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ON THE GROUPS OF UNITS
IN SEMIGROUPS OF PROBABILITY MEASURES

JOHN Y U A N

We generalize Pym's decomposition w - μE * wH * μF of
idempotent probability measures to the decomposition
μE * S^(wH) * μp of the maximal groups of units in semigroup of
probability measures on a compact semitopological semigroup.
We also prove that X(w)=X(wH) = N(H)/H algebraically
and topologically. With these characterizations, we verify
Rosenblatt's necessary and sufficient condition for the con-
vergence of a convolution sequence (^ n)^i of a probability
measure v on a compact topological semigroup.

1. Introduction. Let S denote a compact semitopological
semigroup (i.e., the multiplication is separately continuous) and
(C(S),|| ||) the Banach space of all bounded real-valued continuous
functions on S. Then Mb(S) which is defined as the norm dual of C(S)
is a Banach algebra under \\μ\\ = sup{|μ(/)|: | |/ | |g 1} and the convolu-

tion * which is defined via μ**>(/)= I f(xy)μ(dx)v(dy) on C(S). Let

P(S) be the totality of probability measures on 5, which consists of all
positive measures with norm 1 in Mb(S). Then P(S) is a compact
semitopological semigroup under * and the weak* topology which is the
topology of pointwise convergence on C(S) [4]. If S is topological (i.e.,
the multiplication is jointly continuous), then P(S) is topological (Prop.
4, [9]).

It is known that every compact semitopological semigroup has a
minimal ideal which is not necessarily closed except in the case 5 is
topological [7]. We thus introduce the following definition:

A compact semitopological semigroup is called topologi-
cally simple if its minimal ideal is dense in it.

For a subsemigroup T of S, we use E(S) and M(T) to denote the totality
of idempotents and the minimal ideal in 5 respectively. For a subsemi-
group A of P(5), we write D(A) = U {supp μ: μ e A} and supp A =
£)(A), where suppμ denotes the support of μ.

In the remainder, S will always denote a compact semitopological
semigroup except mentioned especially.
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2. The structure of an idempotent probability
measure.

PROPOSITION 2.1. Let K be a compact topologically simple sub-
semigroup in S. Then
1. E(M(K))^0
For e G E(M(K)), we have
2. (a) H = eKe is a compact topological subgroup with identity e

(b) E = E(Ke) (resp. F = E(eK)) is a left (resp. right) zero com-
pact topological subsemigroup

(c) eE = Fe = e, FH = HE = H and FEQH
(d) M(K) = EHF = [E, H, F] via

(x, ft y)(χ'> g'τ y') = (x, gyx'g', y')

(e) Ke = (EHF)e = £ H and eK = e (EHF) = HF
3. (a) P(E) (resp. P(F)) is a left (resp. right) zero compact topological
subsemigroup. In particular, E(P(E)) = P(E) and E(P(F)) = P(F)

(b) δ*P(E) = P(F)*δe = δe, where 8e is the point-mass at e

(c) F(F)*P(£) C P(H). In particular,

wH*P(F)*P(E) = P(F)*P(E)*wH = wH,

where wjί=wH is the Haar measure on H

(d) P(E)*wH*P(F)QE(P(S)).

Proof 1. (See the proof of 3.4, p. 67, [1]).
2. (See p. 500, [7]; Thm. 2, p. 124, [3]).
3. (a) For μ, i/GP(£),

μ*v(f) = j f(xy)μ(dx)v(dy) = j f(x)μ(dx)v(dy)= μ(f).

Hence P(E) is left zero. Furthermore, by 2(b) we see that P(E) is a
compact topological subsemigroup in P(S).

(b) This follows from 2(c).
(d) Let μ = μE * wH * μF E P(E) * wH * P(F). Then

μ2 = μ E * (wH * μ F * με) * vvH * μ F = με * WH * μp

LEMMA A. supp(μ*^) = (supp μ supp ι̂ ) m P(S).

Proof. [4].

PROPOSITION 2.2. Let w2= w £P(S). Then
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1. supp w is a compact topologically simple subsemigroup
2. w = μE* wH* μF, where
(a) H = e(supp w)e, E = E((supp w)e) and F = £(e(supp w)) for

an e E £ ( M (supp w))
(b) μE E JP(£) wΐίΛ supp μ £ = £
(c) μFE P(E) with supp μF = F
(d) W H = WH is Λe JF/ααr measure on H

3. wH = vvH * μF * μ£ = μF * μ £ * wH

4. w H = Wj/ * w * vvH = wH * μp * w * μ,E * ivH.

Froo/. 1. We refer it to (p. 500, [7]).
2. This is a result of 1 and Proposition 2.1.
3. This is a result of 3(c) in Proposition 2.1.
4. We prove the first equality only. As eEHFe C H,

wH * w * wH = wH * (wH * μE * wH * μF * wH)* wH = wH.

PROPOSITION 2.3. E(P(S))= U{P(E)*wH * F ( F ) : K w α compact
topologically simple subsemigroup}.

3. A characterization of the maximal group of
units. For e E E(S) we denote by $f(β) the maximal group of units with
identity e in the compact subsemigroup eSe. We will see that $?(e) is in
general a locally compact topological subgroup in the relative topology of
S and %ϊ(e) is closed and so compact in the case S is topological.

In this section, we maintain that w 2 = w = μE * vvH * μ F is as in
Proposition 2.2. In particular, H is a compact subgroup of $f(e).

LEMMA B. ffl(e) is a locally compact topological subgroup in the
relative topology of S. Furthermore, if S is topological, then ffl(e) is a
closed and hence compact subgroup.

Proof. As ffl(e) is a topological subgroup in eSe (Cor. 6.3, pp.
282-283, [6]), ffl{e) is a closed subsemigroup in eSe (3.1, p. 65,
[1]). Without losing generality, we may assume that S = eSe =
W{e). Suppose that ffl{e) is not locally compact. Then W(e) is not
open in S. Thus if 0 is an open neighborhood of e in S, then
0 Π ( S - $f(e))/^0, for translation by an element of $f(e) is a
homeomorphism of 5. Now, we choose a relatively compact open
neighborhood 17 of e in S. Then ( [ / Π ^ ( e ) ) " 1 is open in W{e) and
contains e, so there is an open neighborhood V of e in S so that
V Π $f(e) = (17 Π $f(e))~\ Then (7 Π V is an open neighborhood of e
in S so that (UΠV)Π X(e) is symmetric (i.e., h E (U Π V)Π 5ίf(e) iff
fΓ1 E( [7Π V)Π ^ ( e ) ) . Since (UΠV)Π(S- W(e))Φ0, there is an x
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in it. Hence there is a, net (hα) in fflje) with hα^>x. Since hα is
eventually in U Π V C 17, there is an y G U Π Vso that V -» y for some
subnet (hβ). In particular,

xy = lim hβh~β

ι = e

and

yjc = lim h'βhβ = e.

this contradicts the fact that x E S - 5 T ( e ) . Hence X(e) is locally
compact in the relative topology. For the last statement, we refer it to
(2.3, p. 17, [5]).

PROPOSITION 3.1. The following statements hold:
1. 3€(wH) = { % * δ x : x 6 N(H)}, where N(H) is the normalizer of

H in $?(e) and δx are the point-masses

2. The maps 2e(w)τ±X(wH) defined via
β

= (wH*μF)* μ * ( μ E * wH) = wH * μ, * WH

and

β(v) = μE * y * μ F

are mutually inverse continuous group-morphisms.

Proof. 1. We prove it in three steps:
(i) supp μ C eSe for all μ G ̂ f(wH).
(ii) Let μ G ^ ( w H ) , then there exists a ^ G dK{wH) so that μ*v =

v*μ = wH. Hence for given α G supp μ and b G supp v δab * wH -
δba * wH = wH and thus abH = αfe/f = H = baH= baH or αί? = bag = ft
for some g,h EH: let x = h~xa and x' = αgft"1, then xί> = bx' = e and so

cb)x' = x(fex') = JC. Furthermore,

μ * δ6 = (wH * μ ) * δb = vvH* (μ * δ*,) = WH

and so μ = wH * δx = wH *jίχ * wH. By (Thm. 1, p. 124, [3]) and Lemma
A, we obtain that Hx = Hx= HxH= HxH. This implies x G N(H).

(iii) The converse of (ii) follows from the fact that wH * δx =
δx * wH = wH * δx * wH.

2. We prove it in two steps:



ON THE GROUPS OF UNITS 307

(i) a (μ1 μ2) = wH * μF * μx * u2 * μ £ *

= w H * μ<F * μ i * w * μ2 *

= wH * μF * μι * μ £ * w

= με * 1̂ * v2 * μ F

(ii) α ° β (v) = α(μ E * ^ * μF)

= WH * μF * μ £ * v * μF * μ £ * wH

= wH * ^ * wH

= ^

β°a(μ)= β(wH* μF* μ * μE * wH)

= μ£ * wH * μF * μ * μE * vvH * μF

= w * μ * w

= μ.

PROPOSITION 3.2. T/ie following statements hold:

2. D(gif(w)) = E(N(H))F = μg, N(tf), F]
3. supp(^(w)) = E(N(H))F= [E, N(H), F].

Froo/. 1. This follows from Proposition 3.1. 1.
2. This follows from Proposition 3.1. 2 and the above statement.
3. This follows from 2.
So far, we have only an algebraic characterization of $f(w). In the

remainder, we will characterize ffl(w) and its subgroups topologically.

PROPOSITION 3.3. The map η: N(H)/H-+ %(wH) defined via

η(xH)=wH*δx(=δx*wH)

is a topological isomorphism.

Proof. We observe first that η is a well-defined algebraic
isomorphism. Hence it remains to show that η is an open map. To
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each / G C(S), Ff(x) = I f(xy)wH(dy) is a bounded continuous function

constant on each orbit xH in the compact orbit space eSe/H. Without
losing generality, we may assume that eSe = S. Suppose that aaH —> aH
in N(H)/H. Then

δaa * wH(f) = Ff(aaH)^Ff(aH) = δα * wH(/)

Hence_j2_is a continuous group-morphism. Suppose that aaH^>aH.
Since N(H)/H is compact, there is a subnet (aβH) which converges to a
bH^ aH. By Urysohn's Lemma, there is a continuous function
F: S^ [0,1] with F(aH) = 0 and F(feH) = 1. Clearly,

δ.Q * wH(fop) = Fop(aa) = F{aaH)^>F(aH)

= Fop(a)= δa * wH{Fop\

where p:S->S/H is the orbit map. Hence η is a topological
isomorphism.

The following example shows that not all $f(w) are compact:

EXAMPLE. Let S = R U {<»} be the one-point compactification of
the additive group of real numbers. Then S is a compact semitopologi-
cal semigroup and $f(δo) = {δx: x E R} which is not compact.

4. On a limit theorem. Rosenblatt has proved a necessary
and sufficient condition for the convergence of a convolution sequence
(̂ n)ns=i of a probability measure M n a compact topological semigroup
(Thm. 1, p. 152, [8]). We will see one side of his condition is an
immediate result of our characterizations of the groups of units.

PROPOSITION 4.1. Let vEP(S). Then \ln{v + v2+ - + vn)
converges to an idempotent probability measure L(v)EP(S) so that

1. vm*L(v) = L{v)*vn = L{v) for all m,n^\
2. supp L(v) = M(T), where T is a closed subsemigroup generated

by v, i.e., T = U {supp vn:n^ 1}.

Proof. (See Thm. 3, [2]).

In the remainder, we maintain that Σ(v) = {vn: n ^ 1}~, K(v) =
M(Σ(v)) and L(v) = liml/n(^ + v2+ - + vn) = μ x * wG*μy. Without
losing generality, we may assume that S is generated by v, i.e., S =
T. Then supp L{v) = M(S), G = eSe = e(supp L(v))e, X = E(Se) =
E((supp L{v))e) = supp μx and
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Y = E(eS) = £(e(supp L{v))) = μγ

for an e G E(M(suρp L(v))) (cf. 3.5, p. 67, [1]). In particular,
(v)) = μx *{wG}*μy = {L(i/)}.

LEMMA C. K(V) is a compact commutative topological subgroup in

P(S).

Proof. (See the proof of 3.4, p. 67, [1]).

Let w2 = w - μέ* wH*μ'FE K(v). In particular, K{v) is a compact
subgroup of $f(w). Then.

LEMMA D. The following statements hold:
1. E(M(supp w)) = E(D(W(w))) = E{D{K{v)))
2. D(X(^))CM(S)CsuppJR:(^). Jn particular, suppX(^) =

M{S)
3. £(M(supp w))CM(S).

Proof. 1. This follows from the fact that

E([E9 H, F]) = [E9 {e}, F] = JB([J5, ΛΓ(H), F]) = E(D(X(w))).

2. As ίC(^) is an ideal in Σ(v), D(K(v))D(Σ(v))CD(K(v))C
(^)) and so supp(K(v)) is a closed ideal in 5 (See 3.1, p. 65, [1]),

in particular, supp (K(v))D M(S). On the other hand, D(K(v)) =
M(supp(K(v))) (See 3.1, p. 65, [1]) and thus M(S)D D(K(v)).

LEMMA E. The following statements hold:
1. v*w = w*v(ΞK(v)
2. L(P)*W = W*L(V) = L(P)

3. There exists an e2 = e E M(supp w) Π M(S)
4. H = e (supp w)e C eSe = G
5. E = £((supp w)e) = £(Se) = X
6. F = £(e(suppH>)) = £(eS)= Y
7. YXQH
8. w=jLt>)vH*μy with supp μ x = X and supp μ'γ= Y.

Proof. 1. This follows from the fact that K(v) = M(Σ (*/)).
2. This follows from Proposition 4.1.
2. This follows from Lemma D.
4. This is trivial.
5. Let w = με* wH * μ'p.Thait L(v)-= w *L(v) = L(v)*w implies
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WG

By Propositions 2.1 and 2.2, EGY= XGY and E = X.
6. Similarly.
7. This follows from 5 and 6.
8. This is done in the proof of 2.

LEMMA F. The following statements are equivalent
1. v*w = w*v^ w
2. K{v)ϊ{w}
3. w/L(v)
4. H is a proper closed normal subgroup in G (i.e., N(H) = G) so

that G = U {gΉ: n ̂  1} for some g G G - H.

Proof 1 Φ 2. This is trivial.
2 => 3. Suppose that w = L(ι^). Then K{v) = %(L(v)) =

{L{v)}. This is a contradiction. Hence w^L(v).
3 => 1. Suppose that w = w*v = v*w. Then

= w*(l/n(v + v2+-' + vn) =

for all n ̂  1. In particular, w = w*L(v) = L(v)*w = L(^).
1 Φ 4 . There is a g EN(H)-H so that w *i; = μi*(w H *δ g )*μ y.

Let f ( w ) έ ^ ( w H ) be the mutually inverse continuous morphisms of
β

Proposition 3.2. Then

w*vn ={w*v)n = (β°a(w*v))n

= β((a(w*v)T)

= μx*(wH*δg")*μ'γ.

Furthermore, UnB,(supp v" supp w) = (Un B 1supp v")(supp w) and

(U supp v")(supp w) D (U supp i/")(supp w)

= S(supp w) = (XGY) (XHY) = XGY
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(cf. 3.1, p. 55, [1] for the inclusion). This implies w*v generates XGY
and thus a(w *v) = wH*δg generates G, i.e., G = U{gnH: n ̂  1}. That
N(H) = G follows easily.

4 φ 2 . Suppose K(v) = {w}. Then w = L{v), in particular, H = G.

PROPOSITION 4.2. 77ze following statements are equivalent:
1. H=G.
2. L(v)=w.

3. * ( * ) = {*}.
4. w*^ = y*w = w.

PROPOSITION 4.3. // {vn)n^x converges, then any statement of
Proposition 4.2 holds. The converse holds on compact topological semi-
groups only.

Proof. The first statement is trivial. For the converse part, we
refer to (p. 380, [2]).

THEOREM (Rosenblatt). Let S be a compact topological semi-
group generated by v. Then {vn)n^λ does not converge iff there is a proper
closed normal subgroup H of G such that

for some g e G - H with G = U {gΉ: n ̂  1}.

Proof. It remains to show the "if" part which we refer to (Thm. 1,
p. 152, [8]).
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