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CONCORDANCES OF NONCOMPACT HILBERT
CUBE MANIFOLDS

T. A. CHAPMAN

In this paper two exact seguences are established which
are useful in computing 7, (M), the group of isotopy classes
of concordances for a noncompact Hilbert cube manifold M.
Roughly speaking, this enables one to study the noncompact
case in terms of the compact case. The situation is analogous
to Siebenmann’s description of groups of infinite simple
homotopy types in terms of two exact sequences.

1. Introduction. For any space X we will use & (X) to denote
the space of all concordances of X. It is the function space, with
the compact-open topology, of all homeomorphisms of I x X onto
itself (I = [0, 1]) which are the identity on {0} x X. We use 7,2°(X)
to denote the group of all isotopy classes in & (X), where the group
operation is composition. A @Q-manifold is a separable metric manifold
modeled on the Hilbert cube @, the countable infinite product of
closed intervals. In [3] and [4] the author investigated the group
& (M) for M a compact @-manifold. The main result established
there was the following: Let M be a compact Q-manifold which is
written as B X Q, where R is a PL n-manifold. (It follows from
[1] that this can always be done.) Then 7,& (M) is isomorphic to
the direct limit of the sequence

(X id)x

7, & (R) Ccid)s | *1,% (R x I) Zon,Z R X I — oo+,

Fortunately this direct limit has been studied in [8], and as a result
we get the following consequences for @-manifolds.

A. If M is a compact Q-manifold, then w, & (M) depends only
on the 3-type of M.

From this we get.

B. If M and N are homotopy equivalent compact Q-manifolds,
then w, & (M) is isomorphic to 7,2 (N). (See §2 for a proof which
uses only infinite-dimensional techniques.)

C. If M is a compact Q-manifold, then n,Z (M) is trivial if
each component of M 1is l-connected. (This holds in spite of the
recently discovered gap in [9].)
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D. If M is a compact Q-manifold, then n,& (M) is abelian.
(See §2 for an elementary proof which was suggested to the author
by the referee.)

The purpose of this paper is to investigate the group =% (M),
for M a noncompact @-manifold. Our main results are Theorems 2
and 3, where we establish two exact sequences for 7,2 (M) which
relate the noncompact case to the compact case. They are remarkably
similar to the exact sequences of [10] used to compute the group
of all infinite simple types on a given locally compact polyhedron.
Below we will give precise descriptions of these exact sequences and
related results.

Recall that a map between spaces (always locally compact, separ-
able and metric) is proper provided that preimages of compacta are
compact. In analogy with the ordinary homotopy category we obtain
the proper homotopy category, where all maps and homotopies are
proper. In §2 we show how a proper map f: M— N between Q-
manifolds induces a homomorphism f,: 7,2 (M) — 7,2 (N) and then
prove the following result.

THEOREM 1. 7,% is a covariant proper homotopy functor from
the category of Q-manifolds and proper maps to the category of
groups and homomorphisms.

By a proper homotopy functor we mean that proper homotopie
maps f, 9: M— N induce the same homomorphisms from 7, & (M)—
7, (N). This implies the following result.

COROLLARY 1. If M, N are Q-manifolds which have the same
proper homotopy type, then m, & (M) is isomorphic to ©,Z(N).

For any Q-manifold M we define lim Whr,(M) to be the inverse
limit of the inverse system
{Whre(M — C)|Cc M compact},

where Wh is the Whitehead group functor and the homomorphisms
are inclusion induced. It is easily seen that lim Whz (M) depends

only on the proper homotopy type of M. The following exact se-
quence is established in §3.

THEOREM 2. For any Q-manifold M there is an exact sequence

7% (M) =25 lim Whar (M) — Whz (M) .



CONCORDANCES OF NONCOMPACT HILBERT CUBE MANIFOLDS 91

This result easily gives us examples for which #,%2°(M) is non-
trivial. For example let K< @ be a compact polyhedron with
nontrivial Whitehead group and let M = (@ x [0, 1]) — (K x {0}).
Then Whz (M) = 0 and it is not hard to show that lim Whr, (M) ~
Whz(K). Thus Theorem 2 gives a homomorphism of@;zﬁ{(M) onto
Whr(K) = 0.

For any @-manifold M we define lim 7,Z° (M) to be the direct

limit of the direct system

{m, & (M) M, c M is a compact Q-manifold},
where the homomorphisms are inclusion induced. Observe that
lim 7,2 (M) is just z,%" (M), where &, (M) denotes concordances with
compact support. In §4 we show that lim 7,2 quite naturally gives

us a covariant homotopy functor from the category of @-manifolds
and maps to the category of groups and homomorphisms. Consider

the inverse system
(») {lim 7, (M — C)|Cc M compact},

where the homomorphisms are inclusion induced. We define lim 7,2 (M)
to be the inverse limit of (+) and we define lim ‘7,2 (M) to be the first
derived limit of (x). These are both group? which depend only on
the proper homotopy type of M. We refer the reader to §4 for
further details of these constructions. The following exact sequence
is established in §5.

THEOREM 3. For any Q-manifold M there is an exact sequence
lim 7, (M) — lim 7,2 (M) — Ker (z..) —— lim ‘7,2 (M) — 0 .

There is an important class of @-manifolds for which lim' 7,2 (M)

is trivial. We say that a space X s movable at - provided that
for each compactum A C X there exists a larger compactum Bc X
such that X — B can be homotoped into any neighborhood of oo,
with the homotopy taking place in X — A. It is easy to see that
if (K, L) is a finite simplicial pair, then the noncompact polyhedron
K — L is movable at . The following result is established in §6.

THEOREM 4. If M is a Q-manifold which is movable at o, then
lim' 7,&(M) s trivial.

A closed subset A of a space X is said to be a Z-set in X provided
that there exist arbitrarily small maps of X into X — A. In §6 we
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use Theorems 2, 3 and 4 to prove the following result.

THEOREM 5. If (M, N) is a pair of compact Q-manifolds such
that N s a Z-set in M, then there is an exact sequence

7,8 (N) — 1,5 (M) — 7, (M — N) — Whrn (N) — Whr (M) .

As an immediate consequence of Theorem 5 we get the following
result.

COROLLARY 2. If MC Q is a compact Q-manifold which is a
Z-set in Q, then w, & (Q — M) is isomorphic to Whr (M).

2. The functor 7,%. We first prove the assertion made in D
of §1.

THEOREM 2.0. If M is any Q-manifold, then w,& (M) is abelian.

Proof. Write M = N x [0, 1], where N is a @-manifold. Then
& (M) is naturally homeomorphic to &, (M), the subset of & (M)
consisting of all & € (M) which are point-wise fixed on (I X N x {0}) U
(I x N x{1}). Let G be the subset of & (M) consisting of all h € (M)
which are point-wise fixed on I X N x [0, 1/2] and let H be the subset
of & (M) consisting of all &€& (M) which are point-wise fixed on
Ix N x [1/2,1]. Clearly G and H are deformation retracts of & (M).
Now elements of G and H commute, so &,(M) is homotopy-commuta-
tive. Hence 7, (M) is abelian.

We will now describe the functor 7,2 and prove Theorem 1.
Our first step will be to show how a proper map f: M — N between
@-manifolds induces a homomorphism f.: 7,8 (M)— 7,5 (N). Ele-
ments of 7, & (M) will be denoted by [h], Wwhere he & (M); that is,
[h] denotes the isotopy class of A.

Description of f.. We are given a proper map f:M— N of
@-manifolds. We will need an open embedding i: M x [0, 2) — N
such that (M x [0, 1]) is closed and such that the map M RGN
[o, 2)——@——>N is proper homotopic to f, where x0(m) = (m, 0). One
constructs ¢ as follows. First find an embedding f;: M — N which is
proper homotopic to f and such that f,(M) is a Z-set in N, and then
use the fact that f,(M) is collared in N. The existence of f, and
the collaring of f,(M) follow from [2]. Let ¢: IXx [0, 1]—1I x [0, 1] be
a homeomorphism such that ¢ takes ({0} x [0, 1)U (I x {1}) onto {0} x
[0,1] and let ¢ x #d: I x M x [0, 1]—I x M x [0,1] be defined so
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that it is the identity on the M-factor and on I x [0, 1] it is defined
by ¢. For any he & (M) we define h,c&(N) as follows: h, = id
on I x (N — M x [0,1)) and on I x ¢(M x [0, 1]) we define h, by
the commuting diagram

Ix Mx[0,1] <2255 1o a0, 1] 8207 1o i x [0, 1))
h X zdl lh*
Ix Mx [0, ] 2X97 1o mx o, 1] <%

Then define f.([k]) = [h«]. It is clear that f,: 7, & (M)— 7,& (N) is
a homomorphism. The proof of Theorem 1 below contains a proof
that f, is well-defined.

Proof of Theorem 1. We aim to prove that 7,%” is a covariant
proper homotopy functor. We have divided the proof into several
steps.

I. We will first show that the definition of f, given above
depends only on the proper homotopy class of . Let i: M x [0, 2)— N
be as above and let i: M X [0, 2) — N be an alternate choice for <.
Choose any h e & (M) and let bl e €(IN) be defined in analogy with
the definition of h, e & (N) by replacing 7 with . We must prove
that [h,] = [hs]. Since the embeddings

2% ko, 2)—— N
Mm% 0,2 -5 N

are proper homotopic we can find an isotopy F: N— N, 0=t <1,
such that F, = id and F,s = ¢ on M x {0}. This follows from Z-set
unknotting [2]. Then Fi(M x [0, 2)) and /(M X [0, 2)) are collars
on the same base and it is easy to get an isotopy G, N— N such
that G, = id and G, F\i =1 on M x [0,1]. The construction of G,
is elementary and uses no @-manifold theory. Define an isotopy
H;: N— N by

F,, 0<t=<1/2

H, =
G F 125t <1,

The effect of H, is to move ¢|M x [0,1] to ¢'|M x [0,1]. Now
define h,c € (N) by setting h,=1d on I X (N — H,u(M x [0, 1]))
and on I X H,i(M x [0,1]) we define h, by the commuting dia-
gram
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Ix Mx[0,1] <225 1o arxjo, 1] SEXET 1o 5 % [0, 1))
h X id l lht
Ix Mx[0,1] XD 1o mxq0, 1] =224, 1o HAM % [0, 1]) .

Then h, is an isotopy from h, to hl rel {0} x N, hence [k.] = [R}].

II. Now let fi: M— N and f,: N— P be proper maps of @-
manifolds. We will prove that (f.f)« = (f2)«(f)«. To simplify nota-
tion let M be a Z-set in N, with f, the inclusion M =— N, and let
N be a Z-set in P, with f, the inclusion N=— P. By abuse of
notation we may assume that Mx[0, 2) = N is a collaring of M =
M x {0} such that M x [0,1] is closed and similarly let N X
[0, 2) = P be a collaring of N = N x {0} such that N x [0, 1] is
closed. Choose any [h] ez, & (M). We will prove that (f.f))«([h]) =
(f2)«(f)«[R].

We first examine (f,)«(f)«([R]). It is just [g], where g may be
chosen so that it is supported on I X (M x [0, 1]) x [0, 1], and on this
set it is given by the commutative diagram

Ix Mx[0,1F 250 1w Mx [0, 1F
h,xidl 1g
Ix Mx [0, 12X 1w mx o, 15,

where ¢.: I x [0, 1]?— I x [0, 1}* is the composition, ¢,4,, of homeo-
morphisms ¢, and ¢, defined as follows: ¢,;: I x [0, 1]?— I x [0, 1]* is
given by ¢,(¢, u, v) = (8(¢, u), ») and ¢,: I x [0, 1]*— I x [0, 1]* is given
by (¢, u, v) = (¥, w, ') where (¢, v') = (¢, v).

In order to examine (f,f.)«([2]) we will need to choose a collaring
of M in P. Let 4: M x [0, 2)*— M x [0, 2) be a homeomorphism such
that

UM < [([0, 2] x {eh U (e} x [0, th]) = M x {¢},

for each ¢ € [0, 2). The existence of ¢ follows routinely from the
techniques used to prove the Stability Theorem [2]. Then

M x[0,2)—> M x [0, 2 =— P
gives a collaring of M in P. Using this collaring we compute

(f2f)«([R]) = [9'], where ¢’ may be chosen so that it is supported on
M % [0, 1]}, and on this set it is given by the commutative diagram
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Ix Mx[0,1] <222 1o Mo, 1] <420 T x Mx[0,1]

hXidJ g/
Ix Mx [0, 1182590, 1o mrxcpo, 1189075 1o Mo [0, 13

So it suffices to prove that g|I x M x [0, 1]* is isotopic to ¢'|I x M x
[0, 1P rel

{0} x M x [0, 1H U x M x[0,1] x 1) U x M x {1} x [0, 1]) .
This is equivalent to proving that the composition
(*) (g5 X id)(id X 7)o X 1d) ™ (h X id)(p X 1d)(id X )y X 1d)™*

is isotopic to h X id rel {0} x M x [0, 1]

Note that ¢ X ¢d and ¢, X id are clearly isotopic to their respec-
tive identities. Thus to prove that (.) is isotopic to & x 4d it suffices
to prove that (id X 7)™ (h X d)(id X 1) is isotopic to h x idrel {0} x
M x [0, 1], and for this it suffices to prove that (id x 7)(h x id)(id x 7)™*
is isotopic to & x id rel {0} x M x [0, 1]. It follows from [2] that ¢
can be chosen so that the M-coordinate is moved as little as we
please. In fact there exists an isotopy <¢,: M x [0, 1]P— M x [0, 1],
0 <t <1, such that 7, = ¢|M x [0, 1%,

w(M < [([0, u] x {u}) U ({u} X [0, uD]) = M x {u},
for each u €0, 1], and ¢, extends to a proper homotopy
T M % [0, 1 — M x [0, 1] ,
0<t=<1, by defining
T(fm} < [([0, u] > {u}) U ({u} x [0, uD)]) = {m} x {u},
for all me M and w€0,1]. Then
(1d % T )(h X id)(id X 1)

provides an isotopy of (¢d x 2)(h X wd)(td X )™ to h X <d.

III. For the last part of the proof we establish (id). = 4d.
Choose any @Q-manifold M and consider id: M x [0, 2] — M x [0, 2].
We will prove that (id).([k]) = [R], for all [h] € =,& (M X [0, 2]). Choose
a homeomorphism

M x][0,2] — M= M x {0}c M x [0, 2]
which is homotopic to the identity on M x [0, 2] and let [h] e 7, 2°(M X

[0, 2]) be given. Then (id).([k]) = [g], Wwhere g may be chosen so
that it is supported on I x M x [0, 1], and on this set it is given
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by the commutative diagram

¢ X id (1d><z><zd

Ix Mx[0, 21 < [0, 1] <% I'x M x [0, 2] %[0, 1] —— Ix Mx[0,1]

thdl 19

Ix Mx[0, 2] [0, 1] CE9 1 arx [0, 2] %[0, 1] 22", 1 Mx[0,1] -

(Recall that ¢ operates on I x [0, 1].) Define g by the commutative
diagram

(@d X i X id)™?

Ix M x]0,2p Ix M x|0,2]
hXidl lp
Ix Mx]|0,2F— i XX id — I x M x[0,2].

We will prove that [g] = [¢] and [g¢] =[R]. This will fulfill our
requirements.

To see that [g] = [#] let 6,: [0, 2] — [0, ¢], 1 < ¢ < 2, be the unique
linear homeomorphism such that 6,(0) =0 and let g, 1<t =<2, be
the isotopy from I x M X [0, 2] to itself defined by

= (id X 6,)7g(id X 6,) .

Then [g] = [g.] = [9.]- Similarly we get [¢] =[], where g, is the
composition

= (id x 6)7'u(id x 6,) .

Then to get [g.] = [p.] we just use the fact that ¢ x id is isotopic
to the identity. Thus [g] = [#].

Finally we prove that [¢] = [k]. For this we will need to know
that 7 can be chosen so that there exists a proper homotopy 7,: M X
[0,2] - M,0<t<1, such that ¢, =1, 7, is a homeomorphism for
0<t<1, and 4;: M x [0, 2] — M is the projection map. For 14, we
again appeal to [2]. Let a: Mx][0, 2]*— M x [0, 2]* be the homeo-
morphism defined by «a(m, t, u) = (m, w,t). Then let B, 0=t <1,
be defined by the commutative diagram

id X a (2d X 4, X id)™t

Ix M x|[0,2F — Ix Mx]J0, 2 —— Ix M x [0, 2]
hXidl j'fgz
Ix Mx[0,2F 2255, 1w Mo, 2 =% 1o mx 0, 2].

This gives [B,] = [k]. To show that [B,] = [¢] we just use the fact
that « is isotopic to the identity. For this we use the fact that M
is homeomorphic to M x @ and any homeomorphism on @ is isotopic
to the identity [14].
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We now establish Theorem 2.1, a result which will be needed in
the sequel. First it will be convenient to establish two lemmas.

Lemma 2.1. If M is a Q-manifold, h € (M), and xO: M— M X
[0, 2] s given by xO(m) = (m, 0), then (xO)([h]) = [h X 1d,z]-

Proof. Using the definition we have (xO0).([h]) = [g], Where ¢
is supported on I X M x [0, 1] and on this set it is given by ¢ =
(¢ x id) '(h x id)(¢ X id). We must prove that [g] = [r X i¢d]. As in
the proof of Theorem 1 let 6,:[0, 2] — [0, t], 1 =< ¢ < 2, be the unique
linear homeomorphism such that 6,(0) = 0. Using 6, it follows that
[9] = [9.], where

g, = (id X 8)7%(¢ X d)(h X 1d)¢ x d)(id x 6,) .
Using the fact that ¢ x id is isotopic to the identity we get
[9.] = [(3d x 6,)(h x id)(id X 6,)] = [k X id] .

LEMMA 2.2. Let M, N be Q-manifolds and assume that M X
[0, 2] 4s a closed subset of N such that Bd (M x [0, 2]) = M x {2}.
Choose h € (M x [0, 2]) such that h = id on I x M X {2} and define
h e Z(N) which extends h by the identity. Then the inclusion-induced
homomorphism & (M x [0, 2]) — ©,&(N) sends [h] to [R].

Proof. It is clear that we may additionally assume that h = id
on I x M x|[1,2]. Define : I x M x [0,1]—Ix M x [0,1] by ¢ =
(¢ X 1d)h(¢ x id)™*. Then g = id on {0} X M x [0, 1]. Using Lemma
2.1 and the fact that x0: M— M x [0, 1] is a proper homotopy equi-
valence we can find an feZ (M) such that [f X id] = [¢]. Thus
(¢ X 1d)™(f X id)(¢ x id) is isotopic to k|l x M x [0, 1] rel ({0} X M x
[0, 1D U x M x {1}). This implies that i.([f]) = [k], Where ¢ is the
map X0: M— M x [0, 2]. It j is the inclusion M x [0, 2] =— N, then
we also have (ji)4([f]) = [k]. Therefore j.([k]) = [k].

THEOREM 2.1. Let M, N be Q-manifolds such that M s closed
m N and such that Bd (M) is a bicollared Q-manifold. Choose
[r]l e & (M) such that h = id on I x Bd(M) and define g€ & (N)
which extends h by the identity. Then the inclusion-induced homo-
morphism w,% (M) — n,Z(N) sends [h] to [g].

Proof. We first note that M and N can be replaced by M X
[0, 1] and N x [0, 1], where we now have he (M x [0,1]) and g€
& (N x [0, 1]). This easily follows from Lemma 2.1 and the following
commutative diagram:
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M x [0,1]=— N x [0, 1]

xo] [ xo

M <— N

Define h'e (M x [0, 1]) by setting h' = (¢ X id) k(¢ X id). Then
h =14d on I x M x {1} and clearly [h'] =[h]. We also define ¢’'¢
& (N x [0, 1]) which extends k' by the identity and note that [¢'] =
[9]. It is easy to see that [k’'] = [h”] and [¢’] = [¢"], where h” = id
on (I xBd(M)x[0,1)DU x M x [0,1]) and ¢"” extends h"” by the
identity. Let z e & (M x [0, 1/2]) be defined by = = A" |I x M x [0, 1/2].
Let 4 be the inclusion M x [0,1/2] =—— M x [0, 1] and let j be the
inclusion M x [0,1]=— N x [0, 1]. Then Lemma 2.2 implies that
t+([t]) = [2”] and similarly (j9)«([c]) = [¢”]. Therefore j.([2"]) = [¢"].

3. The first exact sequence. The purpose of this section is
to establish the exact sequence of Theorem 2, and the first step will
be to construct the homomorphism z,.: 7,&"(M)— lim Whz,(M). Before

doing this it will be convenient to prove Lemma 3.1 below. The
following notation will be useful: (1) If M is a @-manifold, then
M, c M is said to be clean provided that M, is a compact Q-manifold
and Bd (M,) is a bicollared Q-manifold; (2) If M, and M, are clean
in M, then M, c M, means that M, lies in the interior of M,.

Lemma 3.1. If M is a Q-manifold, he (M) and M,C M s
clean, then there exists a clean M, such that h(Ix M) Cc c I X M, and
such that the inclusion

{0} x (M, — Int (M) = I x M, — h(I x Int (M)

s @& homotopy equivalence.

Proof. Choose clean M’y M" and M, such that
MIx M)ccIx Mcch(Ix M"YycclIx M,.

We will prove that M, fulfills our requirements. By pushing down
in the I-direction we can get a homotopy 7, of I X M, — h(I X Int (M,))
into itself such that r, = id, r, takes I X M, — h(I X Int (M,)) onto

(%) [I x M’ — k(I x Int (M))] U [{0} X (M, — Int (M))],

and 7, = id on () for each ¢. Similarly let s, be a homotopy of
(o) R(I x (M" — Int (M,))) U [{0} X (M, — Int (M))]

into itself such that s, = id, s, takes (4x) onto {0} x (M, — Int (I)),
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and s, = id on {0} x (M, — Int (M,)), for each ¢. Define a homotopy
fiof I x M, — h(I x Int(M,)) into itself by

7 Tat s 0=st<x1)2
" ser, l2=t=1.

Then f, gives a strong deformation retraction of I x M, — k(I x Int{(M,))
onto {0} x (M, — Int (M)).

Below we define a preliminary version of 7., but first it will be
convenient to recall the connection between homeomorphisms on Q-
manifolds and simple homotopy theory. It follows from [1] that to
each homotopy equivalence f: M — N between compact @-manifolds
there is a torsion ¢(f)e Whr,(N) (the Whitehead torsion of f) which
vanishes iff f is homotopic to a homeomorphism. This enables one
to do most of the standard results of simple homotopy theory for
compact @-manifolds. This gives us such tools as the Sum Theorem,
the formula for the torsion of a composition, etc. We refer the
reader to [5] and [6] for further details.

The function t.(h, M,). Choose a @-manifold M and M,Cc M
clean. Then to each he & (M) we are going to define an element
T.(h, M) € Whr (M — Int (M,)). This will be used later on to define
the homomorphism z.. Choose a clean M, as in Lemma 3.1 and let
4 be the inclusion

{0} x (M, — Int (M,)) = I x M, — k(I x Int (M),

which is a homotopy equivalence. Then we have a torsion z(7) lying
in Whz,(I x M, — h(I x Int (M,))). Let « be the composition

Whr(I x M, — k(I x Int (M,))) — Whz, (I X M — h(I x Int (M)
—s Whr (M — Int (M),
where the first homomorphism is inclusion induced and the second

is induced by the map from I x M — h(I x Int (M,)) to M — Int (M)
which sends h(t, ) to z. Then we define

T.(h, M) = a(z(1)) € Whr,(M — Int (M) .

The following result establishes some basic properties of z_(k, M,).

Lemma 3.2. (1) 7.(h, M) 1is well-defined.

(2) If M, M are clean and M,C C M! then t.(h, M)) is the
wmage of To(h, M) wunder the inclusion-induced homomorphism
Whr, (M — Int (M))) — Whr (M — Int (M))).



100 T. A. CHAPMAN

(3) For any h,h'e & (M) we have t,(h'h, M) = (k') M,) +
Tull, M,).
(4) If [k] = [V'], then Tu(h, M) = t.(k', M).

Proof. (1) Choose M,, v and « as in the definition of z_(k, M)
and let M c M be clean such that M,cc M,. Then

{0} x (M! — Int (M) =—— I x M; — k(I x Int (}M))

is also a homotopy equivalence and in analogy with the definition of
7(h, M) = a(z(i)) we could also define z..(h, M) = a'(z(i")), Where o’
is the composition

Whr (I x M; — h(I X Int (M,)) —> Whr (I X M — (I X Int (M)

—s Whz (M — Int (M)) .

We must prove that a(z(s)) = a&'(z(¢')). For this it will suffice to
prove that z(4') is the inclusion-induced image of z(7) in Whr,(I X M; —
h(I X Int (M,))). But this is an easy consequence of the Sum Theorem
for torsion.

(2) Again choose M,, v and « as in the definition of z.(h, M,)
and note that (1) implies that we may also select M, so that

7' {0} X (M, — Int (M))) =—— I X M, — h(I x Int (M)))
is a homotopy equivalence. Thus z.(h, M) = a'(z(7')), where

a': Whr(I x M, — k(I x Int (M))) —> Wha(I x M — h(I x Int (M/)))
— s WhrM — Int (M))) .

It will suffice to prove that z(¢) is the inclusion-induced image of z(7')
in Whr, (I x M, — h(I x Int (M,))). Again this is an easy consequence
of the Sum Theorem.

(3) With M,, 7 and « as above we can choose a clean M, in
M such that h'(I x M,)c < I x M, and such that the inclusion

i1 {0} X (M; — Int (M,)) =—— I X M, — h'(I X Int (M,))
is a homotopy equivalence. Let j be the inclusion
7:{0} X (M; — Int (M,)) = I x My — h'h(I X Int (J)) ,

which is also a homotopy equivalence. Using the Sum Theoreim we
see that 7(j) is the sum of the inclusion-induced images of z(¢) and
(i) in Whr(I X M, — h'h(I X Int (84,))), where

7: {0} x (M, — Int (M,)) = h'(I X M,) — W'h(I x Int (M) .

Note that the image of z(j) under the composition
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riWha I % My — Wh(I % Int (M) —— Wha (M, — Int (M)
——Whr(M — Int (M)

is 7,(h'h, M,), where the first homomorphism is induced by a homotopy
inverse of x0: M, — Int(M,)— I X M;— h'h(I x Int(M,))and the second
is induced by inclusion. It follows from the Sum Theorem that

B(() = s(z(1)) + (i), where
s:Whr(h'(I X M) — h'h(I x Int (M)))) R Whz, (M, — Int (M,))
——Whz (M, — Int (M),
£ WhaI % M, — W(I % Int (M) == Wha(M, — Int (M)
—— Whr (M, — Int (M)

are defined in analogy with ». Let

Wha, (I X My — (I % Int (M) =2 Wha (M, — Int (M)

be defined in analogy with 8,. To conclude that z_(2'h, M)=7(h', M)+
t.(h, M) all we need to do is prove that Bi(z(?)) = By(z(7)). This is
an easy consequence of the formula for the torsion of a composition
and the fact that the torsion of

oI x M, — I x Int (M) > W(I < M,) — I'h(I < Int (M)
is zero.

(4) Choose M,, ¢ and « so that z.(h, M) = a(z()). We can
choose M, so large such that »'(I x M))cc I x M, and

{0} % (M, — Int (M) =— I x M, — h'(I % Int (M)

is a homotopy equivalence. Then = (&', M,) = «'(z(¢')), with a choice
of &’ which is analogous to the choice of . Let A I X M—Ix M
be an isotopy such that h,=h, h, = i/ and £k, |{0} x M = id. We
may assume that A, (I x M,)c I x M, for each t. At this point
we have to apply the Isotopy Extension Theorem for @-manifolds.
Since it is also needed at several other places in the paper we state
it below. The lsotopy Extension Theorem implies that there exists
a homeomorphism f:I x M,—Ix M, such fh=5h" on I X M, and
f =1don ({0} x M,) U(I x Bd(M,)). Then f|I x M, — h(I X Int(M,))
induces an isomorphism 6 of Whxr, (I X M, — k(I x Int (M)))) onto
Whr(I x M, — h'(I x Int (M,))) which takes z(¢) to z(¢’). This easily
follows because z(f) = 0. We have a commutative diagram
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Whr(Ix M,—h(I x Int (M))) — Wha(I x M
@lz — (I x Int (M)

Wha(Ix M,— k' (IxInt (M) — Whr(I x M Whra(M—Int (M)
— (I x Int (M)

where the top composition is @ and the bottom is a@’. Since 6 (7(3)) =
7(¢') we have 7.(h, M,) = . (h/, M,).

We now state the Isotopy Extension Theorem used in the proof
above. It follows from [7] or it can be deduced from [4].

Isotory EXTENSION THEOREM. Let M be a @-manifold, UC M
be open, and let CC U be compact. If g2 I x U— I x M is an isotopy
of open embeddings such that g,/{0} X U = id, then there exists an
ambient isotopy h,. I X M — I X M such that h, = id, h,|{0} X M = id,
and h,g, =g, on I X C, for each t.

Description of .. We now define the homomorphism

Tt TE (M) — lim Whr (M)

of Theorem 2. Write M = U, M,, where the M,’s are clean and
M,c < M,,,. Thiscan be done because all @-manifolds are triangulable
[11]. In a natural way we may represent lim Whx (M) by

lim {Whrx (M — Int (M)}, ,

which is the subgroup of [I2, Whr (M — Int (M,;)) which consists of
all (¢, 7, --+) such that z,., is sent to 7, by the inclusion-induced
homomorphism. This representation of lim Whz,(M) is independent of
the choice of the M,’s. For any [h] e, & (M) we note that Lemma
3.2(2) implies that (z..(k, M), T..(k, M), - - +) € im{ Whr (M —Int (M,))}..
Then we define 7. ([k]) to be the element of lim Whz,(M) represented
by (z.(h, M), T(h, M,), ---). It follows from Lemma 8.2(4) that this
definition depends only on [k] and it follows from Lemma 3.2(3) that
T. 18 a homeomorphism, i.e. z.(['][k]) = T.([']) + 7.([k]). Finally it
follows from Lemma 3.2(2) that z.([k]) is independent of the choice
of the M,’s.

Proof of Theorem 2. Recall that we want to establish an exact
sequence

1, (M) =2 lim Wha (M) 2 Whr (M),
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where ¢ is yet to be defined. For this proof we will assume that
M = Uz, M, is given as above and lim Whz, (M) will be represented by

lim {Whz (M — Int (M), .

We define ¢ by é(z, z,, ---) = 7,, the inclusion-induced image of ¢,
in Whr,(M). To see that ¢z, = 0 choose any h € (M) and consider
To(h, M) e Whr (M — Int (M,))). We must show that the inclusion-
induced homomorphism

() Whz (M — Int (M)))

> Whr (M)

sends 7.(h, M) to 0. Assume that M, and ¢ are as in the definition
of 7.(h, M) and let j be the inclusion {0} X M,=— I x M, which
has zero torsion. By the Sum Theorem we have 7(j) equal to the
inclusion-induced image of z(7) in Whn (Il X M,), which suffices to
prove that () sends z.(k, M,) to O.

For the other half of the proof we must show that Ker (4) =
Im (z.). This is a little harder to do since we are trying to realize
the elements of Ker (¢) geometrically. Choose

(T, Ty -+ o) € lim {Whm (M — Int (M)},

such that &(z, 7, +++) = 0. We must construct an element h € (M)
such that z.([2]) = (¢, Toy -+ ).

Our first step will be to show that we can write M = U2, N,
where the N,’s are clean and N, cc N,,,, and choose elements , ¢
Wh,z(Bd (N,)) such that

(1) the inclusion-induced homomorphisms, Whx (Bd (IV;)) —
Whz (N;., — Int (N,)) and Whz(Bd (N, ,)) — Whr(N,,, — Int (N})), send
st and ., to the same element,

(2) the inclusion-induced homomorphism, Whz, (Bd (N,) —
Whn(N,), sends #, to 0,

(3) if y denotes the inclusion-induced image of g, in Whz, (M —
Int (N;)), then (g, t, ---) and (¢, 7, ---) represent the same element
of imWhz (M).

The construction of {N,}z, and {g,}7, will follow from successive
modifications of {M;}2., and {z.},.

To begin we may assume that there are elements 7, € Whr (M,., —
Int (M,)) such that

(1) 7! is sent to 7, by the inclusion-induced homomorphism
Whr(M,., — Int (M,)) > Whr (M — Int (M,)),

(2) the inclusion-induced homomorphisms,

Whﬂl(Mi+2 - Int (M1+1)) —_— Whn'l(MH_g - Int (Mz))
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and Whr(M,,, — Int (M,)) — Whn(M,, — Int (M,)), send z},, and 7}
to the same element,
(3) 7} is sent to 0 by Whrn (M, — Int (M,)) —» Whr (M,).

If the elements {z]}2, do not exist, we can find them by passing
to a subsequence of {M,};2,. This follows from the fact that Whx (M —
Int (M,)) is naturally the direct limit of

{Whz(M; — Int (M)|j = 7 + 1} .

Next we show how to modify {M,} and {z}} to get our required
{N;} and {z;}. For each ¢ we will show how to construct N, and p,,
but we will leave it as an exercise for the reader to check details.
Let a: M— M x [0, 1] be a homeomorphism such that a(M;) = M, x
[0, 1] and a(M,,,) = M,,, x [0,1]. Choose a clean N, c M x [0, 1] so
that N/ is the union of M; x [0, 1] and a subset of (M,,, — Int (M,)) X
[0, 1] which consists of the union of all {z} x [0, a,], for ze M,,, —
Int (M,), such that a, = 1 for xeBd (M;) and @, = 0 iff e Bd (M,,,).
Thus BA(N;) = I X (M;,, — Int (M,)) is a homotopy equivalence. Put
N, = a”(N;) and note that Bd (N,) = M,,, — Int (M,) is a homotopy
equivalence. Thus there exists an element z, € Whr,(Bd (N;)) which
is sent to 7; by the inclusion-induced homomorphism Whz,(Bd (N,)) —
Whr(M,,., — Int (M,)). Then the reader can easily check that {N;}
and {z¢,) fulfill our requirements.

Now that we have {N;} and {¢,} we must show how to use them
to construct our required k€& (M). For notation we say that a
clean A I X M intersects {0} x M cleanly provided that

(1) ANn{0} x M) is clean in {0} x M,

(2) Bd(AN{0} x M) = Bd(4)n {0} x M),

(8) there is a collaring of AN ({0} X M) in A which restricts
to give a collaring of Bd (4) N ({0} x M) in Bd (4).

In Lemma 3.3 below we will show that for each ¢ there exists a
clean A, in I x (N; — Int (N,_,)) (where N, = ¢) such that

(1) A, intersects {0} x M cleanly and A, N ({0} x M) is a collar
on {0} x Bd (N,),

(2) I x Bd(N;)<Int(A,;) (Interior computed in I X N,),

(8) Ix Bd(N,)= A, is a homotopy equivalence,

(4) A, N({0} x M)=— A, is a homotopy equivalence,

(5) Bd(A)N{0} x M)=——Bd(A,) is a simple equivalence (Bd (4,)
is computed in I X N,),

(6) Bd(A;)=— A, is a homotopy equivalence,

(7) (4, N ({0} x M)=— A,) is equal to the image of x, under
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the composition

Wi (Bd (V) 28 Wha (A, 0 ({0} x M) — Wha(4)

where the second homomorphism is inclusion-induced.

Let A} denote the projection of A, N ({0} x M) into M, for each
1. We will construct an element 2 € (M) such that for each ¢, h
takes

Cl(I x [((N; — Int (N,_,))) U 4i_) — AY))
to
Cl(I x (N, —Int(N:._))) U A,_)) — 4),

where 4, = ¢, A} = ¢ and Cl denotes closure. Let us see how z_([%])
is represented by the element (g, tt, ---). Write M = Uz, P,, where
P, =CI(N;, — AY). Then the P’ s are clean and P,CC P,.,. Note
that the torsion of the homotopy equivalence

{0} X (P, — Int (P)))=— I x P;,, — (I X Int (P)))
equals the image of p;, under the composition

wha, Bd (N)) 2% Whz(4, 0 ({0} x M) — Wha(4,)

— s Wha(I % P, — W(I x Int(P))).

Thus z.(kh, P;) equals the inclusion-induced image of p, in Whz (M —
Int (P,)). This implies that z.([R]) is represented by (x, ft, «--).

Finally we show how to construct ~. Repeatedly using the Sum
Theorem the reader can easily check that the following inclusions
are simple equivalences:

0} x P,=—Cl x N, — 4),
{0} x (P —Int (P;_))) =—CI( X (N: — Int (N;_))) U 4,_) — 4) .

Then we can easily construct our required 2 by (1) using the fact
that simple equivalences between compact @-manifolds are homotopic
to homeomorphisms and (2) Z-set unknotting, which enables us to
fit various compact pieces together.

LEMMA 3.3. Let M be a compact Q-manifold and choose 7€
Whr(M). Then we can find a clean AcCI x M % [0, 1) such that

(1) A intersects {0} x M x [0, 1) cleanly and AN ({0} x M x [0, 1))
18 a collar on {0} x M x {0},

(2) Ix M x {0}cInt(A),

(8) I'X MXx{0}= A is a homotopy equivalence,
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(4) AN{0} x M x [0,1)) = A is a homotopy equivalence,

(5) Bd(A)N({0} x M x [0, 1)) =— Bd (A) is a simple equivalence,

(6) Bd(A)=— A is a homotopy equivalence,

(7) (AN ({0} x M x [0, 1)) =—— A) equals the image of T under
the composition

Wha (M) Z% Wha (A 0 (0} x M % [0, 1)) — Whi,(A) .

Proof. Our first step will be to prove that there exists a clean
Nc M x [0,1) such that

(1) M x {0} Int (),

(2) M x {0} =— N is a homotopy equivalence,

(3) Bd(N)=— N is a homotopy equivalence,

(4) 7(BA(N)=— N) + (M x {0} = N) =0,

(5) 7(M x {0} = N) equals {the image of t under the com-
position

Wha (M) Z% Wha (M x (0}) — Wha,(N) .

To begin let f: M — M, be a homotopy equivalence such that z(f) =
f«(7) and M, is a compact Q-manifold. (Here f.: Whz,(M)— Whz, (M)
is induced by f.) By taking the mapping cylinder of f and thickening
it we get a compact @-manifold P, containing M, M, as Z-sets such
that M, = P, is a simple equivalence and such that (M =—— P)) =
(M = P)),(zr). The thickening that is required is provided by West’s
Mapping Cylinder Theorem [13]. Next let g: M, — M, be a homotopy
equivalence such that z(g9) = f«(—7) and M, is a compact @-manifold.
Again we thicken the mapping cylinder of g and obtain a compact
@-manifold P, containing M, and M, as Z-sets such that M, =—— P,
is a simple equivalence and (M, = P,) = (M, = P,).f+«(—7). Define
N’ = P, Uy, P, the Q-manifold formed by sewing P, to P, along M..
Then we see that t1(M=——N'") + t(M,=—— N')=0 and t(M=— N')=
(M = N'),(zr). By the above comments it is now clear that we can
find a compact Q-manifold P, containing M, as a Z-set such that
M,=— P; is a homotopy equivalence and if N” = N’U,, P, then
(M = N"”) = 0. Thus there exists a homeomorphism wu:N" —
M x [0, 1] such that w(M) = M x {0} and w(N')c M x [0,1]. Then
N = w(N’) fulfills our requirements. (Note that in order to get
w(M) =M x {0} and u(N')c M x [0,1] we have to use Z-set un-
knotting.)

Finally we show how to get our required A from N. Choose
€ >0 so that M x [0, e]CInt (N) and let A be a clean set carved
out of I X N which is the union of all {z} X [a,, b,], Where
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(1) la., b.] =10, 1] if ze M X [0, €],
(2) e, b]c(0,1)if xe N— M x |0, €].

In the picture below the shaded region represents A. It is obtained
from I X N by “poking in” in the I-direction.

Mx0 Mxe Bd(N) Mx[0, 1]

The reader can easily check that A fulfills out requirements.

4., The functors hm nZ, hm n,% and hm . In §2 we

introduced 7,&, a covarlant proper homotopy functor from the cate-
gory of Q-manifolds and proper maps to the category of groups
and homomorphisms. In this section we will use the restriction of
T,% to the category of compact Q-manifolds and (ordinary) maps
to define functors hm T, &, hm n,% and hm n,%&. There are used

in the exact sequence of Theorem 3.

1. The functor limz, . We will first describe lim 7,%&, a

covariant homotopy functor from the category of Q-mani_i?olds and
maps to the category of abelian groups. It is defined as follows.
For any @-manifold M let lim 7,2°(M) denote the direct limit of the

direct system
{mr,&(M,)| M, Cc M is a compact Q-manifold},

where the homomorphisms are inclusion-induced. It follows from D
of §1 that lim 7z, (M) is abelian and we write it multiplicatively.
If ftM— N is a map of @Q-manifolds and M, C M is a compact
®-manifold, then we can choose a compact @-manifold N, N such
that f(M,)c N,. This induces a homomorphism

z e (M) L, o () — lim 7,2 () ,

where the last arrow follows from the direct limit construection.
This homomorphism is independent of the choice of N,. If M, is a
larger compact @Q-manifold in M, then we get a similarly-defined
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homomorphism 7,%”(M,) — lim 7,%°(N) such that the following diagram
commutes: -
w,% (M) N
I N\
s
L)’

lim 7,2 (N) .

Here the vertical arrow is inclusion-induced. In this manner
there is induced a homomorphism f,: lim 7, & (M) — lim 7,2 (N). The

following result is easy.

THEOREM 4.1. lim 7, % is a covariant homotopy functor from

the category of all é-_)manifold and (ordinary) maps to the category
of abelian groups.

II. The functor lim 7,%. We now describe lim 7,&” a covariant

proper homotopy functor from the category of @-manifolds and
proper maps to the category of abelian groups. For any @-manifold
M let lim 7, & (M) denote the inverse limit of the inverse system

{lim z,zZ(M — C)|C < M compact},

where the homomorphisms are inclusion-induced. If f: M— N is a
proper map of Q-manifolds and CC N is compact, then we get a
homomorphism

lim 7, (M) — lim 7,2 (M — £~(C)) % lim z,e2(V — ©) ,

where the first arrow follows from the inverse limit construction.
If C"c N is a larger compactum, then we get a similarly-defined
homomorphism lim 7,2°(M) — lim 7,2 (N — C’) such that the follow-

ing diagram commutes:
lim 7,2 (N — C')
. / |
lim 7, (M)
i N |
Nlim 7,2 (N — C)

In this manner there is induced a homomorphism f,:lim z,&"(M)—
lim 7, 2°(N). Again we have an easy result.

THEOREM 4.2. lim 7, % is a covariant proper homotopy functor
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from the category of all-Q-manifolds and proper maps to the category
of abeltan groups.

III. The functor lim 'z, %. We now describe lim 7,%, a covar-

iant proper homotopy f1<1—n—ctor from the category of Q-manifolds and
proper maps to the category of abelian groups. For any @-manifold
M we let lim*' 7, & (M) denote the first derived limit of the inverse

system
{im 7,2 (M — C)|Cc M compact} .

To calculate lim'mr, (M) we proceed as follows. Write M =

©,C,, where the C,’s are compact and C, c < C,,,, and consider the
sequence

lim 7,2 (M — C,) <~ lim 7,& (M — C,) <= ...,

where the p,’s are inclusion-induced. Define a homomorphism 4 from
M, lim 7, 2(M — C,) to itself by

Mgy, Gz +++) = (90957, 9:0:(957), ++) -
Then we define hm (hm 7, & (M — C)}z, to be the cokernel

11 lim 7, & (M — C,)/Im (4) .

It is called the first derived limit of the inverse sequence

{lim 7, & (M — G}z, .

If (9, 9, ---) is an element of [[x lim n, & (M — C,), then we use
{9, 95, ---y for its image in hm {hm 7'[0%/‘ (M — C)},

Just as hm n,E (M) is represented by hm {hm ﬂO%(M Che,
we will represent hm .z (M) by hm {hm ﬂO%’(M Cliz.. We
must prove that thlS is 1ndependent of the choice of the C.’s.
Thus let M = Uz, C; be given, where the C!’s are compact and
C,cc(C},,. We will describe a canonical procedure for constructing an
isomorphism from hm {hmn'O (M—C)}z, onto hm {hmn’o%/’(M CHl..
Write M = Uz Dz, where the D;’s are compact and D ccD,., and
(1) some subsequence of {D,}:2, equals a subsequence of {C,)z, and
(2) some subsequence of {D,}2, equals a subsequence of {C}}Z,. Let
{C.,}7-. be a subsequence of {C}7Z, where 4, <7,--.. It W111 suf-
fice to construet an isomorphism of lim'{lim 7, 2°(M — C))}, onto
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lim* {lim 7,&(M — C, )}r-..
Define
¢: 11 lim 7, & (M — C,) — 11 lim 7,2 (M — C.,)
n=1 —>

=1 —>

by #(¢;, 9 +++) = (hyy, hyyy -+ +), Where

hi1 = G590+41 7 Jig—1 s
hiz = 0i,00,41 °* Gig—1 5

For convenience we have omitted writing down the appropriate
compositions of the p,s. Specifically this means that in the term
9:i,9i,+1 * * * i1, the multiplication all takes place in lim 7, & (M — C)),

and g, actually represents p, .05 " pj_l(g,-).—> The reader can easily
check that ¢ induces an isomorphism
¢: lim* {lim 7, & (M — C))}z, — lim* {lim 7, & (M — C, )}, .

Now let f: M— N be a proper map of Q-manifolds and write

N = Uz, C;, where the C,’s are compact and C,ccC,,,. Then M=

2. f7YC,), where the f*(C;)’s are compact and f(C;)c C f(C;,))-
Define

a: 1] lim 7, & (M — £74(C,)) —> f_] lim 7,2 (N — C))

by a(g,, 9., ---) = ((9,), @(9g,), - --), where a, represents the homo-
morphism
(fIM — f(C)y:lim & (M — f7H(C)) — limz,&(N — C) .

It is easy to see that the following diagram commutes:

I1 lim 7,2 (M — £74(C,)) — f_i lim 7,2 (N — C,)

S }

E[l lim 7, & (M — £7(C) —- ;E[l lim 7, & (N — C) .

Thus « induces a homomorphism f,: lim' 7,2 (M) — lim' 7, (N). We
leave it to the reader to check that f, is independent of the choice of
the C;’s. In analogy with Theorems 4.1 and 4.2 we get the following
result.

THEOREM 4.3. lim'n,%& s a covariant proper homotopy functor

Srom the category of Q-mamnifolds and proper maps to the category
of abelian groups.
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There is an important case in which the first derived limit cons-
truction vanishes. An inverse sequence of groups, {G,, ».},, satisfies
the Mittag-Leffler condition provided that for each 7 there exists a
j > 4 such that the compositions

Dj-1 Dj-2 Di
G236, 2. e,
Pr-1 Pr—2 D
G, Gis .- G,

have identical images, for all k= j. We will need the following
result. For a proof see [12].

THEOREM 4.4. If {G,, p.}, s an inverse sequence of abelian
groups which satisfies the Mittag-Leffler condition, then lim'{G,;, v},

18 trivial.

5. The second exact sequence. The purpose of this section is
to establish the exact sequence of Theorem 3, and the first step will
be to construct the homomorphism @: Ker (z,,) — lim* n,&°(M). The
following result will be useful in the construction <o—f 6. Throughout
this section we will assume that M is a given Q-manifold and

Tt T, & (M) — im Whr (M)
is the homomorphism of Theorem 2.

Lemma 5.1. If [h]eKer(z,), then we can write M = Uz, M,
such that

(1) the M.s are clean,

(2) IXMcchIxM)ycclIXx M,cch(Ix M)cc---,

(3) {0} X (Myy, — Int (M) =— h(I X M,y,) — (I x Int(I)) 1s a
simple equivalence, for 1 odd,

(4) O} x (M., —Int(M))) = I X M;,, — h(I X Int(I]M})) is a
simple equivalence, for ¢ even.

Proof. It follows from the definition of Ker (z,) that for each
clean M,c M there exists a larger clean M,c M such that A(I X
M)cclIx M, and

(0} X (M, — Int (M,))) = I x M, — (I x Int (}M))

is a simple equivalence. It will suffice to prove that M, can be chosen
large enough so that I x M,c c k(I x Int (M,)) and so that

31 {0} X (M, — Int (M,)) = h(I x M) — (I x Int (M)

is a simple equivalence. Once this is done we will have an inductive
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procedure for constructing our desired sequence {M,}%,.
To see that we can make such a choice of M, all we have to
do is choose M, so that there exist clean M;, M such that

IxMcch(Ix M)cclIx M!cch(Ix M,
and such that
{0} x (M — Int (M))) = I x M/ — (I x Int (M)

is a simple equivalence. We will prove that 7 is a simple equivalence.

First it is easy to see that ¢+ is a homotopy equivalence. This
is just like the proof of Lemma 3.1. TUsing the Sum Theorem we
see that the torsion of 7 is equal to the inclusion-induced image of
the torsion of

J:{0} X (M, — Int (M")) =— h(I x Int (M)"))

in Whr(h(I x M,) — (I x Int (8,))). Again using the Sum Theorem
it is easy to see that the inclusion-induced image of the torsion of
g in Whr(h(I X (M, — Int (M/)))) is 0. This is all we need.

Description of 8. Choose any [h] € Ker (z.,) and write M = Uz, M;
as in Lemma 5.1. Then we can choose homeomorphisms

Seict I X (M, — Int (M,;_,)) — (I X M,;) — (I X Int (M,,_,)),
fZi: Ix (M2i+1 — Int (Mm)) — I % M2i+1 - h(I X Int (Mzi))

such that

(1) fau-y=id on [{0} x (M — Int (My-,))] U (I x Bd (M),
(2) faur=h on I x Bd (M),

(3) fu=1d on [{0} X (Myy, — Int (M))] U (I X Bd (M..1)),
(4) fu=h on I x Bd(M,).

We will use the symbol , to indicate the amalgamation of homeo-
morphisms on sets for which there is agreement on the common
parts. For example we define f,,_,+fe: € € (M, — Int (M,,_))) by

Saici, o0 I X (M, — Int (M,;_,))
Sfo, on I X (M, — Int (M) .

Similarly we define (fixfessr) *h € E (M, — Int (M,;)) to be the com-
position

fZi—l*fZi =

Ix (MZH-Z — Int (Mm)) "‘}'L_’ h(I X (Mzi-l—z — Int (Mm))) (fzi*@'i) I
X (Myi4, — Int (M) ,
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where fy«fus, is defined in analogy with f,,_,.f:. Note that
(fZi*f2i+1)_1h’ =id
on I x (Bd (M) U Bd (M,;.))-
Let @y, = {fos_1x S} €lim 7,2 (M — Int (M,,_,)) denote the inclusion-
induced image of [fu_,«fel € T& (Mye, — Int (M,;_,) in lim 7,2 (M —

Int (M,,_,)) and similarly let a,; = {(fusfoir) 'R} denote til_(: inclusion-
induced image of [(fuxSfeir) k] in lim 7,27 (M — Int (M,)). Then we

get an element (@, @, ---) of II2, lim 7,2°(M — Int (M,)) and we let
O([h]) denote the element of lim'w,Z”(M) which is represented by the
element {a,, a,, --.> of

lim* {lim 7,2 (M — Int (M))}=, = fj lim 7,27 (M — Int (M))/Im (4) .

There are several things which need to be checked in order to
conclude that 6 is well-defined.

LEMMA 5.2. 6([h]) is independent of the choice of the f’s.

Proof. Let {f/}2, be an alternate choice for {f.},, thus giving
us an alternate (af, a;, ---) e I2, lim 7,& (M — Int (M,)), where

a;i—l = {f2’i—1 *fZ’I} ’
a; = {(f2’1*f2’i+l)—1h} .

We will prove that {(a,, &, ---) = {(a}, a3, --+), and for this we must
prove that

(a(a)™, afa)™, ---)elm(4) .
Consider the element (B, B, ---) € Iz, lim 7,2 (M — Int (8)))
defined by B, = {(fiim) fu} and B, = {fii'fs}. We will show that
4By, By *++) = (a(@) 7, (e, =) .

It follows from Theorem 2.1 that the inclusion-induced image of B,
in lim 7,& (M — Int (M,;_,)) is given by {id.(fs'f%)} and similarly the
inclusion-induced image of B, in lim 7,&" (M — Int (M,,)) is given by
(idu(flu) " furn). Thus A8, By ++) = (¥, vy, ++-), Where

Voro = {(forms) Voo Hid o (fF2)
Yy = {fa fulidu(fhin ) Sossd s

Clearly v,,_; = {(fies «J2) (frim1xS2:)}, and since 7, % (M., — Int (M;_,))
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is abelian this equals a,_,(a;_,)"*. Similar reasoning gives v, =
azi(a;i)_l‘

LEMMA 5.3. O([h]) ts independent of the choice of the M,’s.

Proof. Using the notation of the definition of 4([k]) let {M, }i,
be a subsequence of {M,},, where ,,_, is odd, 1,, is even and %, <
By < +++. We call {M, }>., an odd-even subsequence of {M.}>.. By
amalgamating the f,’s together we can use the M, ’s to define 6([2])
as follows. Let

ai, = {fipe Lo =+ xS} € l_lin 7, & (M — Int (le)) ,
a;2 = {(fiz*fiz+1* Tt ox i4—1)_1h} € lin ﬂog(M — Int (Mzz)) ’

and thus get (ai, «i, ---) e[ lim 7,2 (M — Int (M,,)). This means
that we are replacing the sequence f,, f; -+ by the sequence

fi,*filﬂ* Tt xSt

fiz* fi2+1* Tt ok Jig-1 e

Then we get an element {(a;, a;, - --) €lim' {lim 7, 2" (M — Int (M, ))}-..
Recall from §4 that lim'z,%&”(M) can be represented in a natural
way by lim' {limz, 2" (M —Int (M,))}7, and lim" {lim 7,2" (M —Int (M,,))}:-..
The isomorphism
é: lim* {lim 7, & (M — Int (M)},
— lim* {limz, 2" (M — Int (M, )},

of §4 takes {(a,, @, ---) to <ai1ai1+1 ter gy gy gyt gy yy o0 -), where
we have omitted obvious inclusion-induced homomorphisms. So we

have to prove that @(a, a, «-->) = {(al, al, ---).
Again omitting obvious inclusion-induced homomorphisms we have

(aiy, iy o) = (A O g v Cyygy OOy v Cypgy * ).
So we must prove that

QUi Oy e Qgygy Qg Qg @0 s Qg+ >
= <ai1ail+2 et Qg O Qg 0t Ky gy *° ‘> .

Multiplying one by the inverse of the other we must therefore prove
that
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(aii+lai1+3' . 'aiz—zaghaals' . 'a;—m [LE7NT2 S A a@—z“%ﬁn“%i—y : 'a;—zy cee)
lies in Im (4). But it is clearly equal to
A(ai1+1ai1+3 MR 2 SHEPH 4 SFRT4 SAE L S P ) .

We have just shown that the definition of #([%]) is independent
of the choice of the M,’s up to passage to an odd-even subsequence.
As in §4 this clearly suffices to do the general case.

LEMMA 5.4. 6([h]) depends only on the isotopy class of h.

Proof. We must show that if h'e[h] is used to define 4([%]),
just as 6([k]) was defined by using %, then we get the same definition.
Let {M}, and {f,}:2, be chosen as in the definition of 4([h]) given
above. It is easy to see that the M,’s can be chosen so that I x
M cch'(Ix My)cc and so that

{0} X (My; — Int (M,,_,)) =—— h'(I x M) — (I X Int (M,,_))),
{0} X (M2z+1 — Int (MZz)) R (l X M2i+1) - hI(I x Int (Mzi))

are simple equivalences. For this all we have to do is observe that if
{0} x (M, — Int (M,)) = (I X M,) — (I x Int (M)

is a simple equivalence, then so is
{0} x (M; — Int (M,)) = h(I x M;) — (I X Int (M),

for any clean M; > M, A similar statement holds for the other
inclusion, {0} x (M, — Int (M,)) = (I X M;) — h(I x Int (I4,)). Thus
{M,}2, can be chosen as indicated above. We will continue to use
O([k]) for the definition above which involved & and {M.;}%,, and we
will use 6([h]) for the similarly-worded definition which uses A’ and
{M)z,. The next step is to make a choice of homeomorphisms f;
needed to define 4([h]).

Since h’'e[h] we have an isotopy h,:I X M— I X Mrel{0} x M
such that h, = h and h, = h’. Then we may assume that the M,’s
have been selected so that for each ¢ and 1,

(1) hdl X (M, — Int (M) C I X (Int (Masss) — Ma,oi),

(2) IxBd(M,.)ch,( x (Int My, — M),

(3) ht(I % Bd (Mzz'))c Ix (Int (M2i+1) - Mzi—l)a

(4) hdI x Bd (My.) C I X (Int (Myivs) — Maivi).

For each 7 the Isotopy Extension Theorem gives us an isotopy
a, of I X (M,., — Int (M,_,)) onto itself rel

[{0} X (Maiss — Int (Mye-)] U [ x (Bd (M.—) U Bd (M)
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such that a, = id and a,h = h, on I X (M,,,, — Int (M,;)). Define fj,_, =
&, fu, and fr, = &, fu., and note that fj .k’ fs.. is isotopic to
Joiokh % friss TEL

[{O} X (M2i+3 — Int (Mm—l))] U [I X (Bd (Mzi—l) U Bd (M2i+3))] .

Again using the Isotopy Extension Theorem we can extend the isotopy
&y for | I X (M, — Int (M,_,)) and construct an isotopy B, of I x
(M., — Int (M,,_,)) onto itself rel

[{0} < (Myir — Int (M- )] U [T < (Bd (M,—,) U Bd (Myi1))]

such that B, = id and B, fu_, = &, fo_, on I X (M,; — Int (M,,_,)). Then
define f), = B, f, and note that fi,_ . fs; is isotopic to fy_,«fe Trel

{0} X (Myy, — Int (M- )] U [ X (Bd (M) U Bd (My;10))] -
Similarly we define f,,., so that fJ,.,.fe:. i iSotopic t0 fuiixSfeiss Tel
{0} X (Maiss — Int (Mye: D] U [ X (Bd (Myi1,) U Bd (Mei15))] -

This gives us f/ defined for each 7. Then the sequence {f/}2, may
be used in conjunction with {M,;}, to define 8([k])’. Recall that 6([A])
is represented by

(*) L F ol ({(fos f)THRY, o)
and 4([k])’ is represented by
(**) AL A TR, - )

We observed above that f,_,.fs is isotopic to f,_.«fu, therefore
{foicixSoi} = {faicinSoe)- This takes care of the odd terms. We will
not be able to show that {(fy /o) '} = {(fassxSoirr) th}, but we will
show that they have the same inclusion-induced image in lim 7,&" (M —

Int (M,,_,)). The reader can use this fact to easily show that (*) and
(**) represent the same element of lim'z, & (M).

To establish this fact note that the inclusion-induced image of
[(fzi*f2i+1)_1h/] in 7,8 (M,;.; — Int (M2i—1)) is

( M ) [fZi—l*f2i*f2i+1*f2i+2)¢1(f2i*h*f21+2)]

and the inclusion-induced image of [(frsfas) Al In 7,& (M5 —
Int (M,.—,)) is

(++) [(fZ’i-—l*fZ’l*fz’ivi‘l>kf2,i+2)—1(f2,i--1*h’*fZ,i-i-Z)] .

We have already seen that [f‘;i—l*h,*lei+2] = [ foicasls foiral, [foimn Sl =
[fo—ix Sl and [foiixfoise]l = [foisssSfoire]. This gives us (+) equal to
(++).
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This concludes the proof that 6([k]) is well-defined. We next
prove that 4 is a homomorphism.

LEMMA 5.5. 6 s @ homomorphism.

Proof. Choose elements [i], [h'] € Ker (7..). We must prove that
O([h'k])) = 6([R'DE([R]). We can write M = U, M, so that for each
1

(1) M, is clean,

(2) MiccM,,,

(3) {0} X (M, — Int (M,;,)) = h(I x M,;_)) — (I x Int(M,_,))
is a simple equivalence,

(4) {0}y x (M, — Int(M,,_ )= I X M, — h(I x Int(M,_) is a
simple equivalence,

(5) {0} X (Mo — Int (M,;5)) = h'(I X M,;_,) — (I x Int (DM,;_,))
is a simple equivalence,

(6) {0} X (Myy, — Int (M,;)) = (I X M,y,) — h'(I x Int (M) is
a simple equivalence.

Then we can find homeomorphisms as follows:

(1) fa—et I X (Myo, — Int (My;_0)) — A(I X M,;_)) — (I X Int (M,;_,))
is the identity on [I x Bd (M,,_,)] U[{0} x (M,,_, — Int (M,;_,))] and equals
h on I x Bd (M,,_).

(2) Fui I % (M — Tnt (M, ) — (I % M) — (I x Int (M,,_) is
the identity on [I x Bd (M,,)] U [{0} x (M,, — Int (M,,_,))] and equals A
on I x Bd (M,;_,).

(8) flics: I X (My—y, — Int (M;_5))— h'(I X M,;_,) — (I x Int(M,,_,))
is the identity on [I x Bd(M,,_5)] U[{0} x (M,;,_, — Int (M,._;))] and
equals A’ on I x Bd (M,;_,).

(4) f;i: I % (M4i+1 — Int (Mu)) —1I X M4i+1 - h’(I % Int (Mn)) is
the identity on [I x Bd (M,.,,)] U [{0} X (M,;,, — Int (M,;))] and equals
h' on I x Bd (M,,).

Writing M = M, U M, U --- and representing 111111 n,% (M) by
1ii_n1 {1i_1_>n 7,5 (M — Int (M,))|© odd}
we calculate 4([h]) to be
(@, @, «--> el lim 7,& (M — Int (M,,_,))/Im () ,

=1 —>

where
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a, = {idy fox fox1d}
as = {(fsx1dxidy fo) 'R} ,

Note that 1d, fox foxid € E(M; — Int (M))) and (fixid . idy f3)*h € & (M, —
Int (My)).

Now write M = M, U M, U My U M; U M, U M, U --- and represent
lim! 7z, (M) by

lim' {lim 7,2°(M — Int (M,))|? =1,2,5,6, ---} .
Then we calculate 6([h’]) to be

oK) = {al, &, o, &y ---> e I {lim 7,2 (M — Int (M,))|

=1 —

= 1, 2, 5; 6, o '}/Im (A) ’
where

a; = {fl,*h'*f;} ’
a, = {(W s« fisf) 0}

Note that fi.hkfie &€ (M; — Int (M) and (A’ fl.fi) k' € € (M; —
Int (M)).
Again writing M = M, U M, U --- and representing lim'z, & (M)

as above we calculate 6([h'h]) to be
O([I'RY) = (B, B, -++) €11 lim @ (M — Int (My_,))/Im (4) ,

where

B, = {f{*h’fz*h'fa*f;} ’
By = {(h'f3*f;*f;*h'fﬁ)_lh'h} ’

Note that f/.h' foxh'fis fi € € (My — Int (M,)) and (B'fy fix foxP'f5) 'R R €
& (M, — Int (M;)). We now have representatives of d([#]), 6([%']) and
6([h'R]). Note that

fx,*h’fz*h'fs*f; = (fl’*h’*fl,)('id*f2*f3*id) B

This implies that 8, = ala,; similarly g,=aias By=a,, -+-. However
we cannot directly compare the remaining terms because they do not
all lie in the same groups. For example a; and B, lie in lim 7,&(M —
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Int (M), but «; lies in lim 7, Z"(M — Int (M,)). Let (a,), (a;), and
(B;), denote the inclusion induced images of «,, «a;and B;in lim 7,2 (M —
Int (M))). We will show that (8,), = (a;)(a,),. Similarly it will follow
that (8:); = (ag)(a.);, and so forth. Here (8;); (as)s and (a;); are the
inclusion-induced images of B, a; and «, in lim 7, & (M — Int (M;)).
This will suffice to prove that 6([a'R]) = 6([h'])0?fh]).

To prove that (B;), = (ay).(a), it will suffice to prove that the
composition of

@) [tdo(B' o fisf?) R wid wid wid]
and

(b) [td4id«(fistdidy fo) Ry id Lid]
gives

(©) [dwid (B o fi s S5 xh f6) B hiid xid].
These are elements of 7,& (M, — Int (M,)). Obviously

(a) = [fl’*h’*f;*fﬁ’*h’*fé]—1[f1,*h”*f8’]!

(b) = [@d*fz*fa*@d*'Ld*fﬁ*f}*?/d]—l[@d*fz*h*fm“ﬂy

(€) = [l sl fosch fos L s s <l FoscB frs SV T LSL b fosch BB frs £ ]
Using the commutativity of =, % (M, — Int (8,)) it is clear that (c¢)
is the composition of (a) and (b).

Proof of Theorem 3. We now show that there is an exact
sequence

] k
lim 7,2 (M) —— lim 7,& (M) — Ker (z..) —— lim* 7,2 (M) — 0 .

1. Exactness at lim'7w,2(M). We say that an element of
lim' 7,2°(M) is good pr?vided that it can be represented by {(a,,
a, -+, for M= Uz M, where a,eclimz,& (M — Int(M)) is the
inclusion-induced image of [k] €7, & (M: — Int (M,)) and % = id on
I x Bd(M,)uUBd(M,.,,)). We will first show that each element of
lim' 7,2°(M) is the product of two good elements. To see this write
M= Uz, M;, where the M,’s are clean and M, C C M,,,, and choose
any {@, &, «--yelim'{lim 7,& (M — Int (M,))};=,. Let a« be the ele-
ment of lim! xO%(M—) re-i)}esented by {a,, a, --->. It is easy to see
that we can find a subsequence of {M,}Z,, call it {M/},, and an
element {aj, as, -+-) of lim*{lim 7,2"(M — Int (M))}:>, such that

(1) Lai, ai -+ ref)_;ese—rﬁs a,

(2) for each 7 there is an element h, € (M., — Int (M))) such
that h, = id on I x (Bd (M/) U Bd (M/.,)) and «; = {h,}.

Writing M = M/ U M;U --- we have an element g ¢lim z,& (M)
represented by -
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i, {hs}, « -+ €lim! {lim 7, & (M — Int (M)))|7 odd}

and writing M = M, U M/U --- we have an element v of lim! 7,&7(M)
represented by

Uhy), (B, -+ elim! {lim 7,2 (M — Int (M!))|4 even} .

Clearly B, v are good and the reader can easily check that a = Q.
Thus to see that # is onto we need only consider a good element
a of lim'w,&(M). Let a be represented by {a, a,---), where as

above we have a; = {h;}. Let h e & (M) be defined by
h = 7/d>|<]7/1>|<hfz>|= °c
Then it is easily seen that 4([z]) = a.

II. Exactness at Ker(z,,). We must first define the homomorphism
k: lim 7,2 (M) — Ker (7.,). An element of lim 7,&°(M) can be repre-

sen-t;d by {h,}, where h, e & (M,) and MIC-JTI is clean such that h, =
id on I x Bd (M,). Let h e & (M) extend &, by the identity and define
k([h.]) = [h]. It is easy to see that k gives a well-defined homo-
morphism and it is clear that 6k = 0. The other half of the proof
of exactness is more difficult.

Thus for any [h]cKer (f) we want to prove that [i]eIm (k).
For the time being we assume that & can be written as ko h /gy * - -,
where M = U2, M; and

(1) the M,’s are clean,

(2) Micc My,

(8) h,e & (M,,, — Int (M,)) and is the identity on I x (Bd (M;) U
Bd (M.,,)), for ©+ = 1,

(4) h,e ¥ (M,) and is the identity on I x Bd (M)).

Then 6([k]) can be represented by

R}y {Rs}, -+ ) € lim® {lim 7, &7 (M — Int (M)},
Since [k] € Ker (§) we have

({h.}, {h/z}s o ') = ({gl}{id*g2}_ly {gz}{id*gs}—l, . ) ’

where for each i we have g,e & (M;, — Int (M,)), for some j; > i,
such that g; = id on I x (Bd (M) UBd(M;,)). By passing to a sub-
sequence we may assume that j, = ¢ + 1 and that

[hixid] = [(9:xid)(1d+9:4:)7"]

computations being performed in 7, & (M,;, — Int (1;))). Details are
left to the reader.
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For each ¢ we have [¢g7'h;.id] = [id.97] and therefore
[grlhl*id*gﬁ_lhs*id* o ] = [id*g;‘*id*gfl* ° '] ’

these computations being performed in 7,2 (M — Int (M))). Similarly
we get

(14497 Pasid s g Py + - -] = [1d 400505 0005 -+ 0]
Composing we get
(97505 % « = Mushos -+ -1 = [1dagisg5 5 -+ -1
or
[Aoshss - -] = [giidsidy -+ -] .

This implies that [k] € Im (k).

We now treat the general case. Choose any [k]eKer (). We
will prove that [k] =[h'], where A’ decomposes as k' = hj hi*hjy - -+, in
the above sense. Thus we are going to reduce the general case to
the specific case treated above. Write M = Ui, M, and choose {f.}2,
as in the definition of A([h]). We can easily choose the M,’s and f,’s
so that there are even pairs (M], M), (My, M;’), --- such that

(1) MyccMyccM]cCcC M.,
(2) fZi =1d on I X (M2i+l — Int (Mz,z)):
(8) h(I x Bd (M) I X (Myy, — Int (M3)).

By definition we have

0([r]) = ({fix Sl ((fexSD)TRY, - ) = Mg}, {gs}, -+ )

for some ({g.}, {93}, ---) e I lim 7, & (M — Int (M;)). Then we have

9. € €(M,, — Int (M,)), for some n, > 1. We are going to show that
for any even m < m,, h restricted to a neighborhood of I x Bd (M)
is isotopic to the identity, with the isotopy taking place in I X
(M — Int (M,)). The Isotopy Extension Theorem then implies that
h is isotopic to a new homeomorphism which is the identity on I X
Bd (M,]). Repeated applications of this observation will suffice to
prove that our required A’ exists.
Choose any even m > n, and consider the sequence

Firfo (fox ) hy =

Define a sequence u,, U, --- such that u, € (M — Int (M,)) extends
fixf: by the identity, u,e & (M — Int (M,)) extends (fi«fs)'h by the
identity, ete. Then it is easily seen that w,u,_,:---u,u, =h on a
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neighborhood of I x Bd (M/"), for n = 4, w,u,_, -+ wu, = h on a
neighborhood of I x Bd (M;’) for n = 6, etc. The equation

{fosfehy {(fex )RS, <+ ) = A({g}, {92}, « - )
implies that [U,U,_, =+ %] = [(9:x10)(1d 4G n+:42d)"*]. But
(9:510) (i G s1573d) ™
is the identity on a neighborhood of I x Bd (M,/) and we are done.

III. Exactness at lim 7, % (M). We must first define the homo-
morphism j: hmno% M )——>hm w,% (M). A typical element of 11m w,Z (M)

may be represented by ({gl} {g:}, +++), where M = Uz, M, and {9.} e
lim 7z, & (M — Int (M;)). Then we deﬁne ilgl, {9:}, --+) elim 7, &(M)
to be the inclusion-induced image of {g,} in lim 7, Z2°(M). It is clear
that j is well-defined.

To see that kj = 0 choose ({g.}, {g.}, ---) as above such that g, e
& (M,, — Int (M,)), for n, > 1, and such that g, = id on I x (Bd (M,) U
Bd (M,,). Then kj = [h], where h € (M) extends g, by the identity.
The condition

({9}, {9, -+ ) €lim {lim & (M — Int (M)},

implies that
[h] = [id+9,41d] = [id+Gosid] = -+,
and this provides our required isotopy of & = id.g.,id to the identity.

For the other half of the proof choose M, M clean and h,e
& (M,) such that h,=1id on I x Bd(M,). Then {h}elimn,Z& (M)
represents a typical element of lim 7,2”(M). Clearly lc({h;; = [hoxid]
and we assume that [h.id] = [id]—f We will construct an A, € (M, —
Int (M), for n > 1 large, so that h, = id on I x (Bd (i) U Bd (44,)),
[hixid] = [id] in 7, & (M — Int (M), and {h}={h} in lim 7, & (M).
Repeated applications of this construction will produce an element

({h}, {ha}, -+ -) elim {lim 7, Z27(M — Int (M)},

which is sent to {h,} by 7. Let g¢,:I X M— I x M be an isotopy
rel {0} X M such that g, = heid and g, = id. Choose n > 1 large
enough so that g(I x M)cc I x M,, for each t. Using the Isotopy
Extension Theorem we can find an isotopy G,: I X M,—1I x M, rel ({0} x
M,) U (I x Bd(M,)) such that G, = h,id and G, =g, on I X M,. Let
h,€e (M, — Int (M,)) be the restriction of G, to M, — Int (M,)). It
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is clear that [id.h,] = [hwid] in 7% (M,); therefore {h} = {h,} in
lim z,2°(M). To see that [h,,id] = [i¢d] in 7,&" (M — Int (M,)) consider
the isotopy fi: I X (M — Int (M,)) —1 x (M — Int (M,) defined by f, =
97(Gxid)| I X (M — Int (M,)). Then f, = id and f, = hd.

6. Proofs of Theorems 4 and 5.

Proof of Theorem 4. We are given a @Q-manifold M which is
movable at - and we want to prove that lim'z,Z°(M) = 0. Write
M = Uz, M, where the M,’s are clean and M, c < M,,,. Recall from
Theorem 4.4 that all we have to do is prove that the inverse system

{lim 7, 2°(M — Int (M)},

is Mittag-Leffler. Choose any ¢ and use the definition of movable at
o to find a j > 4 such that (M — Int (M;)) can be homotoped into any
neighborhood of <, with homotopy taking place in M — Int (I)).
Now let k¥ = j be given. We will prove that the inclusion-induced
homomorphisms

lim 7,2 (M — Int (M,)) — lim 7,2 (M — Int (M,)) ,
lim 7,&(M — Int (M;)) — lim 7,&"(M — Int (M)
have the same image.
Consider the inclusions
a: M — Int (M;) = M — Int (M),
B: M — Int (M,) =—— M — Int (M,)

and use the assumption of movability to get a mapv: M — Int (M;)—
M — Int (M,) such that Ry is homotopic to @. Then the induced
homomorphisms

ay: lim 7,2 (M — Int (M;)) — lim 7,2 (M — Int (M))) ,
By lim 7, Z(M — Int (M,)) — lim 7,27 (M — Int (M,))

have the same image because B,V = a, and «a,0, = B, Where 6: M —
Int (M) = M — Int (M;).

Proof of Theorem 5. We are given a pair (M, N) of compact
@-manifolds such that N is a Z-set in M and we want to establish
an exact sequence

7,&(N) — 7, & (M) — 7, % (M — N) — Wha(N) — Whz (M) .
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This follows from Theorems 2 and 3 provided that we can verify the
following facts.

(1) lim'z,&(M — N) = 0.

(2) limz,&(M — N) ~ 1,2 (N).

(3) limz,& (M — N) ~ 7,2 (M).

(4) UmWha(M — N) ~Whr(N).

(5) Wh(M — N)~Whz(M).

Since N is a Z-set in M it must be collared in M. This implies
that M — N is movable at -« and therefore lim'z,& (M — N) = 0.

The isomorphisms 2 — 5 are easy.
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