PACIFIC JOURNAL OF MATHEMATICS
Vol. 57, No. 1, 1975

CONES OF DIAGONALLY DOMINANT MATRICES*

GEORGE PHILLIP BARKER AND DAVID CARLSON

The extreme rays of several cones of complex and real
diagonally dominant matrices, and their duals, are identified.
Several results on lattices of faces of cones are given. It
is then shown that the dual (in the real space of hermitian
matrices) of the cone of hermitian diagonally dominant ma-
trices cannot be the image of the cone of positive semidefinite
matrices under any nonsingular linear transformation; in
particular, it cannot be the image of the cone of positive
semidefinite matrices under the Ljapunov transformation
"Hw— AH + HA* determined by a positive stable matrix A.

1. Preliminaries. Let X denote a finite-dimensional real vector
space. A cone K in X is a nonempty subset of X satisfying

a,B=0,z,yc K— ax + Byc K.

A cone K is closed if it is closed in the usual topology of X. If K
has interior with respect to this topology, equivalently, if X = K —
K, then K is full. If K satisfies

2e€K, —xc K=—2=0,

then is K pointed. Associated with a closed cone K is a reflexive
and transitive order relation defined by

r=y—y—2ckK,

which is a partial order iff K is pointed.

The element y € K is extremal if 2,y —xc K (le.,, 0 =2 =y)=
x = ay for some a > 0. For each ye X, I'(y) = {ay|a = 0} is the
ray generated by y; if y is extremal in K, then I'(y) is an extreme
ray of K. A closed pointed cone K is the convex hull of its extremals
(cf. [9], p. 167). (If K is not pointed it has no extremals.)

Given a closed, pointed cone K, let & (K) denote any minimal
generating set of extremals of K:i.e., every element of &(K) is
extremal, and all extremals of K are positive multiples of elements
of #(K); and & (K) is minimal with respect to these properties.

If we have given an inner product on X, then we may define
another cone,

K*={zeX|(x,y) =0 for all yeK},

*  Dedicated to Alfred Brauer on his eightieth birthday, April 9, 1974.
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16 GEORGE PHILLIP BARKER AND DAVID CARLSON

the cone dual in X to K, or, briefly, the dual cone of K. It is well-
known that in determining the elements of K*, we need only consider
inner products with extremals of K, in fact, given any &(K),

K*={reX|(x,y) =0 for all ye &(K)}.

We shall often consider cones K which lie in a subspace V of a space
X; in this case, KV will denote the cone dual in V to K.

2. A particular top heavy cone in C,. Let C, be the space
of complex n-tuple row vectors, with standard basis £, ---, E,. We
shall think of C, as a real inner product space, with inner product

(%, y) = re 15:_‘1 vix; -
Let

T = {xeC,,

5z 5l
=2
clearly T is a closed, pointed cone, full in
U={xeC,|imz = 0}.

As a cone in U, T is top heavy (cf. [3]).

The proof of the first lemma depends on the following simple
fact: if a,beC, and either |¢ + b| = |a| + |b| or |a — b| = |a| — |b],
then for some ¢€C,|le|=1,a = |ale and b = |b]e.

LEMMA 1. For T, U as defined above, we have

E(T)={E +¢cE;|lj =2, ---,m;|e| =1},
TV = {(I/'e lel = ]xiL .7 = 21 "',n} .

Then TV ts pointed, and full in U,
E(I") = (B + 3Bl & =1, =2, n}.

Proof. Consider y = E, + ¢E;, j > 1, |e| = 1. Suppose z€ T, for
which ¥ — xe T. Then

n
k=2

n
11— =3 w] + e — .
s

Adding,
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1223wl + o] + e — o Z 23 (ol + 1,

A kst
so that , =0,k=2,--., 0,k # 5. It follows that
-z zle—wlz1— |,
so that z, < |=;|; but », = |z;|, so 2, = |z;]. We now have
= 2,1l —2 =|e—ux;], and 1=|¢|.

By our previous observation, x; = ¢x,, hence z = (x)y. It follows
that v is extremal in 7.
Conversely, suppose x is extremal in T. If z = x,E,, then

v= Sa(l, + B) + So(B, - B),
which is impossible. Also, clearly,

n
VAR
Jj=2

Now we may write

@ =3 || (B, + (]| 2:DE)) ,
where the summation EN] is taken over indices j for which x; = 0.
Since z is extremal, there must be exactly one nonzero x;, j > 1, and
r = |u;| (B, + (w;/|2; NE;) .

We have proved our statement about & (T).
For xe U,y = E, + ¢E;, 5 > 1, and |¢| =1, we have

(z, ¥) = re (x, + éx;) = =, + re (éx;) .
Clearly, now xze TV iff
xlglxj!’ j=1,"°,?’b.

(This characterization of 7V is essentially contained in Theorem 2 of
[31)
Consider y = E, + 3, ¢;E;, where |¢;| =1, =1, -+, n. Suppose
xe TV such that y — xe TY. For 57 > 1,
f;| + e — w5l S @+ (L — @) = [&] =[] + [&5 — @],

ie., |2;] + |&; — x| = |&;]. It follows that x; = ;x,. Since this holds
for all j > 1,2 = (x)y, and y is extremal in 77.
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Conversely, suppose z is extremal in 7%. We may assume that
2, =1. If, for some 5 > 1, |x;| < 1, thenletd = 1 — |x;| > 0. Define

1 1
=2(x+0E), 2 = —(x — OE,) .
Y z(w ), 2 2 (x — 0Ej)

We have x =y + 2,¥,2€ TY, and ¥ and z are linearly independent,
a contradiction. Thus we must have

x:E,-I—iB,-Ej, l5j1=1’j=2’-..’n.

We have proved our statement & (77).
We note that for the analogous cone in real w-tuple space R,,
with the standard inner product,

Ty = {xeRn

”
nz 3 el

we have corresponding characterizations of & (T), T*, and &(T*),
with formally identical proofs.

3. Cones of real and complex diagonally dominant matrices.
Let C,, denote the set of » X n matrices with complex entries; we
shall regard C,, as a real inner product space with inner product
(4, B)=retr B*A. Similarly, R, , will denote the set of # X n matrices
with real entries; R, , is a real inner product space with inner product
(4, B) = tr B*A.

A matrix A = [a;,]€C,,, is said to be diagonally dominant if

Ia.’iilgz'lajkl; j:]_,o..,n.
k5

Neither the set of all diagonally dominant matrices, nor the set of
all real diagonally dominant matrices, is a cone. However, in the
real case, if we restrict ourselves to diagonally dominant matrices
with nonnegative diagonal entries, we obtain a closed, pointed, full
cone:

Dy = {A ¢R,,

aﬂ'.’igZ,aiklyjz 1’ "',77/} .
k35
In the complex case, there are three closed cones analogous to Dyt
D,={4eClaszSlanbi=1 -, n},
=

D2=-{AeCM reas; = 3 |agl, ima; 20,5 =1, -+, n} ,
i

D,={deC, . frea;z Slanl i =1, -, n} .
k5
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Clearly
DD, D,
and
Dr=D,NR,,, 1=1,2,3.

To discuss further the structure of these cones, observe first
that C,, =V & W, where

V= {AGC,,,,,lima,-j=0,j= 1, ey, ’l’b},
W={AeC,,|rea;;=a;,=0,5,k=1, -+, n, k#* j},

and that (with our real inner product), W = V*.
Let K, be a cone in V, and let K, be a cone in W. Then (X, +
K,)* = K/ + K. Also, let

J={AeWl|ima;; 20,5 =1, ---,n};

J is a closed, pointed cone. As a cone in W, J is full and self-dual,
ie., J¥ = J.

Now D,&V, and is full in V;D,= D, + J, and D,= D, + W.
Clearly D, is pointed but not full, D, is both pointed and full, and
D, is full but not pointed. Moreover, D} = D! + W is full but not
pointed, D} = D} + J is both full and pointed, and D} = DY is pointed
but not full.

We next determine & (D)), D/, and & (D). We can then easily
determine the extremals, the duals, and the extremals of the duals,
of all our diagonally dominant cones.

Let E;, denote the n X » matrix with (j, k)th entry one, and all
other entries zero. Define

goz{iE:ia'lj:ly ""n}9
& ={Ej;+elullel=1,4,k=1,---,n,k+*j},

= B+ Sen|lod =10,k =1, -, k= g} .
(=4
Clearly £(J) = &,.

LEMMA 2. For D, defined above, £(D)) = &,, and
Dl ={AeVla;; = |au| for all j, k=1, -+, n, k =+ j}.
Also, D! 1s a closed, pointed cone, full in V, and & (D)) = &..

Proof. Observe that D, =T, + --- + T,, where
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Tj: {Ae Vlajjg%laikl,apqzoyp’q:1, '-°,’)’b,pij}

is contained in U; = {Ae V]|ima;; = 0;0,, =0, 0,9 =1, -+, n, p = j},
j=1,---,n; each T; is essentially the cone T of Lemma 1. Since
V=U®: - PU, (in fact, U, SU} forall j, k=1, ---, n, k + j), the
extremals of D, are precisely those matrices which are extremals of
some T;; this proves that &, = &(D,). Also,

D =T+ oo + TVn,

and the extremals of D} are precisely those matrices which are ex-
tremals of some T7Y4, proving that &, = & (D)).

It is now clear that the extremals of D, are precisely those
matrices which are extremals of D, or J (and similarly for Dj).
Although D, is not pointed, and has no extremals, every matrix of
D; is a nonnegative linear combination of extremals of D, J, and —J
(and similarly for D,*).

The result for T analogous to Lemma 1 can be used to establish
the corresponding results for Dr. Note that Dy and D} are polyhedral
cones. We summarize these results in Theorem 1.

THEOREM 1. Let D, D, D, D, be defined as above. Then
D)= &, &) = &U &, and (D) = & NR,, .
Also

D ={AecC, ., |rea;; = |a;,] for all j, k=1, ---n, k+#3j},

Dy ={AeC, |rea;; = |a;],ima;; =0 forall j, =1, -,
n, k + j},

Dy ={AeC,,la; = |a| for oll j, k=1, .-+, m, k+* j},

Df¥=DfNR,,=DfNR,,=DfNR,,,

and
EDF)= £ U &, D) = &, and (DY) = & NR,.,. .

The characterization of D% given above appeared previously in
[5]. Also, the full set D of complex diagonally dominant matrices
is the object of study in [4]. In that paper, the authors introduce
a set of weakly diagonally dominant matrices which is in some sense
dual to D, and which contains our Dj} (cf. their Theorem 3.5).
However, their work is an altogether different spirit from ours, and
there is almost no overlap.

4. Cones of hermitian diagonally dominant matrices. One of
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the outstanding problems of matrix theory is to determine conditions
under which a cone K in the real space 5# of hermitian matrices in
C, . is the image under a Ljapunov transformation L,(H)= AH +
HA* of the cone PSD of positive semidefinite hermitian matrices,
where AeC, , is a (positive) stable matrix (i.e., all eigenvalues of A
have positive real parts). One of the necessary conditions is that
K 2 PSD (cf. Loewy [7]).

We wish to study the possibility of cones of diagonally dominant
matrices being images of PSD under Ljapunov transformations. Since
the cones D, and D}, 7 =1, 2,3, are not contained in 5# we shall
consider instead

Dw’z’:{Ae%ﬂlaﬁgkﬁlla.ﬂ'kly-j:l’"'1”’}!
ey
%D:{Aeé}ffaﬁg‘ajkl’jylc:l,”'7’”’,107&.7.}1

and their duals in & Note that D, = D, N & and ..D = D} N 5%,
1 =1,2, 3, and that they are both pointed, and full as cones in 5&

It is clear that D. is properly contained in PSD, so that D..
cannot be the image of PSD under a Ljapunov mapping. It follows,
however, that D% 2 PSD, so that DZ satisfies the necessary condition
given above. We will later show that DZ cannot be the image of
PSD under any nonsingular linear transformation. We have that

PSD £..D:
2 3
A=
2 4

is in PSD, not .D. Finally, since

1 -1 -1
A=|-1 1 -1
-1 -1 1

is in ..D, but not PSD, .,.D & PSD, hence PSD & .. D*. Thus neither
»D nor ..D¥* could be the image of PSD under a Ljapunov trans-
formation.

We next determine inequalities defining the matrices of D%, and,
for the sake of completeness, those defining the matrices of . D,
and minimal generating sets of extremals for all four cones.

THEOREM 2. Given D.. and ..D as defined above. Then
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E(Ds) ={E;l5 =1, +-+, n} U {HE;; + By, + By + By
lel=1,4,k=1, ---, m, k+ j},

Dr ={Aes|a;; =20, a;; — 2|aj| + =0,
k=1 -,n,j5 <k},

&(Dx) = {2Eja" + kzzul(akEjk + &.EL;)
ki

el =1, k=1, m k= 5},

£(-D) = {5 B + 3 (cnllse + E31Bui)
.;.<€ka

il = 1,4, bea, j <k, for all aS {1, -+, m}} ,

_D* = {Aeg/ S a5 =23 a2 0 for all &
jea J;(iﬂ'

S, e, mlf

g(%”D%) = {ZEH + 8lcE’ik =+ ékEkj | ]slcl = 19 jy k= 1) )
n, k + j} .

The analogous results hold for cones of diagonally dominant
matrices in the real space & of symmetric matrices in R, .

Proof of Theorem 2. We first determine & (D.). Clearly each
E;; is extremal in D..; consider a matrix of the form A = E;; + ¢E;, +
EE,; + K., J #k,|¢] =1. If there exists Be D . for which 4 — Be D,
clearly b,, =0 for p¢{j, k}, so that b,, =0 unless {p, q} & {7, k}.
Suppose B = b;;E;; + b;,Hj;, + B—jkEk]' + b, E,,; by Lemma 1, by, = b6,
b;. = b, implying b,; = by, and B =b;;A. Thus A is extremal
mn Dg.

Conversely, for any Be D, we may write
B = kZ~ (1054 [ Ey; + bjyi + gjkEkJ' + b | Er)
P
+ > (b:’j - > ijkoEfj .
j=1 k##j
For B to be extremal in D, exactly one term (between the two

summations) must be nonzero, and B has the desired form.
For arbitrary Be 5%

(Ej;, B) = bjj,
(Ej; + €Bjy, + EE; + By, B) = bj; + by, + re (bje + bif) .
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Clearly Be DZ iff
bijgo’bﬁ—*-bkk_zlbik[207-7.9]’5: 17 "',’ﬂ/,k:/:j.
We next determine & (DZ%). Consider a matrix of the form

A =2E; + gﬁl.(ekEjk + & By, el =1L, k=1, -, nk+7.
J

Suppose Be DZ for which A — BeD%. For p=1,---, n, »+* 7,
b,, = 0; and from this, we have b,, = 0if p + 7, and ¢ # j. Suppose
j # q; then by the argument of Lemma 1, applied to (2, 2|s,|) and
(bj;, 2b;,), we have b;, = €,b;;. Thus B = b;;A, and A is extremal in
DZ.

Conversely, suppose A is extremal in DZ, with at least two
positive diagonal entries; withous loss of generality, suppose a,, > 0.
Now define Be 5# by

L21T) if ay=2|ay
bn = Qy, blk = a,,
2@

bk1=b1k,k=2,"‘,n, and b,,q=0,p,q=2,---,'n,.

’

@y i @y < 2|y

Clearly bii = 0’ .7 = 1’ 2; cee, M, bi.?' + bkk - zlb.?kl = 07 j’ k= 2; P (7
k # 7, and, by calculation,

bll+bkk—2|blk[go,k=2, e, M,

i.e., Be DZ. Also,if C=A - Be25%£,¢;;=20,5=1, -+, m,¢j; + Crx —
2|¢i| = a5 + @ — 2|ap| 2 0,5,k=2, ---, n, k+# j, and, by an easy
calculation, ¢;; + ¢, — 2|c] = @ — 2] @y — 01| = @ — 2|1 | = 0, k =
2, ---,m,ie., Ce DZ. The assumption that A had more than one
positive diagonal entry would imply that A = B 4 C, with B, Ce DZ
and linearly independent, a contradiction. It follows that our extremal
A has exactly one positive diagonal entry.

Suppose that a;; > 0,a,, =0, k=1, ---,n,k#* j. Wehavea,, =
0 unless » = j or ¢ = j, i.e.,

A = a;;Ej; + kZ=1 (0B + @5 E;) -
i<k

Using Lemma 1 again, 2|a;,| =a;;, k=1, ---,n,k+ 7, and A is a
positive multiple of some matrix of our given set of extremals. We
have proved that &(DZ) has the specified form.

We next determine &(..D). Consider

A =j§: E;; +J_%a(eikEjk + i ElLy)

i<k
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where |¢;,| =1, j, ke, 5 <k, and aS{1,2, ---,n}. We have Ae
»D. Let |a| denote the number of elements of . If |a@| =1, A is
obviously extremal. Suppose 1 < |a| = n; without loss of generality,
we may assume |a¢|=mn, and a ={1,2, ---,n}. If Be.,D and 4 —
Be ,.D, then, using Lemma 1,

bir = bji€in » Sy k=1, mEk+7.

Also, bjj = b,-k/s,-,, = bjk/sjk = bkj/skj = bkk; k =+ j, so that B = bjjA. Thus
A is extremal in .. D.

Conversely, suppose A is extremal in ., D. We first show that
all nonzero diagonal entries of A are equal. If not, without loss of

generality,
Ay = Oy = *o° = Qi1 > Qs = *** = Oy »

where a;; > 0. We define B by

@i l=sp=¢<J
bpq= a’ij“m/au 1 §p’Q<j:p#:q
g otherwise .

Then B is hermitian, and Be ,.D, for

a/ia‘laqul/an = a5 = bpp , 1 =p4q <7,
[bpe] = Ylap] S =a;;=0,, 1=0<J,q=7,
Iamléam:bw’ P=7-

Let C=B— A4; first, ¢c,, =0if p=jorqg=j. Also, if1<p,¢<
7, D #q,

[epe] = (1 — aj5/a)| @] = —’E‘p—q‘l‘(an — Q) = Oy — Q5 = Cpp s
11
so that C,. e D. In this case, B and C are linearly independent, and
A is not extremal.

Suppose now that all nonzero diagonal entries of A are equal.
Without loss of generality, we may assume all diagonal entries are
one. If |a;.| <1 for some 7, k, k * 7, then, as in Lemma 1, we could
write

A= %(A + 0E;, + 0E,;) + %(A — $E, — SR,
where the summands are in .. D and are linearly independent. Thus
la;,] = 1 for all j, k. This completes the proof that &(.D) has the
desired form.

To determine the inequalities that characterize matrices in ..D™,
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we consider the inner product of an arbitrary Be 5% with an element
A of &(.D):

(4, B) = Z bj; +'/Z:' (&5xbsr + 5jk5ik) ,
jea ]}Zia
where |e;| =1, 4, kea, j <k, and a &£{1,2, --+, n}. Clearly now
Be .D¥ iff, for all a &£ 1{1, 2, «-+, n}
b5 — 23 [by| = 0.

jea j}Z;a

Finally, we must determine &(,.D”). Let A = 2E;; + ¢E;, +
EE,; for some j # k, and some |¢] = 1. Without loss of generality,
we can assume j = 1. If Be ,D¥*, such that A — Be ,.D¥, then
clearly b,, = 0 unless p =1 or ¢ = 1. This implies that for vector
o = 2E, + 2¢E,e T, we have b = (b,;, 2b,, ---,2b,)e T and @ — be T.
By Lemma 1, b = (b,,/2)a, and B = (b,,;,)4; i.e., A is extremal in .- D¥.

Before we prove that all extremals of ..D* have the desired
form, we give some additional definitions, and a lemma. For a &
{1, ---, n} and Aec 2Z let

Saa) =2 a5 — 2_2 laiel »
jea ]}'}~<€ka
ie., Ac,.D* iff f(ax)=0 for all a &{1, ---, n}. When the choice
of A is obvious, we will write f(«) for f . («).

LEMMA A. Given «, B, subsets of {1, -+-, n}, and Ae .D”, then
flaup)= fl@anp) =0 whenever f(a)= f(B)=0,ie,{a (L, -,
n}| f(a) = 0} is a sublattice of {1, ---, n}.

Proof of Lemma A. By hypothesis,
_Zaj,- = 2‘2 |l Zan’ = 2,2 laj]
jea Jkea jep J.kep
i<k i<k

Adding, and observing that, whenenver j,keang, j <k, then aj,
appears in the right hand side of each equation, we have
Dt > e =2 3 ﬂ]a’jk] —+ 2Akzﬂiam| .
Jrkea
i<k

jeans jeaUp Jkean
i<

But now, because 4 ¢ ..D*, we must also have the opposite inequality,
so that we have equality, and more; f(a N B) = f(a U B) =0.

Proof of Theorem 2 (continued). Suppose A is extremal in ., D7*.
First, we must show that A cannot have more than one nonzero
diagonal entry. Suppose A has more than one nonzero diagonal
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entry; without loss of generality, a,, > 0. Clearly, in the terminology
of Lemma A, if f(a) >0 for all a, 1€ a, for sufficiently small 6 > 0,
A=0FE, + (A — 0E,), where 6E, and A — 0FE,, are in ,,D* and are
linearly independent, a contradiction. If f(a)=0 for at least one «,1 € «,
let ¢ be the intersection of all a,1ea for which f(a) =0. Since
a,; > 0, ¢t contains at least one index besides 1. For 6 > 0, let

B, = 8] 23] o)) By + 3 (@Bs + Ty | -
1 i1

Clearly B;e ..D* for all 6 >0. We shall show that A — B;e .. D*
for sufficiently small 6 > 0; it will follow that A, extremal in ..D*,
cannot have more than one nonzero diagonal entry.

For a;{l, "'1n}r 1¢a, fA——Ba(a) = fu@)=z0. For a={l, ---,
n}, lea, for which f,(a) >0, clearly f, (@) >0 for sufficiently
small 6 > 0. Suppose 1ea and f,(a) =0. Then, since ¢ & «a,

Fan@) = (S -2 5 layl) =2 2 Jau] — S olay)
%1 i<k L

= 20(3) |ayl - Slay]) 2 0.

s oty
We have shown that A — B, e ..D* for sufficiently small 6 > 0.
We have now shown that A, extremal in ..D?*, has one nonzero
diagonal entry, say a,. Suppose there were more than one nonzero
off-diagonal entry in the first row, one being a,;, s > 1. Then for

B= —é—(A — ayEy; — ayE;), C=A— B,

B, Ce ,.D*, and linearly independent, which is impossible. By Lemma
1, then, A is a positive multiple of E,, — ¢E; — ¢E;,, where |¢| = 1.
This completes the proof of Theorem 2.

5. Faces of cones. In what follows all cones K will be closed
and pointed. A face of a cone K in a real space X is a subcone F
of K satisfying

zeK,y—2cK (e, 0=c=y),ycF—xcF.

The set of all faces of K will be denoted by & (K). If S is a non-
empty subset of K, let @(S) denote the smallest face of K containing
S. Observe that S & @(S), &(9(S)) = @(S), and &(S) & O(T) whenever
S& T. We define

FVG=0FUG)
FANG=FnNnG.
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With these definitions of sup and inf, & (K) is a complete lattice [1].
The results of this section extend some of [1], and will be useful

in later sections. If S is a nonempty subset of K, let I'(S) be the

smallest subcone of K containing S. Obviously I"(S) & @(S).

LEMMA 3. Let S be a nonempty subset of K. Then @(S) = {xe
K|y — ze K for some y < I'(S)}.

REMARK. This is proved in [1] for S = {«}.

Proof. Let G ={xc K|y — xc K for some ye I'(S)}. We obvi-
ously have I'(S)& G. Also, G is a face of K. To see this, we
have first that G is a subcone of K: if z,2,€G and «, a, >0,
then there exist ¥, y¥,€ I'(S) such that y, — z, €K, y, — 2, K. Now
ax, + ax, € K, ay, + ayy, € I'(S), and

(v, + axy,) — (@, + ;) = a(y, — x) + a(y, — ¥,)e K,

so that ax, + a,x,€ G. To see that G is actually a face of K, con-
sider x€ G, z¢ K, such that x — z€ K. There exist yeI'(S),y — x¢€
K. Now

yy—-—2)+(@x—2)=y—z2ekK,

so that ze G. Thus G is a face of K, and G 2 S, so that G 2 @(S).

To prove the opposite inclusion, let F' be any face of K containing
S (and also I'(S)). Pick xeG S K; there exists ye I'(S) & F for
which y — xe€ K. As F is a face, xe¢ F. Thus G& F, and

G=SoS)=N{F|F a face of K, F2S}.

We remark, as a converse to Lemma 2.9 of [1], that given F, a
face of K, then F' = @(x) for any « in the relative interior of F (i.e.,
the interior of F' as a subset of the linear span of F).

THEOREM 2. Let S, T be the nonempty subsets of K. Then
S+ T)=0(SUT)=90@(S) + o(T)) =9(S) voT) .

REMARK. This extends Proposition 3.2(b) of [1].

Proof. The last equality follows from Proposition 3.2(a) of [1].
We shall complete the proof by showing @(S + T) & 9(9(S) + o(T)) =
o SUT)ESO(S + T). AsS& O(S)and T<O(T), S + T = o(S) + @(T);
hence &(S + T) & O(9(S) + &(T)). Also, #(S)S@(SU T)and &(T) =
O(SU T); since &(SUT) is a cone, O(S) + &(T)=P(SU T), hence
o(O(S) +o(T) S o(SU T).
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Before showing the last inclusion, we first show that S & &(S +
T). Pick xeS; then for yeT, o +yeS+ T and (z + y) — zc K,
implying ®€@(S + T). Now, SES@(S + T), and also T < &(S + T);
thus SUUESO(S + T) and &(SUT) <= @S + T).

COROLLARY 1. Let z, 2, ++-, 2, € K. Then

O(x, + @+ -+ + ) = Oz, 2 -+, ,})
=0@)V O(z) V -V O(2,) .

Note that for nonempty subsets S, T of K, @(S) Vv &(T) = &(S)
iff T< o(S) iff o(T) = @(S).

COROLLARY 2. Suppose &, &, +++, &, Satisfy
xieé(xl +oeee £ xi—l)yj = 2; e, T

Then ®(x,), D(x,) V O(x,) = O(x, + @), =+, P(x) V O(x,) V -+ V O(x,) =
O(x, + 2, + -+« + 2,) 1S a strictly increasing sequence of faces of K.

6. The faces of PSD. A characterization of the faces of PSD
has been part of the oral tradition of the subject. Since we shall
need this result later, we will state and prove it here. An early
version of the proof we shall present was developed informally by
Hans Schneider. For brevity, we will denote the lattice &# (PSD) of
faces of PSD simply by .&#; the elements of 5 are ordered by
inclusion.

We will deal with several subsets of 54 In each case, we will
assume the order induced throughout 5# by PSD:

A<B——B— AcPSD.

Also, for AeC,,,, “#(A) and _+#"(4) denote, respectively, the range
and nullspace of A in C,.

Let . &7 denote the set of projections in 57 i.e., Ae P iff Ae 57~
and A®= A. It is well-known (cf. [6], p. 55) that the order on &
induced by PSD is equivalent to

A=B— #(A) & #(B),
and, since A, Be 27 also to
A B _17(4)2 4+(B).

This last formula also provides information on the faces of PSD.
LEMMA 4. Let A, BePSD. Then Be ®(A) iff 4+ (B) 2 4+ (A).

Proof. The result is trivial if A =0 or B = 0; we shall assume
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A #0 and B=#0.

First assume Be @(A) and choose £ > 0 such that kB< A. If
x e A47(A), then

0=<2¥(A—-kBr=—kx*Bx =0,

so that xe _#"(B).
Conversely, suppose ./ (B) 2 .#7(A4). Let

Y ={weC,|lve FA) = (4 (4)" and v*v =1}.
On the compact set 3, v*Av > 0, and hence
0 <) =sup{v*Bv/v*Av|vel} < o .
For zcC,, we may write x =u + v, ue 4 (4), ve F(4). Now
x*Ax = v*4Av, and 2*Bx = v*Bv, since ue 4" (A) & 4+ (B). As B=#

0, for some xze€C, we have 2*Bx = v*Bv > 0, so that » > 0. Further-
more, for all zeC,,

x*Ax = v*Av = NV W*By = v 'w*Br,

so that NA = B, i.e., Be ®(4).

COROLLARY 3. Let A, BePSD. Then ®(A) = O(B) tff A4"(4) =
A7(B).

We shall also need the easily-proved fact that for A, BePSD,
AN (A)N 4"B=_4(A+ B). Recall that, for 4, Be &, AV B and
A A B are defined to be the hermitian projections onto, respectively,
HA(A) + Z(B) and H#(4) N #(B). We have that

AN (A V B) = ((A V B)* = (Z(4) + #(B)* = 2(4)* N @ (B)*
= (AN A(B)= (A +B),

A (A A B) = (Z(A A B)* = (#(A) N #(B)* = #(A)* + 2 (B)*
= 4(4) + A(B) .

In fact, & is a complete lattice, isomorphic to the lattice of subspaces
of C,.

THEOREM 4. The map on & given by A— @(A) is an order-pre-
serving lattice isomorphism of F onto Z.

Proof. That @ is 1 — 1 follows from the corollary to Lemma
4, since for A, Be & A = B iff _+7(4) = 47 (B).

To show that @ is onto, pick FF'e <. Then F = @(B) for some
BePSD. Let A be the hermitian projection with _#7(4) = _#7(B); now
@(A) = O(B) = F. Finally, that @ and its inverse are order-preserving
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follows from Lemma 4, since for A, Be 2,
O(B) & 9(A) = Bec0(4d) =— 4+ (B 2 4+ (A)—B=<A.

It follows (cf. [2], p. 24) that O(A \/ B) = &(A) \ &(B), D(A A B) =
@(A) A &(B) for all A, Be F.

COROLLARY 4. Let 7 be the set of hermitian projections of
rank 1. Then & (PSD)= 7.

NotE. This corollary has appeared recently in [8].

REMARK. We are indebted to the referee for pointing out that
Corollary 4 has been discovered several times and that a suitable
early reference is R. V. Kadison, Isometries of operator algebras, Ann.
of Math., 54 (1951), 325-338. In addition, Lemma 4 has appeared in
an equivalent form (but with no proof) in O. Taussky, Positive-definite
matrices and their role in the study of the characteristic roots of
general matrices, Advances in Math., 2 (1968), 175-186.

7. Linear mappings of cones. Let K be a cone in real space
X, and 7 a linear transformation from X into real space Y. Then 7K
is a cone in Y, and 2 <y (i.e., ¥y — xe K) in X implies that 7z <
7y (i.e., 7y —t2x€7K) in zX. If K is closed, so is zK; if K is full,
then 7K is full in 7X.

If 7 is one-to-one, then also 7 < 7y implies # < y. For this case,
we give a general result on the lattices of faces of K and 7K.

THEOREM 5. Let K be a cone in X, and 7: X—Y a one-to-one
linear transformation. Then if F is a face of K, tF is a face of TK.

If we define to: F (K)— F (tK) by to(F) = tF, then T, i an
order preserving lattice isomorphism of Z (K) onto F (tK).

Proof. Suppose Fe. & (K). Clearly zF is a subcone of K.
Suppose 0 < u =< v,vecF; then u = ta for some xzec K, v =ty for
some yeF, and 0 <2 <y. It follows that xe F, and ucckF.

Now 7, is clearly one-to-one and onto; also, both 7, and (7,)*
are order preserving.

We apply our results now to prove that the cone DZ in 2# is
not the image of PSD under any nonsingular linear transformation
of 5#. By Theorem 4, we have that PSD satisfies the Jordan-Dedekind
chain condition (cf. [2], p. 5): all maximal chains between {0} and K
in &# (K) have the same length. In PSD this common length is n.
By Theorem 5, any nonsingular linear transformation of 57 induces
a lattice isomorphism of &# = & (PSD), and must preserve this chain
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length. We are done if we exhibit in & (D%) a chain of length
greater than n.
Define, for 7=1,2, ---, n,

A,y = 2E;; +k§4 (Ejr + Ey), Ay; = 2H;; — kz:; B + Ey)

k] k#j

We have seen that these matrices are extremal in DZ. It is easily
computed that, for 7=1,2 -.-, % — 1,

o(3 4, =43 Bu) = (CeDFicu=0,pq=j+1,,n},
o(34) = o($'4)) + I (4w,

and that
@(igA,,) = @(:z; Ak> —o)= D= .

Thus the faces

Q(Ax)y @(Al + Az) = Q(AJ) \Y% @(Az)’ R
DA, + A+ +ov + Ay ) = O(A) V O(A) V -+ V O(4;)) = D

form a properly ascending chain of length 2n — 1.
Our arguments can be seen to apply to the real case: the cone

D;: {Aeylaifigor a’f:i+akk22[afk[1 j1k: 1y "'777’1]67&-7-}

is not the image, under a nonsingular linear transformation of the
cone PSD, of real symmetric positive definite matrices.
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