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RINGS WITH QUASI-PROJECTIVE
LEFT IDEALS

S. K. JAIN AND SURJEET SINGH

A ring R is a left gp-ring if each of its left ideals is
quasi-projective as a left R-module in the sense of Wu and
Jans. The following results giving the structure of left gp -rings
are obtained. Throughout R is a perfect ring with radical N:
(1) Let Rbelocal. Then R is a left gp-ring iff N>=(0)or R isa
principal left ideal ring with dcc on left ideals, (2) If R is a left
gp-ring and T is the sum of all those indecomposable left ideals
of R which are not projective, then T is an ideal of R and
N =T@&L, L is aleft ideal of R such that every left subideal of
L is projective, R/T is hereditary, and R is heredity iff
T =(0). (3) If R is left gp-ring then R = <g T
hereditary, T is a direct sum of finitely many local gp -rings and
M is a (S,T)-bimodule. (4) A perfect left gp-ring is
semi-primary. (5) Let R be an indecomposable ring such that it
admits a faithful projective injective left module. Then R is a
left gp-ring iff R is a local principal left ideal ring or R is a
left-hereditary ring with dcc on left ideals. (6) Let R be an
indecomposable QF-ring. Then R is a left gp-ring if each
homomorphic image of R is a g-ring (each one-sided ideal is
quasi-injective). (7) If a left ideal A of left gp-ring R is not
projective then the projective dimension of A is infinite, thus
Ilgl. dimR =0,1, or ©». An example of a left artinian left
gp-ring which is not right gp-ring is also given.

, where S is

Clearly all left hereditary rings are left gp-rings. However, the
class of commutative principal ideal artinian rings which are not direct
sum of fields distinguishes gp-rings from  hereditary
rings. Commutative pre-self-injective rings studied by Klatt and Levy
[8] and by Levy [11] form a class dual to the class of commutative
qp-rings. Dual to the noncommutative gp-rings are rings for which
every cyclic module is quasi-injective investigated by Ahsan [1] and by
Koehler [9]. In this paper we study perfect left gp-rings.

2. A ring R is said to be right (left) perfect if it satisfies dcc on
principal left (right) ideals and R is called perfect if it is both right and
left perfect [3]. An artinian principal ideal ring is called uniserial.

A ring R with Jacobson radical N is called local if R/N is a division
ring. We assume that all nonzero rings have nonzero identity elements
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and all modules are unital. An R-module M is said to be quasi-
projective if for every submodule N of M, the induced sequence
0— Hom(M,N)—Hom(M,M)—Hom(M,M/N)—0 is exact. For
basic properties of quasi-projective modules we refer to Wu and Jans
[14]. Quasi-injective modules are defined dually in [7]. The following
theorems give the structure of a quasi-projective module over a perfect
ring.

THEOREM 1. (Wu and Jans [14]). A finitely generated indecom -
posable quasi-projective left module over a right perfect ring R is of the
form Re[Ae where e is a primitive idempotent and A is an ideal of R
(Indeed the theorem is proved when R is semi-perfect.).

THEOREM 2. (Koehler [10]). Let R be a right perfect ring. A left
R-module M is quasi-projective if and only if

M= ‘; (Re;[Ae;)*?

Where A is an ideal and e, e,,- - ,e, are indecomposable orthogonal
idempotents ; the number of nonisomorphic simple R-modules is k, and
Re,,Re,,---,Re, are the corresponding nonisomorphic projective
covers. In addition the decomposition is unique upto automorphism.

As defined by Miyashita [12], a module M is called perfect if for
any pair of submodules A,B of M with A + B = M there exists a
submodule B, of B that is minimal with respect to the property that
A +B,= M. In this case B, is called a d-complement of A (in M).

THEOREM 3. (Miyashita [12]). If every homomorphic image of a
module M has a projective cover then M is perfect. Further if M is
perfect and quasi-projective then the sum of two submodules of M which
are d-complements of each other is direct.

Finally, in this section we state a lemma which is analogous to the
lemma in Rangaswamy and Vaneja [13].

LEmMMA 1. Let A@B be a quasi-projective left R-module. Then
every epimorphism from A to B splits.

3. In all the Lemmas 2, 3, 4, 5 and 6 which follow it is assumed
that R is a perfect left gp-ring and we write R = Re,p- - -EDRe,, where
{e.}1=i=n are primitive orthogonal idempotents. Denote the Jacobson
radical of R by N.
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LEMMA 2. Let A and B be two indecomposable left ideals of
R. Then either AN B =(0) or A and B are comparable.

Proof. Let AZB and BZ A. As A + B is quasi-projective per-
fec* '=ft R-module, by Theorem 3, there exist nonzero left subideals A,
of A and B, of B such that A + B = A@PB,. Then A = A P(A N By)
yields that A = A, as A is indecomposable. Similarly B = B,. Hence
A N B =(0).

LemMA 3. If an indecomposable left ideal A is not projective then
for some i, A C Ne; and A = Rewxe; for some exe; € eNe;; further for this
i, ReRe;=(0) for all j#i. In particular, if eNe# (0) then
hom (Re, Rf) =0 for all primitive idempotents f not equal to e. Also
conversely, any left ideal of the form A = Rexe, exe; € ¢Ne; is an
indecomposable nonprojective left ideal.

Proof. By Theorem 1, A = Re;/Ile; for some ideal I of R. If
AfZ Re, then by Lemma 2, A N Re; =(0). But then the left ideal
Re,PA of R is quasi-projective and there exists an epimorphism
o: Re; — A which must split by Lemma 1. So o is an isomorphism and
A is projective which is a contradiction. Hence A C Ne, since Ne; is
the unique maximal left subideal of Re. Further, A being a
homomorphic image of Re;, A = Rexe; for some exe; € ¢,Ne. For
proving ReRe; =0, i # j, let us assume that for some j, Re;Re; #0. So
there exists a € R such that Reae;#0. As Re;PReae; is quasi-
projective, Lemma 1 yields that Re; = Reae;, Then ReaePA is
quasi-projective and A is a homomorphic image of
Reae.. Consequently, Lemma 1 gives that A is projective which is a
contradiction. Hence for all j# i, Re;Re; = (0).

LemMA 4. For a fixed i, either the family of all nonzero left ideals
of the form Reae, eae; € eNe; are isomorphic or Re,Ne; = Rene; for
some ene; € ¢ Ne,.

Proof. Since R is a perfect ring, N is both right and left
T-nilpotent. We assert that there exists a maximal left ideal in the
family F = {Rexe; |exe; € eNe;}. For if Rebe; is not maximal then we
can find Reb.e; D Rebe. This gives ebe; = (exe;)(ebe) with
ex,e; €EeNe. If Reb,e; is not maximal then we can find Reb,e D
Reb,e; D Rebe. This yields ebe = (ex.e)(eb,e;) and thus ebe =
(ex,e;)(ex,e)(ebe). By continuing this process, we get a sequence
(exe), j=1,2,---, with exe; € eNe. Since N is T-nilpotent this
sequence cannot be infinite. Hence we can find a maximal left ideal,
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say, Rene, in the family F. We claim that either Re;Ne; = Rene; or all
left ideals of the form Reae, eae € e,Ne; are isomorphic. So if
ReNe, # Rene; then there exists some x €N such that
Rexe, Z Rene. Then by Lemma 2, Rexe; N Rene; =(0). Let A=
Renne, P Rexe,. A is a quasi-projective left ideal of R and both Rene,
Reixe; have same projective cover Re. So by Theorem 2, Rene; =
Rexe.,. We now show for every a € N, Reae; is isomorphic to
Rene. By Lemma 2 and maximality of Rene;, Re,ae; must have zero
intersection with one of the two left ideals Rene;, Rexe,. In either case
we get by invoking Theorem 2 again that Reae; = Rene,. Hence all left
ideals of the form Re;ae; are isomorphic as desired. This completes the
proof.

LEMMA 5. For a fixed i either (e.Ne;)’ = (0) or eRe; is a principal
left ideal ring with dcc (all proper left ideals are powers of ¢,Ne;) and all
left subideals of Re; generated by subsets of e.Ne; satisfy dcc.

Proof. There is a 1-1 inclusion preserving correspondence be-
tween all left ideals of e;Re; and all those left subideals of Re; which are
generated by subsets of ¢Ne. If, as in the Lemma 4, all nonzero
principal left subideals of Re; of the form Reae, eae; € eNe; are
isomorphic, we derive that all the principal left subideals of ¢;,Ne; in e;Re;
are isomorphic and hence minimal. Consequently, (¢,Ne;)*=(0). In
the other case we have Re;Ne; = Rene.. This implies ¢;Re;Ne;, = eRene;
and so e;Ne; = e,Reine. Thus in the local ring eRe;, the radical is a
principal left ideal generated by a nilpotent element. This yields that
all the left ideals of eRe; are of the form eRe;(ene) (=(eNe;)'),
t=1,2,---,k, where k is the index of nilpotency of ¢;Ne,, But then this
gives that all the left subideals of Re; generated by the subsets of e;Ne;
are of the form R(emne;)'. This completes the proof.

THEOREM 4. Let R be a perfect left qp-ring. Then for any primi-
tive idempotent e of R, eRe is also a left qp-ring.

Proof. Let R = Re,D- - -@PRe,, where e; are primitive orthogonal
idempotents. Without loss of generality we can suppose that e =
e,. Let N=J(R) be the Jacobson radical. If (e,Ne,)*=(0), then
e,Ne, is a completely reducible left ¢,Re,-module. Trivially then every
left ideal of e,Re, is quasi-projective. Suppose (e;Ne)*#0. By
Lemma 5, any proper left-ideal of e¢,Re, is a power of e,Ne,, and thus it
is isomorphic to e,Re,/(e;Ne,)’ for some positive integer ¢t which is
quasi-projective. Hence ¢ Re, is a left gp-ring.

Combining Theorem 4 and the above lemmas we obtain:
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THEOREM 5. Let R be alocal perfect ring. Then R is a left qp-ring
if and only if

i) N?*=(0), or

(ii) R is a principal left ideal ring with dcc on left ideals.

Next we prove a proposition which is also of an independent
interest.

ProprosITION 1. Let R be a left perfect ring. If every left ideal
contained in the radical N is projective, then R is left hereditary.

Proof. Since idempotents modulo the radical can be lifted, given
any left ideal I of R, I = Rf,P---PRf,PJ, for some idempotents
fi,---.f. and for some left ideal JCN. By hypothesis J is
projective. Hence I is projective and so R is left hereditary.

LEMMA 6. Any nonzero left subideal of Ne (e primitive idempo-
tent) of the form Reae in a perfect ring R cannot have nonzero
homorphism into any indecomposable left ideal B which is a homomor-
phic image of some Rf with f, a primitive idempotent, such that Rf # Re.

Proof. Let A = Reae. Since eNe# (0), by Lemma 3, ReRf = (0),
where f is a primitive idempotent not equal to e. Since A is not
projective, each of its nonzero homomorphic image is also not
projective. So let B be an indecomposable homomorphic image of
A = Reae. Since B is an indecomposable quasi-projective (but not
projective) left ideal, by theorem 1, B is of the form Rf/Xf where Xf# 0
and f is some primitive idempotent. We wish to show that f =e. By
Lemma 3, B CRf But then we get a nonzero homomorphism
Re — Reae — B — Rf which is a contradiction unless e =f. Thus
Reae cannot map onto any Rf/Xf with Rf# Re. This completes the
proof.

THEOREM 6. Let R be a perfect left qp-ring and let e, 1 =i =n, bea
maximal set of primitive orthogonal idempotents in R. Suppose T =
"_1Re,Ne. Then (i) T is the sum of all those indecomposable left ideals
of R which are not projective, (ii) T is an ideal of R contained in N, and
(iii) N = T@L for some left ideal L of R such that every left subideal of
L is projective.

Proof. By Lemma 6, Re;Ne.Re; = (0) for i#j. So T is an ideal of
R. Also, by Lemma 3, an indecomposable left ideal A of R is not
projective if and only if A = Re,ae; for some 0 # e.ae; € eNe,.. Thusitis
immediate that T is the sum of all nonprojective indecomposable left
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ideals of R. We now proceed to prove (iii). Since Ne; is quasi-
projective, we can write Ne, = B2 B,, where B, are indecomposable
left subideals of Ne, (Theorem 2). Consider 0 # exe; € eeNe.. Then
Rexe; has nonzero projection into some B,. By Lemma 6, B, itself is
of the type Reye, e;ye; € e,Ne,. It follows from Lemma 3 that Re;Ne; is
a sum of those indecomposable left ideals B, which are homomorphic
immages of Re. Also if some B, is not homomorphic image of Re,
then this B, must be projective. Hence we can write Ne; = Re;Ne; HC;
where C; is projective. This gives N =T@C where C is
projective. Consider a left ideal B(# 0) contained in C. Now B =
P X,, where X, are indecomposable left ideals. If some X, is not
projective, then by Lemma 3, X, is of type Rexe; with exe; in e,Ne; and
hence X, CT which is a contradiction. This shows that B is projec-
tive, thus proving the theorem.

THEOREM 7. Let R be a perfect left qp-ring, and T be the ideal as in
Theorem 6. Then R|T is left hereditary and R is left hereditary if
T = (0).

Proof. Consider a left ideal A/T C N/T. Since N = TPHC, we
get A=TPH(A NC). But all left subideals of C are projective. So
A NC is projective as a left R-module. Also T(A N C)=(0) gives
that A N C is projective as left R/T-module. Then by Proposition 1,
R/T is left hereditary. The last assertion in the theorem is
obvious. This completes the proof.

The next theorem gives us a representation of a perfect left gp -ring
as a triangular matrix ring.

THEOREM 8. Let R be a left, right perfect left qp-ring. Then

(1) R is semi-primary
(2) R is an upper-triangular matrix ring of the form

o 7)

where S is a hereditary semi-primary ring, T is a finite direct sum of local
left qp-rings, and M is an (S, T)-bimodule such that ;M is projective.

Before we prove this theorem we establish some preliminaries and
prove three lemmas. Let R be a perfect left gp -ring and N be its
radical. Let Rf,,Rf,,---,Rf, be a maximal set of nonisomorphic
indecomposable left ideals of R generated by primitive
idempotents. By invoking Lemma 1 we note that any nonzero R-
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homomorphism of Rf; into Rf; is a monomorphism. Define a relation
= in the set {Rf,, -+, Rf,} as follows: Rf, = Rf; if and only if there
exists a nonzero R-homomorphism of Rf, into Rf, that is,
fiRf;# (0). By using the fact that in a right perfect ring R no principal
left ideal Ra of R can be isomorphic to its own proper left subideal, we
get that {Rf,,---,Rf.} is a partially ordered set with respect to
=. Further, recall Lemma 3 which says that for a given primitive
idempotent f, either all left subideals of Rf are projective or fNf# (0)
and for any primitive idempotent e with Rf# Re, fRe = (0). So if for
some f, Rf; has a left subideal which is not projective then Rf; Z Rf; for
all i#j. Hence we can arrange Rf,,-- -, Rf, in such a way that there
exists a positive integer u (possibly zero) which is less than or equal to
m satisfying the following:

1) fRfi=(0) for i <j.

(i) Every left subideal of Rf: is projective and f,Rf; is a division
ring for i = u.

(i) fiNf; # (0) and f;Rf, = (0) for j >u and i#j.

Write
R=(Rfu® PRfI)DR»D - DRLID - DRfn D - - D Rfom)

where f; are orthogonal primitive idempotents with their sum equal to 1
such that Rf;, = Rf; for every k and i. Clearly, by what is stated above,
ti=1for i zu+1; and fyRf, is a division ring whenever i =u. Let
E =3 fi, |=i=m and E =Z{_ | E. Then we have the following:

LemMma 7. (1) For i =u, ERE, is simple artinian.
(2) ERE; = (0) whenever i <j.
(3) N is nilpotent.

Proof. Since Rf, =Rf,1=k =t, and RE = @3, Rfy, we get
E.RE, is anti-isomorphic to the t; X t; matrix ring D{°’ where D® = fRf; is
a division ring. This proves (1).

The proof of (2) is immediate consequence of the fact that
fiRf; = (0) for i <j.

Finally, to prove (3), let A =Z%,_,E.RE;, Then A is a nilpotent
ideal and

R/A =@D ERE.® >, ERE,
i=1

i=u+l

= @2 ERE® S f.Rf..

i=u+l

Since each ERE, 1 =i = u, is simple artinian and by Theorems 4
and 5 each fRfi,u + 1 =i =m is a local ring with nilpotent maximal
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ideal, we obtain that the radical of R/A is nilpotent. Hence N is
nilpotent since A is nilpotent.

LemMMA 8. S = ERE is hereditary.

Proof. Since V =%, ., ERE; is the radical of S and S is semi-
primary, in order to prove S is hereditary it is enough to prove that sV is
projective. Now

V=@ ENE = @2. ENE =&Y Zl ENf,.

i<j=u

Also by our arrangement Nf, is projective as left R-module whenever
j =u. Thus ENf, is projective as left ERE-module and hence sV is
projective as desired.

LEMMA 9. M = ER(1-E) is a projective left ERE-module.

Proof. Consider

A =RERU-E)=2 > > Rfia,

a € R(1- E). Hence A is a homomorphic image of a projective module
P =@ Z.ceri-p 2k Zizu Xua Where Xy, =Rf, for a ER(1-E). Now
A has a projective cover Q =@ Z,c. X, such that each X, = Rf..,,
I=i(e)=m. As A is aleft ideal of R, A is quasi-projective. So by
Koehler’s theorem (Theorem 2) there exists an ideal B CN such that
A=®%.c, Y., Y.=(R/B)f... Since Q isa projective cover of A, Q
is a direct summand of P. Thus, for each i(a), there exists a nonzero
R-homomorphism of Rf,,, into one of Rf; with i =u. This along with
(2) of Lemma 7 yields that i(a) = u foralla. Since Y, CR(1— E) and
i(a)=u, an application of the Lemma 1 gives that the canonical
homomorphism Rf,.,—(R/A)f..,=Y, is an isomorphism. Hence
Y. =X, for all « and A is projective.

Proof of the Theorem 8. Since N is nilpotent, R is
semiprimary. Further, write

R =ERE@®ER(1-E)®(1- E)R(1-E).

By the above lemmas S = ERE is hereditary and M = ER(1-E) is a
projective left S-module. Also T=(1—-E)R(1-E)=@Z3 .. fiRf is

a direct sum of local left gp-rings. Hence R = (S where S, T and

0T
M are as stated in the theorem.
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4. In this section we prove a theorem for a perfect left gp-ring
which admits a uniform projective left module. This theorem then
enables us to characterize perfect left gp-rings which admit a faithful
projective injective left module (Theorem 10). We begin with

THEOREM 9. Let M be a uniform projective left module over a
perfect left qp-ring R. Then M = Re, for some primitive idempotent e,
and either (i) All left subideals of Ne, are homomorphic image of Re, and
ReRe; = (0) = RejRe, where e, is a primitive idempotent such that
Re; # Re;, or (ii) Ne, is projective and all its left ideals are projective. In
each case Re; satisfies dcc on left subideals.

Proof. M = Re; follows from well known result of Bass [3]. As

in the proof of Theorem 6, we can write Ne; = Re;Ne,(PB, where B, is
projective. Since Re, is uniform either Ne; = Re,;Ne; or Ne; = B,. In
case Ne, = Re;Ne, there exists ene; €¢Ne, such that Ne =
Rene. Since ene; is nilpotent, we get that every left subideal of Re, is
of the form R(ene)' = (Rene;)' which is obviously a homomorphic
image of Re. It also follows that Re, has only a finite number of left
subideals. By Lemma 3, we know ReRe; = (0) where Re;# Re, We
show that Re;Re, is also zero. Suppose not then we can choose
xe; € Re, with Reixe; # 0 and Rexe; CRe.. Lemma 1 yields that Rexe; is
projective and thus Reixe; = Re,.  But this is a contradiction since R is
perfect. This proves (i).
( In the other case we have Ne = B, and B, is projective (also
uniform). So B, is isomorphic to some Re;. Also by theorem 6 every
subideal of B, is projective and hence isomorphic to some Re,. Further
by Lemma 2 it follows that the subideals of Ne, are totally
ordered. Since no subideal ( # Re;) of Re; can be isomorphic to Re;, we
conclude that there are only a finite number of subideals of Ne. This
completes the proof.

The next theorem characterizes perfect left gp-rings admitting a
faithful projective injective module.

THEOREM 10. Let R be an indecomposable (as a ring) perfect ring
such that it admits a faithful projective injective left R-module M. Then

R is a left qp-ring if and only if

(i) R is a local principal left ideal ring, or
(ii) R is a left hereditary ring with dcc on left ideals

Proof. Sufficiency is obvious. So let R be a left gp-ring. If we
write R = Re,P- - ‘PRe,, e; primitive orthogonal idempotents, then by
Bass [3] M is a direct sum of copies of Re;’s, say, Re,.,, -+, Re,. Then
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A =Re, ., (p---PRe, is a faithful injective projective left R-
module. We claim that each Re,1=i=n, is uniform. If i=t+1
then it is clear that Re; is uniform. So let i <t. As A is faithful,
eRe; # (0) for some j=¢ +1. By using Lemma 1, we get that Re; is
isomorphic to a left subideal of Re,, Hence Re; is uniform, since Re; is
uniform.

Now by Theorem 9, Re; satisfies dcc. It is also clear from the
proof of that theorem that each of the left subideals in Re; is
principal. Hence R satisfies dcc on left ideals. Incasen =1, R is of
type (i). So consider the case when n>1. We claim Ne is
projective. For if Ne; is not projective, then by Theorem 9, Re; and
3,4 Re; are two nonzero ideals and R = Re;PZ;,; Re;, This contradicts
the assumption that R is indecomposable. Hence Ne; is
projective. So N = P Ne; is projective as a left R-module. Hence
R is left hereditary left artinian. This completes the proof.

As a special case of the above theorem we have the following
- characterization of QF-rings.

THEOREM 11. Let R be an indecomposable QF-ring. Then R is a
left qp-ring iff each homomorphic image of R is a q-ring (each one-sided
ideal is quasi-injective).

Proof. Since a left hereditary QF-ring is semisimple artinian,
Theorem 10 gives that either R is simple or local uniserial. In a local
uniserial ring every one sided ideal is two sided and every homomorphic
image is QF-ring. Consequently, every homomorphic image is a
q-ring [6].

Conversely, if every homomorphic image of R is a Q-ring then also
R is uniserial (R is uniserial iff every homomorphic image of R is QF,
Fuller [5]). Further R is isomorphic to a full n X n matrix ring over a
local ring B. If n =1 then R is local uniserial. If n > 1 then R must
be simple artinian, since R is a q-ring (c.f. Jain, Mohamed and Singh [6],
Theorem 2.4) [6]. Ineach case R is aleft gp-ring. This completes the
proof.

5. In thi$ section we study left global dimension of a perfect left
qp -ring.

THEOREM 12. Let R be a perfect left qp-ring and A be a left ideal of
R. Then the projective dimension of A as a left R-module is 0 or .

Proof. We first prove a sublemma.
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SuBLEMMA. Under the hypothesis of the theorem if e is a primitive
idempotent and 0 # exe € eNe and 1 (exe) denotes the left annihilator
of exe in R then 1 (exe) = LM, where L = Reye, 0 # eye € eNe, is not
projective.

Proof of the sublemma. By Theorem 2 we can write 1 (exe) =
A, where A, are indecomposable left ideals. Also it follows from
Lemma 5 that 1; (exe) NeNe# 0. Let us choose 0# eue € 1 (exe) N
eNe. Then Reue has nonzero homomorphism into one of A,’s. By
Lemma 6, A, = Reye for some eye in eRe. Indeed eye € eNe since
RegZ 1z (exe). Hence A, is not projective. This completes the proof
of the sublemma.

We now prove the theorem. Since A is a direct sum of indecom-
posable left ideals (Theorem 2) we may assume that A is a nonzero
indecomposable left ideal. If A is projective then the projective
dimension is zero. So let A be not projective. Then by Lemma 3,
A = Rexe for some O0#exe EeNe (e being some primitive
idempotent). We construct an infinite projective resolution of A

P, 5P 5P BPB A0

such that for every n, kerf, =A,B, where A, is nonprojective
indecomposable left ideal of R and is of the form Rex,e, 0# ex,e €
eNe. Choose P, = Re and let f, be the natural R-homomorphism of Re
onto Rexe. Then Kker f, = 1 (exe) = A,PB, where A, = Rex;e is not
projective (sublemma). Suppose we have constructed P, P,,---,P,
with exact sequence

A fa fo
0O—kerf,>P,—>P,_,—---P>P,—>A

where A is injection. By induction hypothesis ker f, = A, @ B,, where
0# A, = Rex,e C Ne.
Consider short exact sequences

0— 1 (ex.e) > Re > A, =0
and
0_)Dn+li’ll) Qn ."—; Bn -—)O

where 7, is a natural R-homomorphism, o, is an injection and Q, is
some projective module.
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Set P,.,=Q.PRe and f,.,=A(M.Pn.). Then ker for=
ker n.,@kern,. Also ker n, = lg(ex,e) = Rex,..e @ K (by sublemma).
Thus f,.. has the required property. Since P,., is projective, we have
obtained the desired projective resolution of A.

Recall that if R is not a semisimple artinian ring then

I. gldimR =1+sup{l.dimgA|A is a left ideal}.
The previous theorem then yields the following

THEOREM 13. Let R be a perfect left qp-ring. Then
I. gldimR =0,1, or «.

6. It is well known that a left hereditary semiprimary ring is also
right hereditary [2]. Here we give an example of a local primary .ring
which is a left gp-ring but is not a right gp -ring.

ExaMPLE. Let F be a field which has an isomorphism a — a that
is not an automorphism, and let F be the subfield of the images
da,a € F. Take x to be an indeterminate over F. Let F[x] be the ring
of polynomials of the form a,+ a,x + a,x?, a; € F; multiplication being
defined by the rule xa = ax, x* = 0 together with distributive law. Itis
well known that such rings are principal left ideal rings. Its radical
N ={a\x + a,x*|a; € F} is such that N?# (0), N* = (0) and is a maximal
left ideal of R. So R is alocal perfect ring. Also N is not principal as
a right ideal. So by Theorem 5, R is a left gp-ring but not a right

qp-ring.
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