COMPLEX VECTOR FIELDS AND DIVISIBLE CHERN CLASSES

ROBERT D. LITTLE

This paper contains two theorems which relate the maximal number of independent sections of a complex bundle over a manifold to the Chern classes of the bundle and certain functional cohomology operations. The main theoretical result of the paper is a formula which relates the obstruction to a lifting in a fibration and a functional cohomology operation.

Introduction. Let M be a connected, closed, orientable, 1. smooth manifold of dimension 2n. If ω is a complex *n*-plane bundle over M, the complex span of ω is the maximal number of cross-sections of ω which are linearly independent over the complex numbers. In this paper, we consider the following question: when is complex span $\omega \ge q$? Hopf's theorem says that complex span $\omega > 0$ if and only if ω has vanishing Euler class and the theorems of Thomas ([10] and [11]) give an effective answer in the case q = 2. We study this problem in the cases q = 3, 4 and establish theorems which give necessary and sufficient conditions for complex span $\omega \ge q$ in terms of the Chern classes of ω and certain functional cohomology operations. The Chern class of ω in $H^{2i}(M; \mathbb{Z})$ is denoted by $c_i(\omega)$. If $\delta_p P^1$ denotes the Steenrod *p*-power P^1 followed by the Bockstein associated with reduction mod p. $\delta_n P_m^1(c(i - p))$ (p + 1)) denotes a subset of a functional operation defined on the universal Chern class c(i - p + 1) and contained in $H^{2i}(M; \mathbb{Z})$. This subset will be described in the second section of this paper. If p is a prime, M is *j*-connected mod p if $H_i(M; \mathbb{Z}_p) = 0, 1 \le i \le j$. In both theorems below, M is 1-connected mod 2 and 3.

THEOREM 1. If n is even, $n \ge 6$, then complex span $\omega \ge 3$ if and only if $c_i(\omega) = 0$, $n - 2 \le i \le n$, and $0 \in \delta Sq_{\omega}^2(c(n-2))$.

THEOREM 2. If n is odd, $n \neq 1 \pmod{3}$, $n \geq 9$, and M is 3-connected mod 2, then complex span $\omega \geq 4$ if and only if $c_i(\omega) = 0$, $n - 3 \leq i \leq n$, $0 \in \delta Sq_{\omega}^2(c(n-3))$, and $0 \in \delta_3 P_{\omega}^1(c(n-3))$.

In Theorem 1, if $n \neq 0 \pmod{3}$, and $n \equiv 2 \pmod{4}$, the connectedness hypothesis can be dropped. Thomas and Gilmore [11] show that if M is 3-connected, then for every n, complex span $\omega \ge 3$ if and only if $c_{n-2}(\omega) = 0$ and $c_n(\omega) = 0$. Gilmore [2] proves theorems similar to Theorems 1 and 2 in which he assumes that $H_2(M; \mathbb{Z})$ and $H_4(M; \mathbb{Z})$, respectively, have no elements of order 2. For the specified values of n, our theorems contain the results of Thomas and Gilmore, because the operation $\delta_p P^1_{\omega}(c(i-p+1))$ is a set of elements of order p and hence must vanish if $H^{2i}(M; \mathbb{Z})$ has no p-torsion. If M is an almost-complex manifold with almost-complex structure ω , our theorems relate the complex span of M to the Chern classes of M and the functional operations.

2. Obstruction formulas. Let the map $f: M \to BU(n)$ classify ω . It is clear that complex span $\omega \ge q$ if and only if f lifts to the total space of the fibration $W_{n,q} \to BU(n-q) \to BU(n)$ where $W_{n,q}$ is the Stiefel variety of complex q-frames in complex n-space. We will apply two obstruction formulas to this lifting problem. The first formula is due to Olum [8]. If $\pi: E \to B$ is a fibration with fiber F, c in $H^{n-1}(F; G)$ a class transgressing to d in $H^n(B; G)$, X a CW complex and $f: X \to B$ a map such that the lifting obstruction $O^n(f)$ is nonvoid, then

(2.1)
$$-c_*O^n(f) = f^*d,$$

where $c_*: H^n(X; \pi_{n-1}(F)) \to H^n(X; G)$ is induced by $c_*: \pi_{n-1}(F) \to G$, the composite of the Hurewicz homomorphism and evaluation.

The second formula is the main theoretical result of this paper. We assume that there is a class a in $H^{n-2p+1}(F; \mathbb{Z})$ such that $\delta P^1 a = 0$ and a is the only class transgressing to b, where $f^*b = 0$ and $P^1b \equiv 0 \pmod{d}$ integral classes in kernel $\pi^* \cap \text{kernel } f^*$). Under these hypotheses, there are liftings $f_a: F \to K(\mathbb{Z}, n-2p+1; \mathbb{Z}, n-1, \delta P^1)$ and $f_b: B \to K(\mathbb{Z}, n-2p+2; \mathbb{Z}, n, \delta P^1)$ of a and b, where the range spaces are two-stage Postnikov systems induced by δP^1 . In [3], we show that the set $\{f_{a\#}: \pi_{n-1}(F) \to \mathbb{Z}\}$ is a congruence class modulo the image of the Hurewicz homomorphism and for every [g] in $\pi_{n-1}(F), f_{a\#}[g] \in \delta P_g^1(a)$, where δP_g^1 is the standard functional operation. (See [6], p. 157.) Therefore the induced homomorphism $f_a : H^n(X; \pi_{n-1}(F)) \to H^n(X; \mathbb{Z})$ can be effectively computed in some cases. In the proposition below, ι denotes the fundamental class of $K(\mathbb{Z}, n-2p+2; \mathbb{Z}, n, \delta P^1)$ and we assume that $H^n(E; \mathbb{Z})$ and $H^n(B; \mathbb{Z})$ are torsion free.

PROPOSITION 2.2. If $\pi: E \to B$ is a fibration satisfying the above hypotheses and p is a prime such that $n \ge 2(2p-1)$, then we have containments

(2.3)
$$f_a \cdot O^n(f) \equiv \delta P^1_{f_b}(\iota) \equiv \delta P^1_f(b).$$

Note that (2.3) shows that the obstruction is contained in the

484

operation $\delta P_f^1(b)$. A general result of this kind was obtained by Meyer. (See [5], §13.) It will be clear in the proof of (2.2) that the indeterminacy of $\delta P_{f,f}^1$ is image δP^1 , and so (2.3) expesses the obstruction as an operation with smaller indeterminacy than the indeterminacy of δP_f^1 , image ($\delta P^1 + f^*$). Proposition 2.2 will follow from the next lemma. In the proof of the lemma, the reduction mod p of an integral class θ will be denoted by $\overline{\theta}$.

LEMMA 2.4. The composite $f_b \pi$ is homotopically trivial.

Proof. Let $K = K(\mathbf{Z}, n - 2p + 2; \mathbf{Z}, n, \delta P^1)$. If $n \ge 2(2p - 1)$, $H^n(K; \mathbf{Z})$ is isomorphic to \mathbf{Z} modulo finite groups with a free generator θ such that $\theta_{\#}: \pi_n(K) \to \mathbf{Z}$ is multiplication by p and $\overline{\theta} = P^1 \iota$. These facts follow immediately from the long exact homotopy and Serre cohomology sequences for the fibration $K \to K(\mathbf{Z}, n - 2p + 2)$ and the Hurewicz theorem modulo finite groups. Since $(f_b \pi)^* \iota = \pi^* b = 0$, because b is in the image of the transgression, $O^n(f_b \pi, *)$ is nonvoid. It follows from the hypotheses that $f_b^* \overline{\theta} \equiv 0$ (mod integral classes in kernel $\pi^* \cap$ kernel f^*) and from the properties of θ and (4.4) in [8] that $f_b^* \theta - f_b^* \theta =$ $pO^n(f_b, f_b')$ for any two liftings of b. Therefore, after alteration by an n-cocycle, we may assume $f_b^* \theta \in$ kernel $\pi^* \cap$ kernel f^* and so $\pi^* f_b^* \theta =$ $0 = pO^n(f_b \pi, *)$, and this implies $f_b \pi$ is homotopically trivial since $H^n(E; \mathbf{Z})$ has no torsion.

Lemma 2.4 implies the existence of a map of fibrations from the fibration π into the path space fibration over K with fiber $\Omega K = K(\mathbf{Z}, n-2p+1; \mathbf{Z}, n-1, \delta P^1)$. The map of fibers is a lifting of a, $f_a: F \to K(\mathbf{Z}, n-2p+1; \mathbf{Z}, n-1, \delta P^1)$, because we are assuming that a is the only class transgressing to b. The map $f_b f$ lifts to the path space if and only if it is homotopic to the constant map. We have taken care that $f_b^* \theta \in \ker f^*$ and so $(f_b f)^*$ has image zero in dimension n. Therefore the obstruction to a homotopy of $f_b f$ to point is precisely $\delta P_{f_b f}^1(\iota)$ (10.8 [7]) and the indeterminacy of $\delta P_{f_b f}^1$ is image δP^1 . Formula (2.3) now follows immediately from standard naturality properties of obstructions and functional operations ([6], p. 157).

3. The proofs of Theorems 1 and 2. We begin with some general remarks. The group $H^*(W_{n,q}; \mathbb{Z})$ is an exterior algebra with generators a_k in $H^{2k-1}(W_{n,q}; \mathbb{Z})$, $n-q+1 \le k \le n$ ([1], p. 444). The space $W_{n,q}$ is 2(n-q)-connected and $\pi_i(W_{n,q})$ is \mathbb{Z} if *i* is odd and a finite group if *i* is even as long as *n* is large, n-q is odd, $2 \le q \le 4$, and $2(n-q)+1 \le i \le 2n-1$. The necessary size of *n* is indicated in the theorems. The group $\pi_{2(n-q)+2}(W_{n,q})$ is zero and the other finite groups are 2 or 3 torsion groups in this range of dimensions, [2]. Since the

Hurewicz homomorphism $h: \pi_i(W_{n,q}) \to H_i(W_{n,q}; \mathbb{Z})$ is a isomorphism modulo finite abelian groups if $i \leq 4(n-q)$, it sends a generator in $\pi_{2k-1}(W_{n,q})$ into an integer $m_k \neq 0$, $n-q+1 \leq k \leq n$. These integers can be computed using an inductive argument based on the fibration $W_{n-1,q-1} \to W_{n,q} \to S^{2n-1}$. In particular, $m_{n-q+1} = 1$, $m_{n-q+2} = 2$ and the prime divisors of the others are either 2 or 3, [4]. Since a_k transgresses to c(k), it follows from (2.1) that $-m_k O^{2k}(f) = c_k(\omega)$. Thomas' theorem [10] follows from this formula and the first two values of m_k : if M is arbitrary and n is odd, complex span $\omega \geq 2$ if and only if $c_i(\omega) = 0$, $n-1 \leq i \leq n$.

Consider the lifting obstruction $O^{2k}(f)$, where $n - q + p \leq k \leq k$ In this range of dimensions, c(k - p + 1) is the image of a unique n. class a_{k-p+1} under transgression and if $c_k(\omega) = 0$, $P^1c(k-p+1) \equiv 0 \pmod{2}$ integral classes in kernel $\pi^* \cap \text{kernel } f^*$), ([1], p. 429). Let $f': BU(n) \rightarrow K(\mathbb{Z}, 2(k-p+1); \mathbb{Z}, 2k, \delta P^1)$ be a lifting of c(k-p+1), f_{k-p+1} : $W_{n,q} \rightarrow K(\mathbb{Z}, 2k-2p+1; \mathbb{Z}, 2k-1, \delta P^1)$ a lifting of a_{k-p+1} , and set $\delta P^1_{\omega}(c(k-p+1)) = \delta P^1_{f'f}(\iota)$. If [g] in $\pi_{2k-1}(W_{n,q})$ is a generator, then $f_{k-p+1\#}[g] \in \delta P_g^1(a_{k-p+1}),$ [3]. Since $P^1a_{k-p+1} = \mu_p(k)a_k$, where $\mu_p(k) =$ k (mod p), ([1], p. 429), a direct computation of the operation $\delta P_{g}^{1}(a_{k-p+1})$ yields the equation $f_{k-p+1\#}[g] \equiv \mu_p(k)p^{-1}m_k \pmod{m_k}$. If $c_k(\omega) = 0$, then $m_k O^{2k}(f) = 0$ and the action of the homomorphisms f_{k-p+1*} on the obstruction is independent of the lifting. The next proposition follows immediately from the above remarks and Proposition 2.2. The assumption $p \leq q$ forces the inequality of the proposition because we have $2q \leq n$ in our theorems.

PROPOSITION 3.1. Let p be a prime such that $p \leq q$. If $c_k(\omega) = 0$ and $m_k \equiv 0 \pmod{p}$, then

(3.2)
$$\mu_p(k)p^{-1}m_kO^{2k}(f) \equiv \delta P^1_{\omega}(c(k-p+1)) \equiv \delta P^1_f(c(k-p+1)).$$

We now turn to the proof of Theorem 2. The proof of Theorem 1 will be discussed later. In addition to the properties of $W_{n,4}$ mentioned above, we will need the fact that the 3-component of $\pi_{2n-4}(W_{n,4})$ is zero if $n \neq 1 \pmod{3}$ [2] and some more precise information on the image of the Hurewicz homomorphism $h: \pi_{2n-3}(W_{n,4}) \rightarrow H_{2n-3}(W_{n,4}; \mathbb{Z})$, *n* odd and $n \geq 9$: $m_{n-1} \equiv 0 \pmod{3}$ and $m_{n-1} \neq 0 \pmod{9}$ if $n \neq 1 \pmod{3}$, [4].

The conditions in Theorem 2 are clearly necessary. The hypothesis $c_{n-3}(\omega) = 0$ implies that $O^{2n-4}(f)$ is nonvoid and because *n* is odd and $m_{n-2} = 2$, Proposition 3.1 implies that $O^{2n-4}(f) = \delta Sq_{\omega}^2(c(n-3))$. This equation is an actual equality because the indeterminacy of $O^{2n-4}(f)$ is image δSq^2 ([10], p. 191) which is the indeterminacy of $\delta Sq_{\omega}^2(c(n-3))$. Therefore the hypothesis $0 \in \delta Sq_{\omega}^2(c(n-3))$ is enough to imply that $O^{2n-2}(f)$ is nonvoid since $n \neq 1 \pmod{3}$ means that $\pi_{2n-4}(W_{n,4})$ has no

3-component and M is 3-connected mod 2. Since $c_{n-1}(\omega) = 0$ and $m_{n-1} \equiv 0 \pmod{3}$, we have $\mu_3(n-1)3^{-1}m_{n-1}O^{2n-2}(f) \equiv \delta P_{\omega}^1(c(n-3))$, where $\mu_3(n-1) \neq 0$ because $n \neq 1 \pmod{3}$. The proof of Theorem 2 will be complete when we have shown that this equation is an actual equality, because the other obstructions vanish by connectivity, Poincaré duality, and $c_n(\omega) = 0$.

To establish equality, we work with the equation in the form $f_{n-3*}O^{2n-2}(f) \equiv O^{2n-2}(f'f)$, where $f_{n-3}: W_{n,4} \rightarrow K(\mathbb{Z}, 2n-7; \mathbb{Z}, 2n-3, \delta P^1)$ and $f': BU(n) \rightarrow K(\mathbb{Z}, 2n-6; \mathbb{Z}, 2n-2, \delta P^1)$ are liftings of a_{n-3} and c(n-3), respectively. Let h and \bar{h} be 2n-3-liftings of f'f and f, respectively, and let $\{c^{2n-2}(h)\}$ and $\{c^{2n-2}(\bar{h})\}$ be the obstruction cohomology classes determined by these liftings. We assert that h and \bar{h} can be altered in such a way that the obstruction class of h is unchanged and $f_{n-3*}\{c^{2n-2}(\bar{h})\} = \{c^{2n-2}(h)\}$. The argument begins by altering h by a 2n-7-cocycle ν such that $\{\nu\} = -3O^{2n-7}(f'\bar{h}, h)$. The altered map h_{ν} extends to a 2n-3 lifting of f'f because of the homotopy of $K(\mathbb{Z}, 2n-7; \mathbb{Z}, 2n-3, \delta P^1)$ and $\{c^{2n-2}(h)\} - \{c^{2n-2}(h_{\nu})\} = \delta P^1 O^{2n-7}(h, h_{\nu}) = \delta P^1 \{\nu\}$, [9], so $\{c^{2n-2}(h)\} = \{c^{2n-2}(h_{\nu})\}$ by our choice of ν . Note that

$$O^{2n-7}(f'\bar{h},h_{\nu}) = O^{2n-7}(f'\bar{h},h) + O^{2n-7}(h,h_{\nu}) = -2O^{2n-7}(f'\bar{h},h).$$

The homomorphism $f_{n-3\#}$: $\pi_{2n-7}(W_{n,4}) \rightarrow \mathbb{Z}$ is the identity and so we may alter \overline{h} by a 2n - 7-cocycle α such that $f_{n-3*}\{\alpha\} = \{\alpha\} = O^{2n-7}(f'\overline{h}, h_{\nu})$. If \overline{h}_{α} is the altered map, $O^{2n-7}(\overline{h}, \overline{h}_{\alpha}) = -2O^{2n-7}(f'\overline{h}, h)$, and so $\{c^{2n-4}(\overline{h})\} - \{c^{2n-4}(\overline{h}_{\alpha})\} = \delta Sq^2 O^{2n-7}(\overline{h}, \overline{h}_{\alpha}) = 0$. Therefore, \overline{h}_{α} extends to a 2n - 3 lifting of f because $\{c^{2n-4}(\overline{h})\} = 0$ and M is 3-connected mod 2. We have

$$O^{2n-7}(f'\bar{h}_{\alpha},h_{\nu}) = O^{2n-7}(f'\bar{h}_{\alpha},f'\bar{h}) + O^{2n-7}(f'\bar{h},h_{\nu}) = 0$$

because $O^{2n-7}(\bar{h}_{\alpha},\bar{h}) = -\{\alpha\}$, and so $f'\bar{h}_{\alpha}$ is homotopic to h_{ν} in dimensions less than 2n-3 and the difference formula for cocycles yields $f_{n-3*}\{c^{2n-2}(\bar{h}_{\alpha})\} = \{c^{2n-2}(h_{\nu})\}$. This completes the proof of equality and of Theorem 2. The proof of Theorem 1 is exactly the same except that there is no obstruction of order 3. The remark about the special case $n \neq 0 \pmod{3}$, $n \equiv 2 \pmod{4}$ follows from [2].

The problem of computing the operations δP_{ω}^{1} seems difficult. The following example shows that they are nontrivial invariants of the sectioning problem on the level of complexes¹. Let *n* be even, $n \ge 6$, and let $p: E \to BU(n)$ be the first stage in the Postnikov system for the fibration $BU(n-3) \to BU(n)$ and let $p_1: E_1 \to BU(n-2)$ be the first

¹ I am grateful to the referee for this example.

ROBERT D. LITTLE

stage in the system of the fibration $BU(n-3) \rightarrow BU(n-2)$. Let X be the 2n-1-skeleton of E_1 and ω the bundle classified by the inclusion $BU(n-2) \rightarrow BU(n)$ composed with p_1 . If k in $H^{2n-2}(E; \mathbb{Z})$ is the k-invariant, then $2k = p^*c(n-1)$ [10] and if $s: E_1 \rightarrow E$ is the natural map, then s^*k is in the image of the Bockstein mod 2. With these observations, it is easy to see that ω has the following properties: $c_i(\omega) = 0, n-2 \leq i \leq n$, complex span $\omega \geq 2$, but $0 \notin \delta Sq_{\omega}^2(c(n-2))$ because X does not lift to BU(n-3).

REFERENCES

1. A. Borel and J.-P. Serre, *Groupes de Lie et puissances réduites de Steenrod*, Amer. J. Math., **75** (1953), 409-448.

2. M. Gilmore, Complex Stiefel manifolds, some homotopy groups and vector fields, Bull. Amer. Math. Soc., 73 (1967), 630-633.

3. R. D. Little, A relation between obstructions and functional cohomology operations, Proc. Amer. Math. Soc., **49** (1975), 259–264.

4. R. D. Little, Obstruction formulas and almost-complex manifolds, Proc. Amer. Math. Soc., 50 (1975), 459-462.

5. J.-P. Meyer, Functional cohomology operations and relations, Amer. J. Math., 97 (1965), 649-683.

6. R. E. Mosher and M. C. Tangora, *Cohomology Operations and Applications in Homotopy Theory*, Harper and Row, 1968.

7. P. Olum, Invariants for effective homotopy classification and extension of mappings, Mem. Amer. Math. Soc., **37** (1961).

8. ____, Factorizations and induced homomorphisms, Advances in Math., 3 (1969), 72-100.

9. ____, Seminar in obstruction theory, Cornell Univ. Notes, 1968.

10. E. Thomas, Postnikov invariants and higher order cohomology operations, Ann. of Math., 85 (1967), 184-217.

11. ——, Real and complex vector fields on manifolds, J. Math. and Mech., 16 (1967), 1183-1206.

Received June 12, 1974.

UNIVERSITY OF HAWAII-MANOA