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RINGS WHOSE FAITHFUL LEFT IDEALS
ARE COFAITHFUL

JOHN A. BEACHY* AND WILLIAM D. BLAIR

A left module M over a ring R is cofaithful in case there is an
embedding of R into a finite product of copies of M. Our main
result states that a semiprime ring R is left Goldie, that is, has a
semisimple Artinian left quotient ring, if and only if R satisfies (i)
every faithful left ideal is cofaithful and (ii) every nonzero left
ideal contains a nonzero uniform left ideal. The proof is
elementary and does not make use of the Goldie and Lesieur-
Croisot theorems. We show that (i) and (ii) are Morita
invariant. Moreover, (ii) is invariant under polynomial exten-
sions, and so is (i) for commutative rings. Absolutely torsion-
free rings are studied.

The ring Q is a left classical quotient ring for the ring R C Q if
every regular element (nondivisor of zero) of R is invertible in Q and if
every element of Q is of the form b ~ιa where a,b E R and b is regular;
in this case we also say that R is a left order in Q. A ring is said to be
left Goldie if it has the ascending chain condition on left annihilators
and has finite uniform dimension. (A left R -module has finite uniform
dimension if it has no infinite direct sum of nonzero submodules, and it
is said to be uniform if it is nonzero and any two nonzero submodules
have a nontrivial intersection.) A theorem of Goldie [8,9] and Lesieur
and Croisot [12] states that a ring is a left order in a semisimple Artinian
ring if and only if it is semiprime and left Goldie. It is known that the
ascending chain condition on left annihilators is not preserved under an
equivalence of categories (Morita invariant); in fact, it does not go up to
matrix rings. It is unknown whether being left Goldie is Morita
invariant.

In section two we give a proof of the theorem stated in the abstract,
and in the prime case we give a proof which shows directly that such a
ring is an order in a full matrix ring over a division ring. We also
weaken the hypothesis of an important theorem on semiprime PI
rings. In the third section we use these techniques to study absolutely
torsion-free rings. In particular, we show that an absolutely torsion-
free ring is Goldie if and only if it has a uniform left ideal, and that the
endomorphism ring of a finitely generated projective module over an
absolutely torsion-free ring is absolutely torsion-free.
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1. Some general results. All rings will be associative and
have an identity element; all modules will be unital. Let R be a ring
and S a subset of R. Then the right annihilator of S in R is
€R(S) = {rGR\Sr = 0} and the left annihilator is ίR(S). If X is a
subset of a left R -module M, then Ann* (X) = {r E R | rX = 0}. If there
is no ambiguity we write ί(S) instead of fR(S), etc. ZR(M) will denote
the singular submodule of M, the set of elements of M whose
annihilator is essential in JR.

A module RM is said to be cofaithful if there exist elements
m,, ra2, ,mk E M such that Π f=i Ann(m,) = 0, or equivalently, if for
some direct sum Mk of k copies of M there exists an exact sequence
0—> R —• Mk. Every cofaithful module is faithful. On the other hand,
every faithful left R -module is cofaithful if and only if R contains an
essential Artinian left ideal (see Beachy [1]), in which case we say R is
essentially left Artinian. A ring R is essentially left Artinian if and
only if R has an essential and finitely generated left socle. We study
the weaker condition that every faithful left ideal of JR is
cofaithful. Recall that RM is torsionless if for each 0 ^ m E M there
exists / E Horn* (M, JR) with f(m) ^ 0.

PROPOSITION (1.1). The following conditions are equivalent for a
ring R.

(a) Every faithful left ideal of R is cofaithful.
(b) Every ideal ofR which is faithful as a left ideal is cofaithful.
(c) Every faithful, torsionless left R-module is cofaithful

Proof, (a) Φ (b) and (c) Φ (a) are immediate.
(b) φ (c). Let RM be a faithful torsionless module and A be the

sum in JR of the homomorphic images of M. If 0 ̂  r E R, then since M
is faithful there exists m E.M such that rm ̂  0, and since M is
torsionless there exists / E Horn* (M, R) with rf(m) = f(rm) φ 0, which
shows that the ideal A is faithful. Thus A is cofaithful and so
Π "=1 4(tf«) = 0 for some a-t E A, i^i^n. Since at E A, ax = Σ///(mf/)
for ml7 E M and fi} E HomR(M, JR), and then rmn = 0 for all i,/ implies
ra{ = 0 for all ί, so Π u AnnR(m0) = 0 and M is cofaithful.

COROLLARY (1.2). The condition that every faithful left ideal of a
ring is cofaithful is Morita invariant.

Proof. By Beachy [2] a module is faithful if and only if it
cogenerates every projective module and it is cofaithful if and only if it
generates every injective module. A module is torsionless if and only
if it is cogenerated by every faithful module. Since the classes of
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faithful, cofaithful and torsionless modules are all invariant under an
equivalence of module categories, the result follows from condition (c)
above.

The next two propositions show that our condition implies certain
finiteness conditions, although it is much weaker than the descending
chain condition for left annihilators. In particular, a commutative,
semiprime ring satisfying the condition has finite uniform dimension,
and so it must be Goldie.

PROPOSITION (1.3). Let R be a ring such that every faithful left
ideal is cofaithfui

(a) R is not a direct product of infinitely many (nontrivial) rings.
(b) // JR is semiprime, then it contains no infinite direct sum of

nonzero ideals.

Proof, (a) Suppose that R is an infinite direct product of
rings. Let A be the set of all elements which are zero in all but finitely
many components. Then A is faithful but not cofaithful.

(b) Assume that A = A i 0 A 2 0 • is an infinite direct sum of
ideals. If JR is semiprime, then A Π ({A) = 0 and A 0 £{A) is faithful,
so by assumption there exist JC,, •• ,JC* E A ®£(A) such that
Πίc=,/(xι) = 0. But there exists an integer n such that JC, E

A\ 0 * 0 An 0 €(A) for all /, and so for any 0 ^ y 6 Λn+1 we have
y E n?eI^(jCi), a contradiction.

PROPOSITION (1.4) (Faith [5]). A ring R has the descending chain
condition on left annihilators if and only if for every subset S of R there
exists a finite subset {JCJ,X 2 ,"

 m

9xn}Q S such that €R(xu , x n ) = ΐR(S).

Proof If R satisfies the descending chain condition on left
annihiίators, choose {JC,,JC2, ,xn} so that /(JC,, ,xv) is minimal in the
set of all left annihilators of finite subsets of S.

Conversely let Λ,DΛ 2 D be a descending chain of left an-
nihilators and let S = U ^ ( A ) Then there exists a subset
{xi,x2, ,Jcn}CS so that /(JC,,JC2, * *,*„) = £(S). There exists a posi-
tive integer k such that ί(Ai)D{xί9x2,-—9xn} for all i^k. But for
igfc, Ai = €(€(Aι))C€(xu '9xH) = €(S)CAh so A = €(S) and the
chain terminates at Ak.

We remark that Handelman and Lawrence [11] have given an
example of a prime ring in which every (faithful) left ideal is cofaithful
but which does not have the analogous property for right ideals. We



4 JOHN A. BEACHY AND WILLIAM D. BLAIR

next give some examples to show the relationship between this condi-
tion and various other finiteness or chain conditions.

A left Noetherian ring need not satisfy our condition, as is shown
by the following example due to Small [16]. Let R be a simple left
Noetherian domain which is not a division ring, let F be the field which
is the center of R, and let K be a nonzero left ideal of JR. Set M = JR IK

and let S be the ring of all matrices ( , j where a EF, b EM and

c ER. It is easily seen that S is left Noetherian, and following Small
one can show that given any finite subset of M, say {mu , m,}, there
exists 0/dER such that dm, = 0 for ι" = l, ,ί. Thus / =

J L i E F , b e Λ f [ is a faithful left ideal of S which is not

cofaithful.
On the other hand, a left Noetherian ring which is integral over its

center has the property that every faithful left ideal is cofaithful since it
is a subring of a left Artinian ring (see Blair [4]). Also in the positive
direction, if R is left Noetherian and Z(JR) = 0 (e.g. if R is left
hereditary) then our condition holds.

The ring R = {(n, a) | n G Z, a E Zp~}, where Zp~ is Prufer's quasi-
cyclic group and multiplication is given by (n,a)(m,b) =
(nm, nb + ma), provides an example of a commutative ring with finite
uniform dimension for which every faithful ideal is cofaithful (since R
is essentially Artinian), but it can be checked that JR does not satisfy the
chain condition on annihilators.

The next proposition provides many more examples.

PROPOSITION (1.5). IfR has a left classical quotient ring Q which is
essentially left Artinian, then R has finite uniform dimension and every
faithful left ideal is cofaithfui

Proof Let A be an essential Artinian left ideal of Q. If
Bι 0 B2 0 0 Bk is a direct sum of left ideals of R, then by standard
quotient ring techniques QB, 0 QB2 0 0 QBk is a direct sum of left
ideals of Q and so if each QB^Q then {QBX ΠA)φ(QB2DA)
0 * 0 (QBk n A) is a direct sum of nonzero left ideals in A. Since A
is left Artinian such direct sums must be finite and thus R has finite
uniform dimension.

If B is a faithful left ideal of R, then ΠbEB€Q(b) = 0 since
ΠbeBίQ(b)ΠR = ΠbeBfR(b) = 0. Since A is Artinian,

n
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for some finite subset bub2,-%bn of B, and then Π M ^ ( 6 , ) C

Γ\Uι€Q(bi) = 0 since A is essential.

We say that a ring has enough uniforms if every nonzero left ideal
contains a uniform left ideal. If a ring has finite uniform dimension
then it has enough uniforms. An infinite direct product of copies of Z
shows that a ring may have enough uniforms without having finite
uniform dimension.

PROPOSITION (1.6). If R is a ring with enough uniforms, then every
nonzero submodule of a free R-module has a uniform submodule.

Proof. Let F be a free R -module and Λ4V0 a
submodule. Without loss of generality we may assume Λf is cyclic, in
which case we may also assume F is finitely generated. Let F = Rn,
and pn be the projection onto the last summand. If the restriction of pn

to Λί is a monomorphism then an isomorphic copy of M is contained in
jR and so M contains a uniform submodule. If pn restricted to M is not
a monomorphism then M Π R " " V 0 and we complete the proof by
induction.

COROLLARY (1.7). The condition that a ring have enough uniforms
is Morita invariant.

In the course of proving that finite uniform dimension goes up to
polynomial rings, Shock [15] showed that if U is a uniform left ideal of
R then U[x] is a uniform left ideal of R[x]. With only slight
modification Shock's proof shows, in fact, that if RM is a uniform
R-module then M[x](^R[x](g)RM) is a uniform left i?[x]-module.

PROPOSITION (1.8). // R has enough uniforms, then R[x] has
enough uniforms.

Proof. Let I be an ideal of R[x], where R has enough
uniforms. As an JR-submodule of the free R -module R[x],I contains
a uniform R -submodule M by Proposition 1.6. Thus there exists
q(x)El such that Rq(x) is a uniform R-submodule of /. By multiply-
ing q(x) by appropriate elements of R we may assume that the left
annihilators of all the nonzero coefficients of q(x) are the same. This
"new" q(x) is also an element of M CJ, so Rq(x) remains a uniform
R -module. Since the left annihilators of the nonzero coefficients of
q(x) are all the same we have R[x]q(x)^R[x]<g>RRq(x). By the
remarks before the theorem this shows that R[x]q(x) is a uniform left
ideal of R[x] contained in I
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PROPOSITION (1.9). Let R be a commutative ring in which every
faithful ideal is cofaithful. Then every faithful ideal of R[x] is
cofaithfui

Proof. Let / be a faithful ideal of the ring R[x] and let Jo be the
ideal of R generated by the coefficients of the polynomials in
/. Clearly JΓ0 is a faithful ideal of R. Thus there exist au α2, , αf E Jo

such that €R{au βi, * , at) = 0. Let f(x) be a polynomial of / in which
aκ appears. Let deg/i(jt) = n,- and set no = O. We show
*RM(fι(x), * •,/,(*)) = 0. If not, and say h(x)f(x) = 0 for i = 1, , ί,
then set m, = ΣJiUn, + 1) and g(x) = ΣJ.,/,(x)jcm|. Now h(x)g(x) = 0,
and since R is commutative, 6.13 of Nagata [13] shows that there exists
0 φ c E JR such that cg(x) = 0, and so cα, = 0 for i = 1, , £, a con-
tradiction.

We remark that Theorems 1.8 and 1.9 are true for polynomial rings
in a finite number of indeterminants by induction, and then due to the
"local" nature of the conditions the results hold for polynomial rings in
an arbitrary number of indeterminants.

2. Orders in semisimple Artinian rings.

THEOREM (2.1). The ring R is semisimple (simple) Artinian if and
only if R is semiprime (prime), every nonzero left ideal contains a
minimal left ideal, and every faithful left ideal is cofaithfui.

Proof. Assume that R is semiprime, every faithful left ideal is
cofaithfui, and every nonzero left ideal contains a minimal left ideal,
and let S be the sum of all minimal left ideals of R. Then by
assumption S is essential in JR, and hence faithful since R is
semiprime. Thus S must be cofaithfui, and so there exists an exact
sequence 0-» R —> Sk for some positive integer L This shows that RR
is completely reducible, and therefore semisimple Artinian.

In analogous fashion we are able to characterize orders in semisim-
ple Artinian rings by merely requiring enough uniform left ideals instead
of enough minimal left ideals as in Theorem 2.1. We study the prime
case first. (Recall that a ring is prime if and only if every nonzero left
ideal is faithful.)

THEOREM (2.2). The ring R is a left order in a simple Artinian ring
if and only ifR is prime, contains a uniform left ideal, and every nonzero
left ideal is cofaithfui.
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Proof. If R is an order in a simple Artinian ring then every left
ideal is cofaithful and R contains a uniform left ideal by Proposition 1.5.

Conversely, if Z(R), the singular ideal of R, is nonzero, then there
is an exact sequence 0—> R —• Z(R)* for some positive integer k. This
implies Z(R) = R, a contradiction. Since Z(R) = 0, in order to show
that R is left Goldie it suffices to show that R has finite uniform
dimension. To see this, let U be a uniform left ideal of R. Then R
has finite uniform dimension, since for some positive integer k there
exists an exact sequence 0-»i? -* Uk.

We next give a proof of Theorem 2.2 which avoids Goldie's
Theorem and simultaneously produces the full matrix ring over a
division ring in which the ring is a left order. The proof is inspired by
the proof of Faith's Theorem 34 [6]. We first observe that if the left
uniform dimension of R is n and 0—•!?—>Mm is exact for some
positive integer ra, then there exists an exact sequence 0-*R-*Mk

with k g n.

THEOREM (2.2 bis). // the ring R is prime, contains a uniform left
ideal, and every nonzero left ideal is cofaithful, then Qcι(R), the left
classical quotient ring ofR, is ann xn matrix ring over a division ring.

Proof. As in the proof of Theorem 2.2, Z(R) = 0 and R has finite
uniform dimension, say dim R = n. Furthermore, there exists an exact
sequence 0-» R —• Un where U is a uniform left ideal of R. Let V be
the quasi-injective hull of U. Since Z(R) = 0, Z(l/) = 0 and U is
strongly uniform in the sense of Storrer [17]. By Lemma 7.4 of Storrer
[17], D = End*( V) is a division ring. By Proposition 13 of Faith [6], V
is in fact injective. We claim that V has dimension n as a vector space
over D. There exists an exact sequence 0-+R -» V , and if
(t?i, t?2, , vn) is the image of 1 E JR in V", we show {i;,, , vn} is a basis
for V over D. Let v EV and /: R -* V be the map given by
f(r) = rv. By the injectivity of Vn this extends to a map /': Vn -* V
with components d, G D. Hence i? = /(I) = /'(ι>,, •••,»„) =
Σf-i d/i><. Thus t;,, •> !>„ span V. If, on the other hand, Σf=j d,t;, = 0,
with say dft / 0, then rv, = 0 for i ̂  j implies rv} = 0 and there is a
monomorphism from JR into Vn~\ so, since V is a uniform 1?-module,
this contradicts the fact that dim(l?) = n. If Q = EndD( V), then Q is
the ring of n x n matrices over D o p p , and there is a natural embedding
R CQ, since V is faithful. Now V is isomorphic as a Q -module to a
minimal left ideal of Q and QQ — * V , which implies that 1? is essential
in Q. Furthermore, if V{ is the intersection of R and the ίth compo-
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nent of Q, then V{ is nonzero for otherwise we have an embedding of R
in Vn~ι and contradict dim(J?) = n.

Let A be an essential left ideal of R, and let A =
AΠVi^O. Then Λ,Λ, ̂ 0 , since R is prime, so there exists ax G A
with Ajfl/^O. Thus we may define a nonzero homomorphism
/: A, -> Aί C V by /(α) = 00, for α G ,4,. Since U is essential in V and
Z(l/) = 0, we have Z(V) = 0. If ker(/) ̂  0, then ker(/) is an essential
submodule of V and if x G Ax C V then {r G I? | rf(x) = 0} is an essential
left ideal of £, which implies f(x)EZ(V) = 0 and / = 0, a
contradiction. Hence there exists an exact sequence

and so there exists JC G A such that 4 0 0 = 0. Since R is essential in
Q, €Q(x) = 0, and since Q is left Artinian x must be invertible in Q and
hence regular in R. This shows that every essential left ideal of R
contains a regular element, so if q G Q, then (R: q) = {r G I? | rq G R} is
an essential left ideal of R since I? is essential in Q, and thus (R: q)
contains a regular element JC. Hence xq = r ER and so q =
jfV. Thus 1? is a left order in Q.

LEMMA (2.3). Let Rbe a semiprime ring and U a uniform left ideal
of R. Then P = €R(U) is a prime ideal of R, and the image of U in RIP
is a uniform left ideal of R IP.

Proof. Let A and B be left ideals of R such that AB C P. Then
ABU = 0 and so BUA=0 for otherwise (BUA)2 = 0, while
BUA^O. Hence BUAU = 0 and so BUΠAU = 0 since R is
semiprime. Since U is uniform BU = 0 or AU = 0 and so A C P or
β C P. Since P Π (7 = 0, it is easy to see that the image of U in R IP is
again uniform.

LEMMA (2.4). Let Rbe a semiprime ring in which every faithful left
ideal is cofaίthful and let S be a left ideal ofR. If A = 4 ( 5 ) , then every
faithful left ideal of R/A is cofaithfui

Proof. Let I be the ideal SR. Then A = 4(J), and since R is
semiprime, A = €R(I). Let B/A be a faithful left ideal in R/A. If
C = 4 (B) then CB = 0 and s o C B C Λ ; hence C C A Thus C2 = 0,
since C C A CB. Since I? is semiprime, C = 0 and J5 is a faithful left
ideal of R. By hypothesis there exist bu ,bt EB such that rbx = 0
for ί = l, ,ί implies that r = 0. Let bi be the image of bt in
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B/Λ. Suppose PERI A is such that rb, = 0 for / = 1, , t. Then
rbf G A for i = 1, , ί and rbj = 0, so Irbi = 0 for i = 1L , ί. Hence
/r = 0 and re€R(I) = A. Thus f = 0 and €R/A(bl9 •• •,£,) = 0.

THEOREM (2.5). Tfte ring i? is α /e/ί order in α semisimple Artinian
ring if and only if R is semiprime, has enough uniform left ideals, and
every faithful left ideal is cofaithful.

Proof. Assume R is semiprime, has enough uniforms and every
faithful left ideal is cofaithful. Let A be the sum in JR of all uniform
left ideals and let M be the external direct sum of these left
ideals. Since R is semiprime and A is essential, A is a faithful left
ideal. Thus Λί is a faithful torsionless left R -module and by Proposi-
tion 1.1 it is cofaithful. Hence there exists an exact sequence

0 - » 1 ? - 4 M * for some k. Since le i?,/(I) belongs to a finite direct

sum of uniform JR -modules and so R is isomorphic to a submodule of a
finite dimensional module. This shows that R has finite uniform
dimension.

Let U = U\ 0 U2 0 0 Un be a maximal direct sum of uniform
left ideals of JR. It is clear that U is a faithful left ideal of R and
Π Jli Piί = 0, where {J*} is the set of distinct elements of K(l7i)}. Thus
the canonical map φ: JR -> U /Pi 0 01? /Pm is a monomor-
phism. By Lemmas 2.3 and 2.4, JR/P; is a prime ring which contains a
uniform left ideal and in which every left ideal is cofaithful. By
Theorem 2.2, RIP, is a left order in a simple left Artinian ring 5,. One
can show directly that S = Si 0 0 Sm is the left classical quotient
ring of φ(R), or else since I? is a subring of the left Artinian ring 5,R
has the ascending chain condition on left annihilators and we can apply
Goldie's theorem.

The Gabriel dimension of a ring is defined by Gordon and Robson
[10] in terms of localizing Serre subcategories. From Corollary 2.10 of
[10], one can easily show that a ring with Gabriel dimension has enough
uniforms. Thus we are able to state the following corollary of
Theorem 2.5.

COROLLARY (2.6). A semiprime ring with Gabriel dimension is left
Goldie if and only if every faithful left ideal is cofaithful.

We end this section with a theorem on semiprime rings with a
polynomial identity. Our result weakens the hypothesis of theorems of
Armendariz-Steinberg, Formanek, Rowen and Small.
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THEOREM (2.7). Let R be a semiprime ring with a polynomial
identity and center C, where C satisfies the condition that every faithful
ideal is cofaithful. Let S be the set of regular elements of C. Then R is
an order in a semisimple Λrtinian ring and

(1) S'ιC = F, φ 0 Fk, a finite direct product of fields,
(2) S'ιR = Qi 0 φ QΛ, where Q, is a finite-dimensional central

simple algebra with center F,.

Proof. Apply Proposition 1.3(b) to the semiprime ring C to see
that C satisfies the ascending chain condition on annihilators. The
result now follows from Theorem 9 of Formanek [7].

3. Absolutely torsion-free rings. A left exact subfunctor
of the identity Id on RM, the category of left R-modules, is called a
torsion preradical. For torsion preradicals p and σ we write p ̂  σ if
p(M) C σ(M) for all M E RM. Observe that σ(R) = R if and only if
σ = Id. For M E RM, let RadM be the smallest torsion preradical σ
such that σ(M) = M. Then for X E RM, RadM(X) =
{x E XI x = ΣΓ=i f'Xnii) for m, EM, /j G Horn* (Km,, X)}, and it follows
that RadM = itf if and only if M is cofaithful by Beachy [3].

We recall that a module is said to be prime if for all nonzero
submodules M'CM, AM1 = 0 implies AM = 0 for all left ideals A of
R. A submodule will be called fully invariant if it is invariant under all
endomorphisms. The injective envelope of a module Λί is denoted
E(M).

PROPOSITION (3.1). The following are equivalent for M E RM.
(a) For all torsion preradicals σ of RM, either σ(M) = 0 or

σ(M) = M.
(b) M is contained in every nonzero fully invariant submodule of

E(M).
(c) For all 0 ̂  x E.M and y EM there exist r,, r2, ,rnER such

that ΠΓ=i Ann(r,x)CAnn(y).
(d) M is prime and if 0 / M' CM then for all y EM there exist

*i,x2, ,xn E Af' such that ΠΓ=1 Ann(jc,) C Ann(y).

Proof ( a ) Φ ( b ) . If O^NCE(M) is fully invariant, then
RadN(£(M)) = N, so RadN(M) = MΠ RadN(E(M)) = Λf Π Nέ 0, and
thus we have RadN(M) = M and so M C N.

(b) Φ (c). For 0 / J C G M , let N be the sum in E(M) of the

homomorphic images of Rx. Then N is fully invariant, so by assump-
tion M CN and thus y = Σf=, finx) for rf E R and / E
Horn*(Rx, E(M)). Therefore anx = 0 for all i" implies ay = 0.
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(c) Φ (d). If 0 ϊ M' C M, and AM' = 0 for some AC/?, then let
E M ' . By assumption for any y G M there exist r,, r2, , rn G JR

such that Λ C Π"=1 Ann(riJc)CAnn(y), so AM = 0 and Aί is
prime. The second condition follows immediately from (c).

(d) Φ (a). If 0 ̂  σ{M) - N for some torsion preradical σ, then
for any y G M there exist xux2, —,xk€ίN such that Π?=1 Ann(jc,)C
Ann(y). Thus for x = (x,, -,**)£ N \ the mapping /: l?x —>l?y de-
fined by f(ax)-ay is a well-defined homomorphism, and since x G
σ(Nk) we must have y = f(x)Gσ(M). This shows that σ(M) = M,
completing the proof.

Taking y = 1 G JR in condition (d) of Proposition 3.1 shows that RR
satisfies the equivalent conditions of the proposition if and only if R is
prime and every (faithful) left ideal is cofaithful. Condition (a) is
satisfied if and only if σ(R) = 0 for every torsion preradical σ such that
σ^ Id; such rings are the absolutely torsion-free rings studied by Rubin
[14]. Taking y = 1 in condition (c) shows that R is absolutely torsion-
free if and only if for all 0 ^ r G R there exist r,, , rn G R such that
srf = 0 for all / implies 5 = 0 , and this gives the condition studied by
Handelman and Lawrence [11]. It also gives the equivalent condition
that every nonzero left ideal is cofaithful, as shown by Viola-Prioli [18],
Theorem 1.1.

Many of Rubin's results on absolutely torsion-free rings are easier
to prove in the light of Proposition 3.1. A prime left Goldie ring is
absolutely torsion-free on the left and right (Rubin [14], Theorem 1.11)
since it satisfies the descending chain condition on both left and right
annihilators. Since being prime and having every faithful left ideal
cofaithful are both Morita invariant, so is being absolutely torsion-free
(Rubin [14], Theorem 1.12). Applied to RR condition (b) of Proposition
3.1 states that E(R) has no nontrivial invariant submodules. If S D R
is a subring of the complete ring of quotients of /?, then E(SS) - E(RR)
and the condition implies that S is absolutely torsion-free whenever i?
is (Rubin [14], Theorem 1.15).

PROPOSITION (3.2). A ring R is left absolutely torsion-free if and
only if R is prime, Z(R) = 0, and every nonsingular quasi-injective left
R-module is injective.

Proof. Assume that R is left absolutely torsion-free and that
0^RM is quasi-injective with Z(M) = 0. Then RadM(M) ̂  0 implies
that RadM = Id by Violi-Prioli [18] Theorem 1.1, so M is cofaithful and
hence injective.
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Conversely, let M be a fully invariant submodule of E(R). Then
M is quasi-injective and nonsingular since by assumption Z(R) = 0, so
M must be injective and thus a direct summand of E(R), say E(R) =
MφJV. But M ΠR is an ideal since M is fully invariant in E(R), so
(M ΠR)-(N ΠR) = 0 and this implies that NΠR=0 since R is
prime. Thus N = 0 since J? is essential in E(R), so M = E(R) and it
follows from Proposition 3.1 that 1? is absolutely torsion-free.

Finally, as a consequence of Proposition 3.1 we have the following
restatement of Theorem 2.2.

THEOREM (3.3). A left absolutely torsion-free ring is left Goldie if
and only if it has a uniform left ideal.

We call a module M semicompressible if for all nonzero sub-
modules N CM there exists an exact sequence 0—»M->Nk for some
positive integer k. (Note that a semicompressible module satisfies the
conditions of Proposition 3.1.) The following proposition can be
generalized easily to quasi-projective semicompressible modules.

PROPOSITION (3.4). The endomorphism ring of a projective,
semicompressible left R-module is left absolutely torsion-free.

Proof. Let RM be semicompressible and projective and let
Endκ(M) act on the left of M. We will show that EndR(M) satisfies
condition (c) of Proposition 3.1. Let /,g E EndR(M), /τ^0,
g/0. Since g(M)^0 and M is semicompressible, there exists a
positive integer k and a monomorphism /: Λf —>(g(M))\ Let
p : Mk -*{g{M))k be the homomorphism with components px-
g. Since M is projective, / lifts to a map h: M —• Mk with components
Λ,:

M

Then p/ι/ = /jV 0 since j is monic and / ^ 0, so gΛ/ = (p/i )(/y 0 for some
component (ph)j of p/i. Hence {((ph)if)C€(g).

THEOREM (3.5). The ring of endomorphisms of a finitely generated
projective module over a left absolutely torsion-free ring is left absolutely
torsion-free.
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Proof. Let R be left absolutely torsion-free. Then RR is
semicompressible, so the result will follow from Proposition 3.4 if we
can show that any finitely generated free module over JR is semicom-
pressible, since a submodule of a semicompressible module is
semicompressible. More generally, we show that if RM is semicom-
pressible, then Mn is also. For this purpose let 0 ̂  N C Mn and let pn

be the projection of Mn onto the last component. If pn is monic when
restricted to N, then since M is semicompressible there exists k such
that 0-*M-+<j>Λ(N))k~Nk is exact and so 0-+Mn^(Nk)n is
exact. If pn is not monic on JV then J V n M " " V 0 and the above
argument can be applied to N ΠMn']. Continuing we see that there
exists an embedding 0—> Mn —> N* for some t and Mn is semicompres-
sible.
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