) the factor-ring of integers
modulo p’ and p(M)=JM where J is the Jacobson radical of R, we
obtain a preradical which does not satisfy the condition (2) from
Theorem 3, since J - C(p’) = C(p) so that 0 is p-dense in C(p?. On
the other hand, C(p’)/C (p?) is not p-torsion, so that C(p) is not p-dense
in C(p*), C(p®) being injective. The idempotent radical o on the
abelian groups category assigning to each group its greatest divisible
subgroup provides an example of a preradical which is not torsion and
satisfies the condition (2) from Theorem 3.

THEOREM 4. Let R be a BS-ring. Then p # « is a torsion preradi -
cal for x M iff to every U € m there is n(U) € {N U {0} U {}, N the set of
natural integers} such that p(M) =2}, S5 (M) for all M € M.

Proof. We can obviously restrict ourselves to the proof of the
necessity. It is well known that the smallest radical p* containing p is
torsion. Now from the correspondence between torsion radicals and
radical filters (see e.g. [8]) and from the fact every proper homomorphic
image of R is S*-torsion it easily follows p* is fundamental, p* = S*
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for some 7' Caw. Thus for every ME M, p(M)=Zye. My =
Zverpu(M) where py, = S¥p. Now it suffices to describe p,. Let I be
a maximal ideal of R such that R/I = U. Two cases can arise:

(1) All the cyclic modules R/I", n=1,2,--- are p-torsion. If
I" =I""" for some natural integer n, then S} =S{" and p, =S{ =

St IfI "#D I"*' for all n then as in the case of abelian groups the

U-quasicyclic module (i.e. quasicyclic module M  with
S (M)/S*(M)=U) is a direct limit of R/I", n=1,2,--- and thus
pu =S¥, since by [2], Theorem 3.3 every S¥-torsion module can be
embedded in a direct sum of quasicyclic modules.

(2) There exists a nonnegative integer n such that R/I" is
p-torsion and R/I*, k > n is not p-torsion. Now by [2], Theorem 4.2
for every M € .M S (M) is a direct sum of cyclic submodules each of
which is isomorphic to some R/I', | =n and hence S} =py. On the
other hand, for any M € # every cyclic submodule of py(M) is
isomorphic to some R/I', | =n, so that I"p,(M)=0 and S} = py.

THEOREM 5. Let R be a BS-ring and M a module. Then the
following hold :

(1) If M is not S*-torsion then a module Q is M-injective iff it is
injective,

(ii) if M is S*%-torsion then a module Q is M-injective if S;V(Q) =
S'YQ) for all U € m, where n(U) is the smallest ordinal for which
Slnj(U)(M) —_ S(’:I(U)+I(M).

Proof. By [1], Corollary 2.9 Q is M-injective iff it is («,p)-
injective where p is the smallest torsion preradical for which M is
torsion.

(i) Taking an element x € M — S*(M) we have Rx =R, R being
a BS-ring. Thus p(R)=R and p =. It is now obvious that Q is
(=, )-injective iff it is injective.

(i) By Theorem 4, p(N) =2y, SV (N) for every N € x M. As
it is easily seen the numbers n(U) are just the smallest ordinals for
which S V(M) = S3V"(M). By [1], Theorem 2.5 a module Q is
(, S 5¥)-injective iff S3V(Q)=S5V(Q) and the assertion follows.

CorOLLARY 6. Let R be a BS-ring and Q a module. Then Q is
quasi-injective iff it is either injective or of the form Q = Zyc,SHQ)
where every St(Q), U € m is a direct sum of pair-wise isomorphic cyclic
or quasi-cyclic modules.

Proof. We proceed to the necessity, the sufficiency being obvious
by Theorem 5. Suppose that Q is quasi-injective. By the preceding
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Theorem Q is either injective or of the form Q =3, S¥ Q). By [2],
Theorems 3.2 and 4.2 every S#H Q) is a direct sum of quasicyclic and
cyclic modules, so that it suffices to use Theorem 5 (ii).

THEOREM 7. Let R be a BS-ring and p, o # © be two preradicals
for g M. Then there exists a module M such that a module Q is (p,o)-
injective iff it is M-injective. Moreover, M can be chosen quasi-
injective.

Proof. We shall divide this proof into three steps.

(1) We show that if p, o are torsion preradicals such that p* N o,
o#» and Q is a (x,p)-injective module, then Q is (p,o)-
injective. So, let Q be a («, p)-injective module and let us consider the
diagram

K

d
N,— N
fl

Q

with N/N, p-torsion, N/K o-torsion, K =Ker f. It follows from
p=p*No and Theorem 4 that o(M)=p(M)Pr(M) for every
M € M and a suitable torsion preradical 7. For N'/K = 7(N/K) the
module (N'+ N¢)/Ny=N'I/N,N N’ is p-torsion and 7-torsion so that
N’ C N,. Thus f induces

No/K = 7(N/K)® (p(N/K) N No/K)— 7(N/K) @ p(N/K)

fl

Q
By hypothesis, the restriction of f to p(N/K)N N,/K extends to a
homomorphism p(N/K)—> Q and the assertion follows easily.

(2) Itfollows from Theorems 2 and 3 that Q is (p, o)-injective iff it
is ((p')*, o')-injective. Now by the definition Q is ((p')*, o’)-injective
iff itis ((p')* N o', o’)-injective and the preceding part results that Q is
(p, o)-injective iff it is («, 7)-injective, where 7 = (p')*No’.

(3) From (2) and Theorem 4 it easily follows that a module Q is
(o0, 7)-injective iff it is (o, S Y’)-injective for all U € 7 where 7(M) =

Ve STY(M). By [1], Theorem 2.5 Q is (o, SY)-injective iff
SH(Q)C Q and the idempotence of S5 yields that Q is (p,o)-
injective iff S5Y(Q)=S3Y(Q). For U€E m, U=R/I,I a maximal
ideal of R, we put My =R/I"” if n(U)E NU{0} and My is an
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U-quasicyclic module if n(U) =«. Taking M = 2y, My it suffices to
use Theorem 5 (ii). M is quasi-injective by Corollary 6.

ReMArRk. M. Harada ([7], Corollary to Proposition 2.6) has de-
scribed the structure of quasi-injective modules over a Dedekind
domain. This description follows from our Corollary 6 immediately.
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