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SPLINES AND THE LOGARITHMIC FUNCTION

D. J. NEWMAN AND I. J. SCHOENBERG

The paper studies a spline function Sn(x) (0 < x < oo) of
degree n, with knots at the points of the geometric progres-
sion xk = qk (q is fixed > 1, k = 0, ±1 , ±2, •)> which in shown
to be uniquely defined by the following two properties: 1°.
Sn(x) interpolates the function fix) = log x/log q at all the
knots qk, 2°. Sn(x) satisfies the functional equation Sn(qx) =
Sn(x) + 1 for x > 0. Sn{x) is explicitly determined and shown
to share with f(x) some of its global properties. The main
point is the detailed study of the somewhat surprising behavior
of Sn(x) as w->oo.

Introduction* Spline interpolants of exponential functions were
discussed in [3], Lecture 3, and were found to be useful in a study
of cardinal spline interpolation ([3], Lecture 4). Here we attempt to
interpolate by splines the logarithmic function log x (0 < x < oo). As
the domain of definition of logo; is the positive halfline we do not
use the usual cardinal polynomial splines, but rather so-called cardinal
q-splines defined as follows.

Let n be a natural number and q be real, q > 1. We denote by

n,q

the class of functions S(x), defined on the half-axis 0 < x < oo, and
satisfying the following two conditions:

1. The restriction of S(x) to every interval (qv, qv+1) (v any integer)
is a polynomial of degree at most n.

2.

(2) S(x)eCn-1(0f o o ) .

Such functions S(x) are commonly called spline functions (or splines)
of degree n having as knots the points qv(—oo <v <<*>). We also
call them q-splines to remind us of the nature of their knots. Finally,
the term cardinal g-splines is to indicate that the domain of S(x) is
(0, oo) and that all knots qu many occur. We now propose the
following

Problem 1. To find

(o) bn(x) e 2J

n,q

such as to interpolate the function
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(4) f(x) =

at the points (qv), hence such that

( 5 ) Sn(qu) = v for all integers v .

As stated this problem admits infinitely many solutions. Indeed,
a moment's reflexion (see [3], Lemma 1.1 on p. 33) will show that
we obtain all solutions of Problem 1 as follows. The symbol πn denoting
the class of polynomials of degree <gn, let P(x) be an arbitrary
element of πn such that

(6) P(l) = 0, P(g) = l ,

and let

7 S(x) = P(x) + c φ - q)\ + a2(x - q*)*+ + . . .

+ αo(l - α?)ϊ + α-iί?"1 - x)n+ + , (0 < a? < °o) ,

where we use the notation u+ — max (u, 0). In the interval [1, q] all
truncated powers vanish and so S(x) = P(x). In the interval [q, q%
besides P(x), only the term a^x — q)\ does not vanish and we can
determine αx uniquely by requiring that S(q2) = 2. Next we determin
a2 uniquely from S(q3) = 3, a.s.f. Likewise the coefficients aOf α_x,
are successively and uniquely determined by the interpolatory condition
Siq'1) — —1, S(q~2) = —2, . We see that the interpolating g-spline
S(x) is uniquely defined once we have chosen P(x)eπn such as to
satisfy (6).

Clearly Problem 1 will become meaningful only if we impose on
Sn(x) further conditions. This we do as follows. We observe that
the function (4) satisfies the functional equation f(qx) = f(x) + 1.
This suggests that we require the q-spline Sn(x) to satisfy the func-
tional equation

(8) Sn(qx) = Sn(x) + 1 > ( 0 < α < o o ) .

It should be noticed that if (8) is satisfied and also

(9) S.(l) = 0,

then all relations (5) evidently follow.
The contents of the seven sections of this paper are briefly as

follows. In § 1 we construct the unique SJx) satisfying the conditions
(5) and (8), and call it the logarithmic q-spline of degree n. Un-
expectedly, its representation (7) can be explicitly described (Theorem
1). In §2 we show that the global behavior of Sn(x) is much like
that of the function log x/\og q: S'n(x) is multiply monotone (Theorem 2).
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This gives a direct construction of Sn(x) by successive integrations
of the explicitly described step-function S^fx) (Corollary 1 of § 2).

These results led us naturally to expect that the logarithmic
g-spline Sn(x) will converge to log x/log q as n—>oo. This, however,
is not the case and the §§ 4, 5, 6, 7 describe the peculiar behavior of
Sn(x) as n—> <>o. Our main results are as follows. We define

(10) F(x, θ) = ^ ^ (e-*β+8 - e-*q0+a) , (x > 0) .

This is a periodic function of θ of period 1, whose Fourier expansion
(5.2) is described in § 5. In terms of F(x, θ) we find that

(11) Sn(x) = F(X, ^ t ) + o(l) as n ~-> - ,
\ log q I

where the error term o(l) is uniform in x for x > 0 (Theorem 4 of
§ 4). The average value of F(x, θ) over a period in θ is aQ(x) =
log x/log q, while its total variation in a period is of the order of

(12) Γ ι _ 2πi \\ _ log q
log.

which is small if q is not too large (for q — 2 the quantity (12) is of
the order of 10~6). Figure 1 of Section β shows graphically all the
terms of the relation (11) for q = 2, x = i/ 2 , and n = 16, 17, , 64.

In the last section 7 it is shown that the logarithmic means of
the sequence Sn(x) do converge to the "correct" limit log x/log q
(Theorem 5). In a way this paper may be regarded as a contribution
to the study of the functional equation f(qx) = f(x) + 1.

1* Construction o£ the cardinal (/-spline Sn(x) satisfying (5)
and (8)* The representation (7) of our solution is explicitly described
by the following

THEOREM 1 There is a unique Sn(x) satisfying the conditions
(5) and (8) and it is given by

iΛ i λ sn(χ) = pn(χ) + (-i) Σ m% - QΎ+ - Σ r*{rv - %n,
(1.1)

(0 < X < oo) ,

where

(1.2) Pn(x) = ( T ) ^ ^ ~ ( " T I ^ T + + ί- ir 1 ^-^\ 1 / q — 1 \ 2 / q2 — 1 g % — 1

TFe cαϊϊ Sw(ίc) ίftβ logarithmic q-spline of degree n.
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Proof. We begin by determining the polynomial Pn(x) — P(x)
representing Sn(x) = S(x) in the interval (1, q). From the conditions
(2) and (8) we obtain by differentiation

(1.3) q'S^qx) = S"(x) , (v = 1, . , n - 1) ,

and setting x = 1 we obtain

(1.4) q»P^(q) - P<">(1) - 0 , (v = 1, . . . , n - 1) .

Clearly P(l) = 0, P(g) = 1, and therefore

(1.5) P(q) -

We may summarize the relations (1.4) and (1.5) by saying that the
polynomial P(qx) — P(x) assumes for x = 1 the value 1 to the nth.
order. This means that for an appropriate constant c we have the
identity

(1.6) P(qx) - P{x) = 1 + φ - l)n .

The left side vanishing if x = 0, we must have c = (—I)""1 and (1.6)
becomes

(1.7) P(qx) - P(x) = l-(l-x)n.

All P(x) 6 πn satisfying (1.7) are easily determined. Writing

(1.8) P(x) = α0 + axx + + anx
n ,

substituting into (1.7) and comparing coefficients on both sides, we
obtain that

a,(q - 1) =

Therefore all solutions of (1.7) are of the form.

I q — 1 <f — 1

Finally, the condition P(l) = 0 shows that Pn{x) indeed has the form
(1.2). We may retrace our steps and see that the polynomial (1.2)
satisfies (1.7), hence (1.4) and that P(l) = 0, P{q) = 1.

The polynomial Pn(x) representing Sn(x) in the interval (1, q)
having been determined, we could now extend the definition of Sn(x)
to all of (0, oo) by the representation (7) and the procedure described
for determining the coefficients αv. However, it is better to proceed
as follows: We extend the definition of Sn(x) from the interval
[1, q], where Sn(x) = Pn(x), to all positive values of x by means of
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the functional equation

(1.9) Sn(qx) = Sn(x) + 1 .

However, now we must verify that the condition S(x) e Gn~\Q, <*>) is
satisfied. By iteration of (1.9), i.e. replacing x by qx, q2x, and
adding the results, we find that

(1.10) S(x) = P ( - J T ) + r - 1 if qr~' < x < qr ,

(1.11) S(x) = pf^ ) + r if qr < x < qr+1 .
\qrJ

From (1.11) and letting x decrease to qr we obtain that S(qr + 0) =
P(l) + r = r, while (1.10) on letting x increase to qr we find S(qr •—
0) = P(q) + r - l = l + r - l = r. Therefore S(gr + 0) = % r - 0)
and S(α;)e C(0, °o). There remains to show that

(1.12) S^(qr + 0) - Sw(qr - 0) , (v = 1, . . , n - 1) .

However, on differentiating (1.10) and (1.11), we obtain

(1.13) S^(qr - 0) = - i ^ P ' % ) and S^>(?' + 0) = - ^ r ^ i 1 ) '

respectively. Now the relations (1.12) amount to q"Piv)(q) = P ( v )(l),
and these are precisely the boundary conditions (1.4) satisfied by our
polynomial (1.2).

We are still to determine the explicit values of the coefficient av

of (7), as described by (1.1). If x Φ q% for all integers r, then we
may differentiate the relation (1.9) even n times when (1.13) becomes,
in view of (1.2),

(1.14) *?•><*- - o) = ̂ P 'to) = ̂ ( - D ^ ^ Z T .

(1.15) Sw(qr + 0) - — Pw(l) = -λ-{-iγ-'-J^— .
qnr gnr # % — 1

These values show that the coefficients ar of (7) are equal to

ar = —{S{n)(qr + 0) — S{n)(qr — 0)} = —-i—( — l)nn\ if r
n\ nl qmrr

and

0) - S^(qr - 0)} =

nr

nV ^ ' ^ n nlqnr v 7

if r < 0 .
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Therefore

(-ϊ)nq-%r if r ^ 1 ,

-q-«r if r ^ 0 .

This establishes (1.1) and also Theorem 1.

2* The nice global behavior of Sn(x). The function

(2.1) f(x) = M *
logg

that we are interpolating by Sn(x) has the derivative (x log q)~ι which
is completely monotone in (0, oo), because

(2.2) /'"(α) = ί f l l l l ί^_l)l f (υ = i, 2, •)
log g a?

To w/ια£ extent does Sn(x) imitate this regular behavior of fix)!
That it does so as best as it can (remember that Sn(x) has only n
derivatives, the nth being a step-function) is shown by

THEOREM 2. The logarithmic q-spline Sn(x) has the properties

(2.3) (-ly-'S^ix) >0 in 0<x<oo,

(2.4) SWx) = O(χ->) for v = 1, 2, . . . , n .

Proof We first establish (2.4). Differentiation of (1.9) gives
qvS{v)(qx) = Siv)(x), where x Φ qr for all r, if v = n. Iterating this
we obtain that

(2.5) S{v)(qrx) = q~vrS{v)(x) (r integer) .

Let us write

(2.6) Mv = s u p I Siu)(x) I .
KίB<ί

Assuming that

(2.7) qr < x < qr+1 ,

then (2.5) and (2.6) show, on replacing x by xq~r, that

I S{v)(x) I ̂  M»q-*r = Mq~Hr+l)qv < Mvx~vqv

and therefore

(2.8) I S^(x) I <
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As the right side does not depend on r, the condition (2.7) becomes
irrelevant and (2.8) holds for all positive x. This establishes (2.4).

We now establish (2.3) by induction for decreasing values of v.
(2.3) is true for v — n: This is shown by (1.15) which gives

(2.9) S™(x) = ( - l ^ — S L - f o ' ) - * if qr < x < ? '+i .
qn — 1

Therefore (2.3) holds for v = n. Assuming that (2.3) holds for a
value of v(v > 1), let us establish (2.3) for v — 1 in place of v. By
(2.4) we can write

(2.10) Srυ0*0 =

and this already shows that Slf^ix) has the correct sign. This
completes a proof of Theorem 2.

We may summarize our findings by stating

COROLLARY 1. We may think of the logarithmic q-spline Sn(x) as
generated as follows: We define S{n](x) as a step-function on (0, °o)
by the relations (2.9), for all integral values of r. We integrate
successively S^(x) by means of the relations (2.10) for v = n, n — 1,
• ••,3,2, obtaining finally the decreasing positive function S'n(x).
Finally, we define Sn(x) by

(2.11) Sn(x) = J"s:(ί)d* , (x > 0) .

That the resulting function Sn(x) is an element of Σ*,«> i e a

cardinal g-spline, is clear because we integrate a step-function SiΛ)(α?)
n times. What does seem remarkable in that the resulting function
should solve the interpolation problem

(2.12) Sn(q») = v, for all v ,

and, what is more, even satisfy the functional equation

(2.13) Sn{qx) = Sn{x) + 1 .

3* Direct reconstruction of Sn(x) by Corollary 1* Actually
the reconstruction of Sn(x) as described by Corollary 1 is easily carried
out explicitly yielding our previous results. We start from (2.9) and
abserve that this step function may certainly by written in the form

(3.1) S™(x) - Σ c*(q8 - aOV , (x > 0) .
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If qr < x < qr+ί then (3.1) becomes Sίn)(x) = Σ.-r c, and this must
equal the right side of (2.9). By differencing we obtain

cr = ( - q{q 1) ( l )

and substituting into (3.1) we obtain that

(3.2) Sln)(x) = ( - l )*- 1 ^ ! Σ q~rn(qr - x)°+

On performing v times the operation (2.10) we obtain

n

and in particular that

(3.3) S'n(x) = Σ Q~rn(l - xq-'fr1.
— o o

The last integration (2.11) yields

(3.4) s,W = |(( i- f ' ) '-( i-r ' )"J, (*>o)

If we assume that 1 < x < q, then (3.4) reduces to

s.(χ) = Σ {(l - q~Ύ - (i - χq~Ύ}
l

- ίl - (n\xq~r + . . . + (-l) χ q-

If (we cancel within the brackets the two unit terms, then the resulting
series may be summed termwise and we obtain that

+ . . . + (-l)"-1^" - 1)
1-ςΓ

in 1 < x < q ,

which agrees with the result of Theorem 1. The expression (3.4)
will be found useful in our next section.
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4* T h e p e c u l i a r b e h a v i o r of Sn(x) as n —> o° • We have derived

in (3.4) the expression

(4.1) Sn(x) = Σ {(1 - Q'% ~ (1 - XQ'Ύ+} , (0 < x < <*>) .

This expression will show against all expectations that the (/-spline
Sn(x) does not converge to f(x) = log x/log q as w —• c>o. The key to
our discussion is the following way of writing the series (4.1) Using
the square brackets to denote the integral part we define

( 4 .2) , .
logq LlogqJ logg

hence n = q°*+k« and therefore 1 = qθ«+kn/n. We may therefore rewrite
(4.1) as

S.(α) = Σ ( 1 -
r ι\ n' /+ \ n

and finally as

(4.3) Sn(x) = j £ j ( l ~ — qθ-+8J+ - ( l - -Lsg' + )" J .

We also define the function

(4.4) F(X, θ) = Σ «e-''+S - β—'+') , (* > 0 , - o o < t f < o o )
S — -~ oo

which is evidently periodic in # of period 1. For each fixed positive
x the function F(x, θ) of θ has an interval of variability

(4.5) I(x) = Γmin F(x, θ), max F(x, θ)~\

in terms of which we can state the following

THEOREM 3. For each fixed positive x the set of limit points
of the sequence (Sn(x))n=1>2,... is identical with the interval I(x) defined
by (4.5).

Our discussion will simplify if we consider the derivative with
respect to x of the functions (4.3) and (4.4), hence

(4.6) S;(a)=ΣίWl-—<

and

(4.7) I
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At this point we need some lemmas.

LEMMA 1. // an and a are real, an—+a, then

(4.8) lim (l - ϊaY" 1 = e~a .(

We may omit the elementary proof.

LEMMA 2. The inequality

(4.9) (l - —Y. * < 2e~x holds for x ^ 0, n ^ 2 .

Proof. (4.9) is trivial if a? > w. If 0 ^ α; ̂  w we consider

g(χ) = (l - *X~l β

\ n/

and observe that

n I t 72,

This shows that in [0, n] we have

1 ) - e-^e'1 *e = 1 as n—> co .

τ&/

Actually (1 — T I " 1 ) * " ^ < 2 if T̂  ̂  2 which proves the lemma.

LEMMA 3. The function F(x, θ), defined by (4.4), satisfies the
functional equation

(4.10) F(qx, θ) = F(x, θ) + 1 , (a? > 0) .

Proof. By (4.4)

F(qx, 0) = ' + 9++1

hence
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e-χqθ+s <r*''+ s + 1)F(qx, θ) = F(x, θ) + Σ (e
s

Writing xqθ = a, the last series becomes YΛS (e~aqS — e~aqS+1) and this
is easily shown to converge to the sum 1 as follows: Letting A-+
— oo and B —•» + °o we have

aqS - e-agS+1) = lim Σ ( e ~ α ? s - e~aqS+ι)
s=A

e'aqA e~aqB)= l i m (e'aqA - e~aqη = 1 - 0 = 1 .

Observe that the functional equations (8) and (4.10) are identical.
It follows that the relation

(4.11) Sn(qx) - F(qx9 θ) = Sn(x) - F{x, θ)

holds for all positive x and all real θ. Of special interest for us is
the following

COROLLARY 2. In studying the behavior of the difference Sn(x) —
F(x9 θn), we loose no generality in assuming that x is restricted to
the interval 1 ^ x <. q.

LEMMA 4. Let

(4.12) 2 <̂  n1 < n2 < be an increasing sequence of integers,

(4.13) Ύ]l9 7]2, be a sequence of reals, 0 ^ ηu ^ 1 ,

and let x be restricted to the interval

(4.14) 1 ^ x ^ q .

T%e% ίfeβ series

(4.15) Σ ί*>

converges uniformly with respect to all data nv, ?]v and x satisfying
the conditions (4.12), (4.13) and (4.14).

Proof. By Lemma 2 the series (4.15) is term wise dominated by
the series

Σ qi*+ 2β-*9V>>+B ,
s

and this last series is termwise dominated by the series

(4.16) Σ qί+s2e
β = —oc
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whose terms are independent of all the data. Since (4.16) converges,
the lemma is established.

LEMMA 5. If we add to (4.13) the assumption

(4.17) lim ηu = η

then

(4.18) lim Σ Q^

uniformly in x satisfying (4.14).

Proof. By Lemma 1

1 - xίlΔ = g!+V""+i ,

nu / +

and the uniform convergence of the series on the left side of (4.18)
(Lemma 4), implies the relation (4.18).

In view of the uniform convergence in x we can integrate term-
wise the limit relation (4.18) with respect to x between the limits of
integration 1 and x, where we assume (4.14). These integrations are
immediately performed because the expressions to be integrated were
obtained by (4.6) and (4.7) by differentiation. We state the result
as

LEMMA 6. If we assume (4.12), (4.13), (4.14), and (4.17) to hold,
then

uniformly in 7)», f), and in x.

An approximation of the g-spline Sn(x) is now obtained as follows.
We apply Lemma 6 for the special case that nu = v, and that rjv does
not depend on vfτ]v — η for all v. We obtain from (4.19) that

(4.20) lim Σ f(l - — ?'+ V ~ fl - — ?'+βV \ = Σ (β"g'+β - β-«'+ ) ,

uniformly in 57(0 ^ ^ 5j 1) and in OJ (1 ^ a? ̂  g).
This means the following: To every positive ε, there corresponds
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an Nε such that the error term in (4.20) is in absolute value < ε if
n > Nε, and this for all rj and x in their respective intervals. But
then it is clear that we may let Ί] also depend on n. Choosing in
particular

V = #n = log n/log q — [log n/log q]

we obtain by (4.3) and (4.4) the following

THEOREM 4. We have the relation

(4.21) Sn(x) = F(X, as
) +

logq/

the error term o(l) being uniform for all positive values of x.

Notice that indeed F(x, log n/log q) = F(xf θn), due to the periodicity
of F(x, θ) as a function of θ. In extending the uniformity of o(l)
from [1, q] to (0, oo) we have used Corollary 2.

The numbers θn being = log n/log q, mod 1, it is clear that the
sequence (θn) is everywhere dense in [0, 1]. Given θ in [0,1] we can
therefore choose an increasing sequence {nv) such that θnu —• θ as
v —• oo. It now follows from (4.21) and the continuity of F(x, θ)
that

(4.22) ]imSnu(x) = F(x,θ).

In view of these remarks it is clear that the relation (4.21) implies
the truth of Theorem 3.

5. The Fourier series of F(x, θ). Surely Theorem 4 shows the
role played by the periodic function

(5.1) F(x, 0) = Σ (e~qθ+s - e~xqθ+Ί

in the behavior of Sn(x) for large values of n. Let us derive its
Fourier expansion

(5.2) F(xf θ) = Σ au(x)eFi»β .

We find that

<Φ) = Γ Σ (e~qθ+s - e-*q$+u)dθ = Γ (e~qt - e~xqt)dt
JO 8 J-oo

and setting q* = u, hence qt log qdt — du, we find that



254 D. J. NEWMAN AND I. J. SCHOENBERG

ao(x) = —!_ Γ(β~% - e-*%)vrιdu = —^— [°([X e~uvdv)du
\ogq Jo log q Jo \Ji /

log

and finally

(5.3)
logg

Notice that the average of F(x, Θ) over a period is equal to the
presumed limit of Sn(x). At this point we observe that F(x, θ) being
continuous in θ, there certainly exists a θx such that

F(x, θx) = log x/log q .

The last paragraph of § 4 now implies the

COROLLARY 2. To every positive x corresponds a sequence {nu)
such that

(5.4)
logg

If v Φ 0, we find that

au(χ) = Γ e-2πίuθF(x, θ)dθ = Γ e~2πivθ Σ (e~^ + s - e~xqθ+s)dθ
Jθ Jo s

= Σ Γ e-2"ve(e~qβ+8 - β- ί ί + ' )d5
s JO

S i f

- o o

Setting again qt = u we obtain

\D D) Cϋy\%) — \ u ye — e JCLLI

log q Jo

This is easily evaluated in terms of the Γ-function. If we add ε(ε > 0)
to the exponent of u in the integrand, we may then write the integral
as a difference of two /^-integrals which amounts to

(1 - xn*i"'ioeQ)-') .

log q V log q

On letting ε—»0 we obtain that

(5.6) au(x) = - ± - r ( - ^
losr a \ losr <
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From (4.4) we see that F(l, θ) = 0 for all θ. Moreover (4.10)
shows that F(qr

f θ) = r for all θ. We therefore see that the interval
of variability I(x), defined by (4.5), reduces of the point r if x = qr

(r integer). The relations (5.6) allow us to prove the converse, to
the effect that I(x) reduces to a single point, namely log x/log q, only
if x is a power of q. For if I(x) is a single point, then the unicity
theorem of Fourier series shows that all coefficients (5.6) vanish. The
Γ-ίunction being ^ 0 , we conclude that

^ __ β2πi»/\ogq __ g2JΓϊv(logα;/logί) J£ ^ _£ Q

and this indeed implies that log x/log q = r is an integer, hence a; = gr.
In view of Theorem 3 we have just established

COROLLARY 3. The relation

(5.7) lim Sn(x) = j
log #

is t αϋid! if and only if x = qr for an integer r.

The Fourier series (5.2), (5.3), (5.6) allows us to write the approxi-
mation formula (4.21) in explicit terms. Observing that

p2πi»(logn/logq) __ ^ 2πίv/logq

and using the Fourier series we obtain the following

COROLLARY 4. For every fixed positive x we have

(5.8) Sn(x + Σ Γ(
log g log q »**> \ log q

+ o(l) , as n —> oo ,

error ίβrm o(l) being uniform in x > 0

This will be used in § 7.

6* A graph for the case q = 2 and x = λ/ 2 • We select

(6.1) 9 = 2 , α? = T/ΊΓ , hence i2£iL = i . .

log^ 2Figure 1 shows the graph of the function

(6.2) y = jFCl/ΊΓ, ff) in the interval 4

and also the 49 points
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This sheet represents in the (θ, 2/)-plane the rectangle denned by

4 ^ θ S 6 , .49996 ^ y ^ .50003 .

The curve is y = F(VΊΓ, 0), 4 ^ θ ^ 6. _
The 49 dots represent the points (Iogw/log2, £Λ(VΊf)), % = 16, 17, •••, 64.

Figure 1

(6.3) (M| f for n = 16, 17, , 64 .

Notice the tremendously magnified scale in the ^/-direction, and that
the abscissae of the points (6.3) also vary from 4 to 6. Thus Figure 1
exhibits graphically all terms of the relation (4.21) or

(6.4) Sjy~2) = F(VT, l2KΆ\ + o(l) for n = 16,17, . . . , 64 .

If we were to extend the graph of Figure 1 from 4 < ; 0 5 ^ 6 t o 4 5 ^
Q <: _|_ oo, then the abscissae of consecutive dots would get closer
together indefinitely, while the oscillations of their ordinates would
decrease so that the dots would tend to the curve y = F(λ/ 2, θ),
according to the relation (6.4).

Figure 1 reveals the following apparent situation: The "curve"
through the points (6.3) seems to intersect the horizontal line y = 1/2
in practically the same points as the curve y = F(V 2, θ). It there-
fore seems that Sn{[/2) is very close to its "correct" limit 1/2
whenever n is such that log n/log 2 is close to one of the points θ
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where F{\/~29 θ) assumes its average value 1/2. We have no expla-
nation for this phenomenon, if true.

A word on the computations underlying Figure 1. In the first
place we needed the ordinates of the points (6.3). Since x = V 2 is
in the interval [1, q] we have Sn(x) = Pn(x), by Theorem 1. Moreover
the relation (1.2) shows that

(6.5) ^ - ^ - Pn(x) = ( - l ) M ± - ^ -
log <? g* -

Here J π denotes the ordinary nth order forward difference (with
step 1) with respect to t. Our colleague G. de Boor kindly computed
these differences for the data (6.1) and for n = 1, 2, 3, , 70. Beyond
this point round-off difficulties became apparent. This gave us the
points (6.3).

The function (6.2) was obtained from its Fourier series (5.2). It
so happens that for x — V 2 the coefficients (5.6) vanish for all even
values of v Φ 0. For this reason by taking only the fundamental
(v = ±1) in the expansion (5.2) we already obtain better than 15-place
accuracy. The coefficients α 1 (v / 2) and a^VΎ) were computed by
means of the fine tables in [1], (p. 277), and we found with 11-place
accuracy that

(6.6) F(VT, θ) = — + A sin 2π(θ - a) ,

where

(6.7) A = .238061 x 10~5 , a = .340 775 .

7Φ The summability of the sequence Sn(x). We rewrite (5.8)
as

(7.1) Sn(x) - - ^ ^ + Σ aXx)n2πί^^ + o(l)
log q »*o

and are looking for a summability method that will produce the limit
logxβogq. For this it is necessary that the method should assign
for the sequence

(7.2) (w")»=i,2.... (for constant λ Φ 0)

the limit zero. Neither the Cesaro nor the Abel method will do that.
However, the logarithmic means (see [2], §§ 3.8 and 4.16) will be
found to work yielding the following

THEOREM 5. We have that
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(7.3) lim _ L
»-oo log

uniformly in x, x > 0.

1 S2(x)
2 logq

Proof. Referring to (7.1) and using the fact that

- 2 ^
logg ί log q

it is clear that (7.1) will imply (7.3) as soon as we use the following

LEMMA 6. For real λ we have

(7.4) 11""1 + 2a~ι + + n*1"1 I ̂  1 + log n for all n ,

and

(7.5) lim _ L _ (I"" 1 + 2""1 + + n*1'1) = 0 if λ Φ 0 .

Proo/. 1. The left side of (7.4) is less than

n x

2. Writing f(x) — xn~x we use the Euler-MacLaurin summation
formula

f(n))

which shows that

do;

= I nίλ - 11 λ"1 + A ( l + ί O + I iλ - 11

The last expression is 0(1) and therefore o(logw).
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