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RINGS WITH QUASI-PROJECTIVE
LEFT IDEALS

S. K. JAIN AND SURJEET SINGH

A ring R is a left qp -ring if each of its left ideals is
quasi-projective as a left R -module in the sense of Wu and
Jans. The following results giving the structure of left qp -rings
are obtained. Throughout R is a perfect ring with radical N:
(1) Let R be local. Then R is a left qp -ring iff N2 = (0) or R is a
principal left ideal ring with dec on left ideals, (2) If R is a left
qp -ring and T is the sum of all those indecomposable left ideals
of R which are not projective, then T is an ideal of R and
N = Γ φ L , L is a left ideal of R such that every left subideal of
L is projective, R/T is hereditary, and R is heredity iff

T = (0). (3) If R is left qp -ring then R = (? *£), where S is

hereditary, T is a direct sum of finitely many local qp -rings and
M is a (S, Γ)-bimodule. (4) A perfect left qp-ring is
semi-primary. (5) Let R be an indecomposable ring such that it
admits a faithful projective injective left module. Then R is a
left qp-ring iff R is a local principal left ideal ring or R is a
left-hereditary ring with dec on left ideals. (6) Let R be an
indecomposable QF-ring. Then R is a left qp-ring if each
homomorphic image of R is a g-ring (each one-sided ideal is
quasi-injective). (7) If a left ideal A of left spring R is not
projective then the projective dimension of A is infinite, thus
Igi dim/? = 0 , 1 , or °c. An example of a left artinian left
qp-ring which is not right qp-ring is also given.

Clearly all left hereditary rings are left qp- rings. However, the
class of commutative principal ideal artinian rings which are not direct
sum of fields distinguishes qp -rings from hereditary
rings. Commutative pre-self-injective rings studied by Klatt and Levy
[8] and by Levy [11] form a class dual to the class of commutative
qp-rings. Dual to the noncommutative qp -rings are rings for which
every cyclic module is quasi-injective investigated by Ahsan [1] and by
Koehler [9]. In this paper we study perfect left qp-rings.

2. A ring R is said to be right (left) perfect if it satisfies dec on
principal left (right) ideals and R is called perfect if it is both right and
left perfect [3]. An artinian principal ideal ring is called uniserial.

A ring R with Jacobson radical N is called local if JR /N is a division
ring. We assume that all nonzero rings have nonzero identity elements
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and all modules are unital. An R -module M is said to be quasi-
projective if for every submodule N of M, the induced sequence
0 -> Horn (Af, ΛΓ)-> Horn (M,M)-> Horn (M,M/N)-»0 is exact. For
basic properties of quasi-projective modules we refer to Wu and Jans
[14]. Quasi-injective modules are defined dually in [7]. The following
theorems give the structure of a quasi-projective module over a perfect
ring.

THEOREM 1. (Wu and Jans [14]). A finitely generated indecom-
posable quasi-projective left module over a right perfect ring R is of the
form Re/Ae where e is a primitive idempotent and A is an ideal of R
(Indeed the theorem is proved when R is semi-perfect.).

THEOREM 2. (Koehler [10]). Let Rbea right perfect ring. A left
R-module M is quasi-projective if and only if

Where A is an ideal and eue2, 9ek are indecomposable orthogonal
idempotents the number of nonisomorphic simple R-modules is k, and
Re u Re2, * ,Rek are the corresponding nonisomorphic projective
covers. In addition the decomposition is unique upto automorphism.

As defined by Miyashita [12], a module M is called perfect if for
any pair of submodules A,B of M with A +B = M there exists a
submodule Bo of B that is minimal with respect to the property that
A + BQ = M. In this case Bo is called a d-complement of A (in M).

THEOREM 3. (Miyashita [12]). If every homomorphic image of a
module M has a projective cover then M is perfect. Further if M is
perfect and quasi-projective then the sum of two submodules ofM which
are d-complements of each other is direct.

Finally, in this section we state a lemma which is analogous to the
lemma in Rangaswamy and Vaneja [13].

LEMMA 1. Let AφB be a quasi-projective left R-module. Then
every epimorphism from A to B splits.

3. In all the Lemmas 2, 3, 4, 5 and 6 which follow it is assumed
that R is a perfect left qp-ring and we write R = Rβiφ 0Jte», where
{ejisi sπ ^ re primitive orthogonal idempotents. Denote the Jacobson
radical of R by N.
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LEMMA 2. Let A and B be two indecomposable left ideals of
R. Then either A Π B = (0) or A and B are comparable.

Proof. Let AjtB and BjtA. As A + B is quasi-projective per-
fec* left R-module, by Theorem 3, there exist nonzero left subideals Ao

of A and Bo of B such that A + B = A0®B0. Then A = A0($(A Π J50)
yields that A = Ao as A is indecomposable. Similarly 2? = £ 0 . Hence
A Π B = (0).

LEMMA 3. If an indecomposable left ideal A is not projective then
for some i, A C Nex and A = l^jce, /or some e/jte, E efNe, further for this
i, jR^l?^=(0) /or α// jV i. In particular, if eNe^(0) then
horn (Re, Rf) = 0 for all primitive idempotents f not equal to e. Also
conversely, any left ideal of the form A = Re.xe,, exxex E exNex is an
indecomposable nonprojective left ideal.

Proof. By Theorem 1, A = Rex\Iex for some ideal / of R. If
Aj£Reh then by Lemma 2, A ΠRex =(0). But then the left ideal
RβiφA of JR is quasi-projective and there exists an epimorphism
σ: Ret -» A which must split by Lemma 1. So σ is an isomorphism and
A is projective which is a contradiction. Hence A CNeh since Net is
the unique maximal left subideal of Reh Further, A being a
homomorphic image of Reh A = Re^ei for some e&βi E ejNeh For
proving RβiRβj = 0, *V/, let us assume that for some /, ReiRe^O. So
there exists aER such that Rβiae^O. As Rei^Re^ is quasi-
projective, Lemma 1 yields that Rei^Retaej. Then Re^ae^A is
quasi-projective and A is a homomorphic image of
Rβiaβj. Consequently, Lemma 1 gives that A is projective which is a
contradiction. Hence for all j ^ i, Reftej = (0).

LEMMA 4. For a fixed i, either the family of all nonzero left ideals

of the form Re.ae,, exaex E e ̂ e , are isomorphic or RdNei = Rexnex for
some exnex E exNex.

Proof Since R is a perfect ring, N is both right and left
T-nilpotent. We assert that there exists a maximal left ideal in the
family F = {Re^xe, | exxex E β/N^ }. For if Refce, is not maximal then we
can find RexbλexΏRexbex. This gives exbe{•,= (exxei)(eib {ex) with

exxλexE.e xNe x. If Rexbxex is not maximal then we can find Rexb2exD

ReibxeiDRefcei. This yields exbex»= (eix2ei)(eibίei) and thus exbex =

(exx2ex){eixxei)(eibiex). By continuing this process, we get a sequence
(exXjex), j = l,2,'- , with eiX^ E. exNex. Since N is Γ-nilpotent this

sequence cannot be infinite. Hence we can fincf a maximal left ideal,
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say, Rexnex in the family F. We claim that either RexNex = Rexnex or all
left ideals of the form Rexaex, exaex G exNex are isomorphic. So if

βi 7^ Rexnex then there exists some x EyN such that
ReiΠei. Then by Lemma 2, ReixeiΓ\Reιnei={ϋ). Let A =

Rexnex 0 Rexxex. A is a quasi-projective left ideal of R and both Rexneh

Reixei have same projective cover Rex. So by Theorem 2, Rexnex =
Retxex. We now show for every a E N, Rexaex is isomorphic to
Rexnex. By Lemma 2 and maximality of Rexneh Rexa$x must have zero
intersection with one of the two left ideals Rexneh Rexxex. In either case
we get by invoking Theorem 2 again that Rexaex = Rexnex. Hence all left
ideals of the form Rexaex are isomorphic as desired. This completes the
proof.

LEMMA 5. For a fixed i either (exNex)
2 = (0) or exRex is a principal

left ideal ring with dec (all proper left ideals are powers of exNex) and all
left subideals of Rex generated by subsets of exNex satisfy dec.

Proof. There is a 1-1 inclusion preserving correspondence be-
tween all left ideals of exRex and all those left subideals of Rex which are
generated by subsets of exNex. If, as in the Lemma 4, all nonzero
principal left subideals of Rex of the form Rexaeh exaex E exNex are
isomorphic, we derive that all the principal left subideals of exNex in exRex

are isomorphic and hence minimal. Consequently, (̂ •Niei)
2 = (0). In

the other case we have RexNex = Rexnex. This implies eiRexNex = exRexnex

and so exNex = e.Re.nei. Thus in the local ring exReh the radical is a
principal left ideal generated by a nilpotent element. This yields that
all the left ideals of exRex are of the form exRex(exnex)

t{ = {eiNei)
t),

t = 1,2, , fc, where k is the index of nilpotency of e^Ne,. But then this
gives that all the left subideals of Rex generated by the subsets of exNex

are of the form R{exnex)\ This completes the proof.

THEOREM 4. Let R be a perfect left qp-ring. Then for any primi-
tive idempotent e of R, eRe is also a left qp-ring.

Proof. Let R = ReλQ)- 0jRen, where ex are primitive orthogonal
idempotents. Without loss of generality we can suppose that e =
ex. Let N = J(R) be the Jacobson radical. If (eλNex)

2 = (0), then
βiNβi is a completely reducible left exReλ- module. Trivially then every
left ideal of exRex is quasi-projective. Suppose {exNex)

2^0. By
Lemma 5, any proper left-ideal of exReλ is a power of exNeu and thus it
is isomorphic to exRexl(exNexy for some positive integer t which is
quasi-projective. Hence exRex is a left qp-ring.

Combining Theorem 4 and the above lemmas we obtain:
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THEOREM 5. Let Rbe a local perfect ring. Then R is a left qp-ring
if and only if

(i) N 2 = (0), or
(ii) R is a principal left ideal ring with dec on left ideals.

Next we prove a proposition which is also of an independent
interest.

PROPOSITION 1. Let R be a left perfect ring. If every left ideal
contained in the radical N is projective, then R is left hereditary.

Proof. Since idempotents modulo the radical can be lifted, given
any left ideal I of R, I = Jf?/iφ 0JR/«0/, for some idempotents
fu'-'Jn and for some left ideal J CN. By hypothesis J is
projective. Hence I is projective and so R is left hereditary.

LEMMA 6. Any nonzero left subideal of Ne (e primitive idempo-
tent) of the form Reae in a perfect ring R cannot have nonzero
homorphism into any indecomposable left ideal B which is a homomor-
phic image of some Rfwith /, a primitive idempotent, such that Rf/ Re.

Proof. Let A - Reae. Since eNe / (0), by Lemma 3, ReRf = (0),
where / is a primitive idempotent not equal to e. Since A is not
projective, each of its nonzero homomorphic image is also not
projective. So let B be an indecomposable homomorphic image of
A = Reae. Since B is an indecomposable quasi-projective (but not
projective) left ideal, by theorem 1, B is of the form Rf/Xf where Xfj^ 0
and / is some primitive idempotent. We wish to show that f — e. By
Lemma 3, B CRf. But then we get a nonzero homomorphism
Re -»Reae -*B->Rf which is a contradiction unless e = /. Thus
Reae cannot map onto any Rf/Xf with Rf^ Re. This completes the
proof.

THEOREM 6. Let Rbe a perfect left qp-ring and let eh 1 ̂  i ^n,be a
maximal set of primitive orthogonal idempotents in R. Suppose T =
ΣΓ=i RβiNβi. Then (i) Tis the sum of all those indecomposable left ideals
of R which are not projective, (ii) T is an ideal of R contained in N, and
(iii) N = ΓφL for some left ideal L of R such that every left subideal of
L is projective.

Proof. By Lemma 6, Re^e^Re^ = (0) for / ^ /. So T is an ideal of
JR. Also, by Lemma 3, an indecomposable left ideal A of R is not
projective if and only if A = Re.ae, for some 0 ̂  daβi E e/Nief. Thus it is
immediate that T is the sum of all nonprojective indecomposable left
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ideals of R. We now proceed to prove (iii). Since Net is quasi-
projective, we can write Nex = 0 Σ Bk, where Bk are indecomposable
left subideals of Net (Theorem 2). Consider 0 ̂  e{xex-E e-JSίei. Then
RejXβi has nonzero projection into some Bk. By Lemma 6, Bk itself is
of the type Re-yβi, e$ex G βiNe,. It follows from Lemma 3 that Re^Ne-, is
a sum of those indecomposable left ideals Bk which are homomorphic
immages of Reh Also if some Bk is not homomorphic image of Reh

then this Bk must be projective. Hence we can write Ne< = ReiNβiφQ
where Q is projective. This gives JV = TφC where C is
projective. Consider a left ideal 5 ( ^ 0 ) contained in C. Now B =
0ΣX α , where Xa are indecomposable left ideals. If some Xa is not
projective, then by Lemma 3, Xa is of type Re{xe{ with exxex in exNe-x and
hence Xa C T which is a contradiction. This shows that B is projec-
tive, thus proving the theorem.

THEOREM 7. Let Rbea perfect left qp-ring, and T be the ideal as in
Theorem 6. Then R/T is left hereditary and R is left hereditary if
T = (0).

Proof Consider a left ideal Λ/TC N/T. Since ΛΓ = Γ 0 C , we
get A = Γ0(A Π C). But all left subideals of C are projective. So
A Π C is projective as a left I?-module. Also T(A Π C) = (0) gives
that A Π C i s projective as left Λ/T-module. Then by Proposition 1,
R/T is left hereditary. The last assertion in the theorem is
obvious. This completes the proof.

The next theorem gives us a representation of a perfect left qp-ring
as a triangular matrix ring.

THEOREM 8. Let R be a left, right perfect left qp-ring. Then

(1) R is semi-primary
(2) R is an upper-triangular matrix ring of the form

where S is a hereditary semi-primary ring, Tis a finite direct sum of local
left qp-rings, and M is an (S, T)-bimodule such that 5 M is projective.

Before we prove this theorem we establish some preliminaries and
prove three lemmas. Let R be a perfect left spring and JV be its
radical. Let Rfl9Rf29 — -,Rfm be a maximal set of nonisomorphic
indecomposable left ideals of R generated by primitive
idempotents. By invoking Lemma 1 we note that any nonzero JR-
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homomorphism of Rft into Rfj is a monomorphism. Define a relation
^ in the set {!?/„•• -,!?/„} as follows: Rfi ̂ Rfi if and only if there
exists a nonzero R -homomorphism of Rfi into Rfh that is,
fiRfj7^(0). By using the fact that in a right perfect ring i? no principal
left ideal Ra of R can be isomorphic to its own proper left subideal, we
get that {Rfu-'>Rfm} is a partially ordered set with respect to
^ . Further, recall Lemma 3 which says that for a given primitive
idempotent /, either all left subideals of Rf are projective or fNfjέ (0)
and for any primitive idempotent e with Rf^ ReJRe = (0). So if for
some //, Rfc has a left subideal which is not projective then Rf^Rfi for
all iV j . Hence we can arrange !?/,,•••, J?/m in such a way that there
exists a positive integer u (possibly zero) which is less than or equal to
m satisfying the following:

(i) p/; = (0) for /</.
(ii) Every left subideal of Rft is projective and /i?/ is a division

ring for / S u.
(iii) fjNfjέiO) and ̂ i?/ = (0) for / > u and iV /.

Write

1? = (K/πΘ * * φRfudθiRiiΘ θ « W θ * ΘW«,θ

where /)y are orthogonal primitive idempotents with their sum equal to 1
such that Rfik = Rfi for every fc and i\ Clearly, by what is stated above,
ί, = 1 for / g M + 1 and fikRfik is a division ring whenever i ^ u. Let
£, = 2 ,̂/ifc, 1 ^ / ^ m and £ = Σ?βlEh Then we have the following:

LEMMA 7. (1) For i ^ u^EiRE, is simple artinian.
(2) JEfβEi = (0) whenever i < j .
(3) N is nilpotent.

Proof. Since Rfιk = Rfhl^k ^t< and RE = ®Σu

k=]Rfik, we get
; is anti-isomorphic to the ί, x ίf matrix ring D ^ where D ( ί ) = //?/ is

a division ring. This proves (1).
The proof of (2) is immediate consequence of the fact that

///?/, =(0) for i </..
Finally, to prove (3), let A =Σι<jEiREj. Then A is a nilpotent

ideal and

RIΛ ^φΣ Σ

Since each EιREh 1 ̂  i' ̂  M, is simple artinian and by Theorems 4
and 5 each fuRfu, u 4-1 g / g m is a local ring with nilpotent maximal
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ideal, we obtain that the radical of R/A is nilpotent. Hence N is
nilpotent since A is nilpotent.

LEMMA 8. 5 = ERE is hereditary.

Proof. Since V = Σi<}^uEiREj is the radical of 5 and 5 is semi-
primary, in order to prove S is hereditary it is enough to prove that SV is
projective. Now

V = Θ.Σ EtNEi = 0 Σ ENEj = Θ Σ Σ ENfjk.

Also by our arrangement Nfjk is projective as left R -module whenever
/ ̂  u. Thus ENfjk is projective as left £i?Z?-module and hence SV is
projective as desired.

LEMMA 9. M = ER(\ - E) is a projective left ERE-module.

Proof. Consider

A = RER(l " £ ) = Σ Σ Σ RUa>
a i^u k

a E R(\ - E). Hence A is a homomorphic image of a projective module
P = ΘΣfleER(i-£)ΣkΣiί,Xifal where Xika=Rfik for aER(l-E). Now
A has a projective cover Q =0Σ α ( Ξ Λ A r

α such that each Xa =Rfiia)9

1 ̂  i(a) ̂  m. As A is a left ideal of /?, A is quasi-projective. So by
Koehler's theorem (Theorem 2) there exists an ideal B CN such that
A = 0 Σ α e Λ Ya, Ya = (R/B)fia). Since Q is a projective cover of A, Q
is a direct summand of P. Thus, for each /(α), there exists a nonzero
jR-homomorphism of Rfi{a) into one of Rf with / ̂  u. This along with
(2) of Lemma 7 yields that i(a) ̂  w for all a. Since Y« C /?(1 - E) and
/(α)^w, an application of the Lemma 1 gives that the canonical
homomorphism Rfna)-*(RlA)fl(a)= Ya is an isomorphism. Hence
Ya = Xa for all a and A is projective.

Proof of the Theorem 8. Since N is nilpotent, R is
semiprimary. Further, write

R = £/?£ 0 Etf(l - E) 0 ( 1 - E)/?(l - E).

By the above lemmas 5 = ERE is hereditary and M = ER(l - E) is a
projective left 5-module. Also Γ = (1 - E)R{\ - E) = φΣT=u+JiRfi is

a direct sum of local left qp -rings. Hence R = ( ) where S, Γ and

M are as stated in the theorem.



RINGS WITH QUASI-PROJECTIVE LEFT IDEALS 177

4. In this section we prove a theorem for a perfect left qp-ring
which admits a uniform projective left module. This theorem then
enables us to characterize perfect left qp -rings which admit a faithful
projective injective left module (Theorem 10). We begin with

THEOREM 9. Let M be a uniform projective left module over a
perfect left qp-ring R. Then M = Rex for some primitive idempotent ex,
and either (i) All left subideals ofNex are homomorphic image ofRex and
ReJRe^ = (0) = Refte, where e] is a primitive idempotent such that
Rex j£ Reh or (ii) Nex is projective and all its left ideals are projective. In
each case Rex satisfies dec on left subideals.

Proof. M = Re, follows from well known result of Bass [3]. As
in the proof of Theorem 6, we can write Nex = RexNeiφBι where Bx is
projective. Since Re, is uniform either Nex = Re,Nex or Nex = 2?,. In
case Nex = RexNeh there exists exnex E exNex such that Nex =
Rexnex. Since e.ne, is nilpotent, we get that every left subideal of Rex is
of the form R(exnexy ={Rexnexy which is obviously a homomorphic
image of Rex. It also follows that Rex has only a finite number of left
subideals. By Lemma 3, we know RexRej =(0) where Rexj£ Rer We
show that RejRex is also zero. Suppose not then we can choose
xex G Rex with Repcd^O and Repcβi CRex. Lemma 1 yields that Repd is
projective and thus Repcβi = Rex. But this is a contradiction since JR is
perfect. This proves (i).
( In the other case we have Nex=Bx and J3, is projective (also
uniform). So Bi is ίsomorphic to some Rer Also by theorem 6 every
subideal of Bi is projective and hence isomorphic to some Rek. Further
by Lemma 2 it follows that the subideals of Ne, are totally
ordered. Since no subideal (/ Re,) of Re} can be isomorphic to Reh we
conclude that there are only a finite number of subideals of Nex. This
completes the proof.

The next theorem characterizes perfect left qp~ rings admitting a
faithful projective injective module.

THEOREM 10. Let R be an indecomposable (as a ring) perfect ring
such that it admits a faithful projective injective left R-module M. Then
R is a left qp-ring if and only if

(i) R is a local principal left ideal ring, or
(ii) R is a left hereditary ring with dec on left ideals

Proof. Sufficiency is obvious. So let R be a left qp-ring. If we
write JR = J?^i0 m(&Ren9 ex primitive orthogonal idempotents, then by
Bass [3] M is a direct sum of copies of jRe, 's, say, Ret+U , Ren. Then
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A = l?e,+10 -®Ren is a faithful injective projective left R-
module. We claim that each Reh 1 g ί g n, is uniform. If / ̂  t + 1
then it is clear that Re, is uniform. So let i <t. As A is faithful,
eiRβj^ (0) for some / ^ t + 1. By using Lemma 1, we get that Rβi is
isomorphic to a left subideal of Reh Hence Re, is uniform, since Re, is
uniform.

Now by Theorem 9, Ret satisfies dec. It is also clear from the
proof of that theorem that each of the left subideals in Ret is
principal. Hence R satisfies dec on left ideals. In case n = 1, R is of
type (i). So consider the case when n>\. We claim Ne, is
projective. For if Net is not projective, then by Theorem 9, Re< and
Σj^Rβj are two nonzero ideals and R = ReiφΣj^Rej. This contradicts
the assumption that R is indecomposable. Hence Ne{ is
projective. So N = 0ΣiV^ is projective as a left i?-module. Hence
R is left hereditary left artinian. This completes the proof.

As a special case of the above theorem we have the following
characterization of QF-rings.

THEOREM 11. Let R be an indecomposable QF-ring. Then R is a
left qp-ring iff each homomorphic image ofR is a q-ring (each one-sided
ideal is quasi-injective).

Proof. Since a left hereditary QF-ring is semisimple artinian,
Theorem 10 gives that either R is simple or local uniserial. In a local
uniserial ring every one sided ideal is two sided and every homomorphic
image is QF-ring. Consequently, every homomorphic image is a
q-ring [6].

Conversely, if every homomorphic image of R is a Q-ring then also
R is uniserial (R is uniserial iff every homomorphic image of R is QFy

Fuller [5]). Further R is isomorphic to a full n x n matrix ring over a
local ring B. If n = 1 then R is local uniserial. If n > 1 then R must
be simple artinian, since JR is a q-ring (c.f. Jain, Mohamed and Singh [6],
Theorem 2.4) [6]. In each case R is a left qp-ring. This completes the
proof.

5. In this section we study left global dimension of a perfect left
qp-ring.

THEOREM 12. Let Rbe a perfect left qp-ring and A be a left ideal of
R. Then the projective dimension of A as a left R-module is 0 or «.

Proof. We first prove a sublemma.
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SUBLEMMA. Under the hypothesis of the theorem if e is a primitive
idempotent and 0 ̂  exe E eNe and lR (exe) denotes the left annihilator
ofexe in R then lR (exe) = L($M, where L = Reye, 0 ̂  eye E eNe, is not
projective.

Proof of the sublemma. By Theorem 2 we can write lR (exe) =
(&ΣAa where Λa are indecomposable left ideals. Also it follows from
Lemma 5 that lR (exe) Π eNe^O. Let us choose 0 φ eue E ίR (exe) Π
eNe. Then Reue has nonzero homomorphism into one of Aa's. By
Lemma 6, Aa = Reye for some eye in eRe. Indeed eye E eNe since
.RejZ! lR (exe). Hence Aα is not projective. This completes the proof
of the sublemma.

We now prove the theorem. Since A is a direct sum of indecom-
posable left ideals (Theorem 2) we may assume that A is a nonzero
indecomposable left ideal. If A is projective then the projective
dimension is zero. So let A be not projective. Then by Lemma 3,
A = Rexe for some 0 ^ exe E eNe (e being some primitive
idempotent). We construct an infinite projective resolution of A

such that for every n, ktτfn=AnφBn where An is nonprojective
indecomposable left ideal of R and is of the form Rexne, 0 / exne E
eNe. Choose Po = Re and let /0 be the natural R -homomorphism of Re
onto Rexe. Then ker/ 0= lR (exe) = AoφBo where Ao = Rexoe is not
projective (sublemma). Suppose we have constructed P0,Pi, ,Pn

with exact sequence

where λ is injection. By induction hypothesis ker/n = An($Bn, where
An =RexneCNe.
Consider short exact sequences

and

where ηn is a natural R -homomorphism, σn is an injection and Qn is
some projective module.
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Set Pn+ι = Qn(BRe and fn+ι = λ(η'nφηn). Then ker /„+, =
kerrj θ k e i Tj,,. Also kerτjπ = \R{exne) = Rexn+Xe ®K (by sublemma).
Thus /„+, has the required property. Since Pn+ι is projective, we have
obtained the desired projective resolution of A.

Recall that if R is not a semisimple artinian ring then

/. gl dimR = 1 + sup {1. dim* A | A is a left ideal}.
The previous theorem then yields the following

THEOREM 13. Let R be a perfect left qp-ring. Then
I. gl dimR = 0,1, or oo.

6. It is well known that a left hereditary semiprimary ring is also
right hereditary [2]. Here we give an example of a local primary ring
which is a left qp-ring but is not a right qp-ring.

EXAMPLE. Let F be a field which has an isomorphism a-*ά that
is not an automorphism, and let F be the subfield of the images
a, a EF. Take x to be an indeterminate over F. Let F[x] be the ring
of polynomials of the form αo + β\X + a2x

2, at E F; multiplication being
defined by the rule xa = άx,x3 = 0 together with distributive law. It is
well known that such rings are principal left ideal rings. Its radical
N = {aιx + a2x

2\ai G F} is such that N2/ (0),N3 = (0) and is a maximal
left ideal of R. So R is a local perfect ring. Also N is not principal as
a right ideal. So by Theorem 5, I? is a left qp-ring but not a right
qp-ring.
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