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SUBHARMONICITY AND HULLS
JoHN WERMER

For X a compact set in C°, h(X) denotes the polynomially
convex hull of X. We are concerned with the existence of
analytic varieties in 1 (X)\ X. X is called “invariant” if (z, w)
in X implies (¢"z, ¢ *w) is in X, for all real 6. X is called an
“invariant disk” if there is a continuous complex-valued function
a defined on 0=r =1 with a(0)=a(1)=0, such that X =
{(z,w)||z|=1, w =a(|z]|)/z}. Let X be an invariant set and
put f(z,w)=zw. Let Q be an open disk in C\ f(X) and put
'@ ={(zw) in h(X)|zw €Q}. In Theorem 2 we show
that if f7'(Q) is not empty, then f () contains an analytic
variety. Let now X be an invariant disk, with certain hypoth-
eses on the function a. Then we show in Theorem 3 that f~'(Q2)
is the union of a one-parameter family of analytic varieties. A
key tool in the proofs is a general subharmonicity property of
certain functions associated to a uniform algebra. This prop-
erty is given in Theorem 1.

1. Let X be a compact Hausdorff space, let A be a uniform
algebra on X and let M be the maximal ideal space of A.

Fix feA. Foreach(€Cput f'({)={p €M |f(p)= ¢} and for
each subset Q of C, put f'(Q)={p € M |f(p) €Q}. Consider an open
subset ) of C\ f(X). Supposing f~'({2) to be nonempty, what can be
said about the structure of f '(Q2)? Work of Bishop [2] and Basener [1]
yields that if f7'({) is at most countable for each { €, then f'(Q)
contains analytic disks. On the other hand, Cole [4] has given an
example where no analytic disk is contained in f7'(Q2). In §2 we prove.

THEOREM 1. Let Q be an open subset of C\f(X). Choose
g €EA. Define Z({)=sup; gl { EQ. Then log Z is subharmonic
in Q.

This theorem is proved by a method of Oka in [5].

In §3 we apply Theorem 1 to the following situation: X is a compact
set in C>, A is the uniform closure on X of polynomials in z and
w. Here M = h(X), the polynomially convex hull of X. We assume
that X is invariant under the map T,:

(z,w)—>(e“z,e®w) for 0=6<2m.
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Put f=zw. Let Q be an open disk contained in C\f(X) with
0ZQ. Here f'(Q)={(z,w)Eh(X)|zw € Q}.

THEOREM 2. Iff7'(Q) is not empty, then f'(Q)) contains an analy-
tic disk.

In §4, we consider the case when X is a disk in C?, defined:

|z|§1,w=gﬂ£-l—)},

X={(z,w) 2

where a is a continuous complex valued function defined on 0=r =1,
with a(r)=o(r).

X is evidently invariant under T, for all 9. In Theorem 3 we give
an explicit description of h(x) for a certain class of such disks X.

2. Proof of Theorem 1. (Cf. [5], §2.) Fix {€Q and let
o — . Assume Z({,)—t. We claim Z({,)=t. For choose p, in
(&) with |g(p.)|=2Z(). Let p be an accumulation point of
{p.}. Then|g(p)|=t, whence Z({,) = t, as claimed. Thus Z is upper-
semicontinuous at {,, and so Z is upper-semicontinuous in ().

Theorem 1.6.3 of [6] gives that an upper-semicontinuous function u
in Q is subharmonic provided for each closed disk D CQ and each
polynomial P we have

€)) u=Re P ondD implies u=Re P onD.

Fix a closed disk D contained in Q and let D be its
interior. Choose a polynomial P such thatlog Z =Re P on dD. Then

Z() |lexp(—P({)|=1 on aD.
Hence for each ¢ in aD, if x is in f7'(¢), then
(2) lg ()| lexp(— P(fH(x)|=1, or
g -exp(—P(f)|=1 at «x.
Now g -exp(— P(f)) isin A. Put N = f'(DD). The boundary of N is

contained in f'(dD). Hence by the Local Maximum Modulus Princi-
ple for uniform algebras, for each y in N we can find x in f'(aD) with

|8 exp(= P(f)(y)| = |g - exp(= P((x)],
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whence by (2) we have
€ |g -exp(—= P(f))(y)|=1.

Fix £,in D. Choose y in f'(£,) with |g(y)| = Z(,). Applying (3)
to this y, we get

(4) Z (&) lexp(— P({)| = 1.

Hence log Z({) =Re P({,). So (1) is satisfied, and so log Z is
subharmonic in (), as desired.

3. Proof of Theorem 2. Since X is invariant under the maps
Ty, h(X) is invariant under each T,. Fix {€Q. There are two pos-
sibilities:

(a) |z| is constant on f'({).

(b) Jr,rwith0<r <r,and 3

(z1, W), (22, w») Ef_l(g) with |Z]| =r, 122’ =r,.

Suppose (b) occurs. Then the circles: z =r.e*, w={_/re” 0=
0=2m and z = r,e”, w =({/r,e”, 0= 60 =27 both lie in h(X). Hence
the analytic annulus: r,<|z|<r, w ={/z lies in f7'({). Thus if (b)
occurs at any point ¢ in Q, f~'(Q) does contain an analytic disk. Hence
to prove the Theorem, we may assume that (a) holds for each { €
Q. Define, for (€Q, Z({)=sup;|z|, W) =sup;,|w| Fix
(2o, wo) Ef7'({). Since we have case (a), Z({) =|z,|. Hence W({) =
|wo| and so Z({)W({)=|¢]|, whence

log Z(¢) +1log W({) =log|{|.

Since log Z and log W are subharmonic in Q while log|{| is harmonic,
log Z, log W are in fact harmonic in (. Put U =log Z and let V be the
harmonic conjugate of U in Q. Put ¢({)=e""v (). Then ¢ is
analytic in Q and |[¢|=Z in Q.

Assertion. The variety z = ¢ (), w = /P ({), { €1, is contained
in h(X).

Fix (€Q. Choose (z,,w)€Ef'((). Then Z()=|z,|, so
lo(0)|=|z|, ie, 3T real a with z,=¢()e* Then w,=
(b (e But (e ™z, e“w,)E h(X). Hence (¢(0),/d()E h(X).

The Assertion is proved, and Theorem 2 follows.

Note. Questions related to the result just proved are studied by J.
E. Bjork in [3].
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4. Invariant disks in C’. Let P be a polynomial with
complex coefficients, P(t)=23)_,c,t", which is one-one on the unit
interval with endpoints identified, i.e., we assume that P(1)=P(0)=0
and P(t)#P(t,) if 0=t,<t,<1. Also assume P'(t)#0 for 0=t =
1. Then the curve B given parametrically: { = P(t), 0=t =1, is a
simple closed analytic curve in the {-plane whose only singularity is a
double-point at the origin. Denote by 6 the angle between the two arcs
of B meeting at 0. Assume 6 < 7. Define a(r)= P(r?), i.e.,

) a(r)= i c.ri.

Let X be the disk in C? defined

(6) x={(z,ﬂzﬁu) [zlél}.

The function f = zw maps X on 8. Denote by () the interior of B.

THEOREM 3. 3 function ¢ analytic in Q such that h(X) is the
union of X and {(z,0) l |z|=1} and

{(z,w)lzw EQ and |z|=|d(zw)]}.

CoROLLARY. Every point of h(X)\ X lies on some analytic disk
contained in h(X).

NotaTiON.  A({)) denotes the class of functions F defined and
continuous in {) and analytic in ().

9 denotes the algebra of functions on |z | =1 which are uniformly
approximable by polynomials in—z and a(]z])/z.

LEmMa 1. Let GECI[0,1]. If G(|z])EU, then IFE A(Q)
such that G(r)=F(a(r)) for 0=r=1.

Proof. Let g be a polynomial in z and a(|z]|)/z. Calculation
gives that there is a polynomial ¢ in one variable with

2m
gl;f g(re®)do =g(a(r), 0=r=1.
0

Choose a sequence {g,} of polynomials in z and a(|z|)/z approaching
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G(|z|) uniformly on |z|=1. Then g.(a(r))—> G(r) uniformly on
0=r=1. Hence 3 F € A(Q) with g, = F uniformly on B, so G(r) =
F(a(r)).

LeEMMA 2. If f = zw, then f7'(Q)) is not empty.

Proof. Fix {,€Q. If f'(Q) is empty, then f — ¢, # 0 on h(X) and
so (zw — {)™' lies in the closure of the polynomials in z and w on
X. Then (a(|z])=¢)'€U. By Lemma 1, IFEA(Q) with
F(a(r))=(a(r)—¢)"'. Then ({ —¢&) '€ A(Q), which is false. So
f(Q)) is not empty.

Lemma 3. Fix { € B\{0}. Let (z,,w,) be a point in h(X) with
ZgWo = {. Then (Zo, Wo) (S X.

Proof. Assume (z,,w,) &€ X. Let r be the point in (0, 1) with
a(r)={. Put,foreachr, vy, ={(re® (a(r)/re®))|0=6 <2n}. Theny,
is a polynomially convex circle contained in X. Hence 3 polynomial P
with | P(z, wo)| >2, |P| <1 0n ¥, Choose a neighborhood N of vy, on
X where |P|< 1. The image of X\ N under the map (z, w)—>zw is a
closed subarc B, of B which excludes {. Choose F € A(Q}) with
F()=1,|F|<1on B\{{}. Then 38 >0 such that |[F|<1-4 on
B:. Hence |F(zw)|<1—8 on X\ N. Also|F(zw)|=1onX. Fixn
and put

Q =F(zw) - P(z,w).

|Q(z5, wo)|>2. On N,|Q|=|P|<1. On X\N, Q| <
(1-8)" -maxx |P|,and so |Q|<1on X\ N forlarge n. Then|Q|<1
on X. Since F is a uniform limit on B of polynomials in £, Q is a
uniform limit on X U{(z,, wo)} of polynomials in z and w. This
contradicts that (z,, wo) € h(X). Thus (2o, we) € X. We are done.

Note. Since f maps X on B and C\ f(X) is the union of the
interior and exterior of B, we conclude from the last Lemma that h(X)
is the union of X and f~'({0}) and f~'(Q)).

We need some notation now. For each ¢ € B8\ {0}, denote by r({)
the unique r in (0, 1) with a(r) = ¢.

Since a is a polynomial in r vanishing at 0, there is a constant d >0
such that

) r()>d|{|, all {€B.
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For {,€Q, denote by u, harmonic measure at {, relative to
Q. Since B consists of analytic arcs, with one jump-discontinuity for
the tangent at { =0, u, = K,, ds, where K,, is a bounded functions on
and ds is arc-length. Define

UL = L log F(0)dus(0).

Since (7) holds, this integral converges absolutely. U is a harmonic
function in ), bounded above, and continuous at each boundary point
¢ € B\{0} with boundary value log r({) at ¢,

For { € (), define

Z({)=sup|z|, W()=sup|w]|

'@ JA09)

LEMMA 4. For all (€Q, logZ()=U) and logW()=
log [{|—U().

Proof. Fix { € B\ {0}, choose ¢, €Q with {, —{ and suppose
Z(&)—A. Choose p, € f7'(¢,) with Z({,) =|z(p,)|. Without loss of
generality, p, —p for some point p € h(X). Then f(p)=¢{ By
Lemma 3, p € X, i.e., p = (re”, (a(r)/re”®)) for some r,0. Also a(r)={¢
and so r=r({), whence |z(p,)|—r() and so A =r({). Thus
Z({")—r(¢) as {'— ¢ from within (), and so log Z assumes the same
boundary values as U, continuously on B\ {0}.

For each positive integer k, let Q, ={Z €Q I [Z|>1/k}. 3%, is the
union of a closed subarc B, of B\ {0} and an arc a; on the circle
1] = k.

Fix {,€Q. For large k, {,€ Q. Denote by u{ the harmonic
measure at {, relative to €},. An elementary estimate gives that there is
a constant C, independent of k such that

(®) LY ()= C, - \Lfk for all k.

Let S be any function subharmonic in  and assuming continuous
boundary values, again denoted S, on B\ {0}. Assume 3 constant M
with S =M in Q. Then for all k,

9) Sy = f Sdu ) + f Mdu ), whence
Bk ak
1
SW) = L Sdu )+ M- Cu
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Applying (9) with S =log Z, we get

1

(10) log Z({y) = Lk Udp® + MC,, - Vi

since as we saw earlier, log Z = U on B\ {0}.
By (1), if {' € a,

U@ = [ tog r@)duc (0> C + [ log |2 duc(d),
8 B
where C is a constant, so

U')>C+log|¢'| = C +log % . Hence
UL = f Udpt)+ | Udpt)
Bk ak

1\ C
= Ud ‘ﬁ’+(c+l —)—5"—.
L He °8 k) Vk

Combining this with (10) and letting k —, we get that log Z({,) =
U(&o), as desired. A parallel argument gives the assertion regarding
W. We are done.

LEMMA 5. With Z defined as above, log Z({)= U({) forall { € Q,
and log W({) =log (|- U(Q).

Proof. Suppose either equality fails at some point {,. By the last
Lemma, this implies that

log Z () +1og W (&) <log|&l -

Fix p €f7'({). Then |z(p)|= Z({),

w(p)|= W(&), so
log |z(p)w(p)| <log |l .
But z(p)w(p) = {», so we have a contradiction, proving the Lemma.
Proof of Theorem 3. Let V denote the harmonic conjugate of U
in © and put ¢ =e"". Fix (zo,wo)Ef'(Q) and put (=
Zo- wo. Unless |z,| = Z({,) and |w,| = W({,), we have

[ ol = 20| [Wol < Z(L) W (&) = o]
by the last Lemma. So we must have |z,| = Z({) = |6(L0)].



290 JOHN WERMER

Conversely fix {,€Q and let (z,, wo) be a point in C* such that
2o wo = {oand |z| = | (L)|- Choose (z,, w,) € f({). By the preced-
ing |z,|=|b(L)|, so I real a with z,=e“z,, wo,=e “w,. Hence
(2o, Wo) € h(X), 50 (20, wo) € f'(Q2). Thus f'(Q) consists precisely of
those points (z, w) with zw €Q and |z|= | (zw)].

To finish the proof we need only identify f7'(0). The circle
{(z,0)||z| =1} lies in X, so the disk D: {(z,0) ||z| =1} is contained in
£7'0). If (2o, wo) € f7'(0) and does not lie in D, then z,=0, w, #0. The
same argument as was used in proving Lemma 3 shows that then
(zo, Wo) € h(X), contrary to assumption. So f7'(0) = D, and the proof
of Theorem 3 is finished.

REMARK. As we have just seen, f~'(Q2) is the union of varieties V,,
0=a <2m, where V, is defined:

= pia = —i«QL
z e(ﬁ((% wE=et 3D LEN.

What does the boundary of such a variety V, in h(X) look like? It splits
into two sets:

S ={(z,w)€E IV,
T={(z,w)E IV,

zw € B\ {0} and
zw = 0}.

It is easy to see that S is an arc on X cutting each circle: {(z, w) E
X | |z|=r}, 0<r <1, exactly once while T is a closed subset of the
disk D ={(z,0)]|z|=1}.

It is remarkable that even though X is itself very regular, the rest of
the hull of X is attached to X in a very complicated way.
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