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LOCAL AND GLOBAL BIFURCATION FROM
NORMAL EIGENVALUES

JOHN ALAN MACBAIN

This paper studies the bifurcation of solutions of non-
linear eigenvalue problems of the form Lu = Au + H(2, u),
where L is linear and H is o(J]| # ||) on bounded 2 intervals.
It is shown that isolated normal eigenvalues of L having
odd algebraic multiplicity are bifurcation points, and more-
over possess branches of solutions which satisfy an alternative
theorem. A related situation is studied, and an application
explored.

Introduction. In this paper we study the bifurcation of solu-
tions of nonlinear eigenvalue problems. The equations to be studied
are of the form

0.1) Lu = M + H(\, u)

where all operators are defined in a real Banach space &% L is
assumed to be linear, bounded or unbounded; I, the identity map;
and H, compact and o(|| w||) near u = 0. Clearly, (), 0) is a solution
for each real A, and these are called the trivial solutions of (0.1).
Of more interest are the nontrivial solutions, pairs (A, u) satisfying
(0.1) with » = 0. In particular, one is interested in how solutions
of (0.1) are related to solutions of the linear equation

0.2) Lu =u .
The study of this led to the following definition.

DEFINITION. A point (A, 0) is a bifurcation point for (0.1) if
every neighborhood of (\,, 0) in R X <& contains a nontrivial solution
of (0.1).

Under quite general conditions, it is easy to show that in order
for (A, 0) to be a bifurcation point of (0.1), it is necessary that A,
be in the spectrum of L.

The first general existence theorem for bifurcation points was
obtained by Krasnoseljskii [2]. He considered equations of the type

(0.3) u = AnLu + H(\, u)

where L is linear and compact, I and H being as before. He proved
that if )\, is a characteristic value of L having odd algebraic multi-
plicity, then (), 0) is a bifurcation point.

More recently, Rabinowitz [5] studied the same problem as
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Krasnoseljskii and proved a much stronger result. The bifurcation
from such points is a global property, with a continuous branch of
solutions joining (A, 0) to infinity in R X <%, or if the branch is
bounded, containing (A, 0) with A, == \,.

Turner [8] discovered a global result for (0.3) somewhat different
from that of Rabinowitz. Let [a, b] be an interval containing an odd
number of characteristic values of L counting multiplicities with
1/a and 1/b in the resolvent set of L. Select C, a simple curve in
R x R, joining (a, 0) to (b, 0). Then (0.3) has at least two nontrivial
solutions (A", #) and (A®, u®) such that (A%, ||u®]|]) lie on C. A
similar result holds when the assumptions on H are weakened:
H(\, u) = JO, w)u where J(\, u) is a compact linear operator taking
& into <Z and J(\, w)u denotes J(\, u) operating on u.

The main result of this paper is that the compactness assump-
tion on L is not needed. The proofs of the theorems mentioned
involve the use of degree theory. In order to apply degree theory
in this new situation, it is shown that (0.1) is equivalent to a compact
perturbation of the identity for certain values of A. In looking for
bifurcation points we will consider the isolated normal eigenvalues
of L.

DEFINITION. An eigenvalue )\ of L is defined to be normal if

(i) the multiplicity of ) is finite

(ii) <Z is the direct sum of subspaces, & @ . +;, where & =
U ker (L — \)Y, _#; is invariant under L, and (L — \) is invertible
on _717.

An eigenvalue )\ of L is isolated if there exists ¢ > 0 such that
(M — &, M + €) contains no other members of sp L.

It should be noted that all nonzero eigenvalues of a linear compact
operator are normal and isolated.

Section 1 contains a generalization of Krasnoseljskii’s result.
If N\, is an isolated normal eigenvalue of L having odd multiplicity,
then (n,, 0) is a Dbifurcation point for (0.1). Since the concept of
normal eigenvalue is crucial to the proof, §1 concludes with a set
to sufficient conditions under which an eigenvalue of L is a normal
eigenvalue.

Section 2 generalizes Rabinowitz’s result. Since L is no longer
compact, it is necessary to modify his second alternative and intro-
duce a third one. Examples are given demonstrating that these
three alternatives are nonvacuous. Section 3 generalizes Turner’s
result to noncompact operators L in a way similar to the two
preceding theorems. Section 4 concludes the paper by applying
these theorems to a class of ordinary differential equations of Sturm-
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Liouville type on a semi-infinite interval.

1. A local bifurcation theorem. Let <# be a real Banach space
and let & denote R x < with the product topology. By a nonlinear
eigenvalue problem we mean an equation of the form

(1.1) Lu = M + H(\, )

where L: <& — < is linear and H: & — <& is a nonlinear operator
satisfying hypothesis H-1:

(H-1) (i) H is compact, and
(ii) H is o(Jlw|]) for u near 0 uniformly on each bounded »
interval.

A nontrivial solution of (1.1) is a pair (A, w) with u # 0 which satisfies
(1.1), and the trivial solutions are the pairs (A, 0).

In what follows, L:.2# — <& will be a densely defined linear
operator (bounded or unbounded) with domain dom (L). The resolvent
set of L, o(L), will be all real values of A for which there exists a
bounded linear operator C: 2% — <& such that

C(L — Nz = x, x edom (L)
(L — N)Cx = x, xerange (L — \) .
C will be denoted by (L — )™

(1.2)

DEFINITION 1.1. The (algebraic) multiplicity of an eigenvalue
) of L is defined to be the dimension of the subspace U7, ker (L — \)
where ker (L — \)’ denotes the nullspace of (L — \)’. Uj, ker (L — \)
will be referred to as the principal manifold of L associated with .

DEFINITION 1.2. An eigenvalue A of L is defined to be normal
if

(i) the multiplicity of L is finite

(ii) <Z is the direct sum of subspaces &, € .+, where & =
Ui ker (L — \), .77 is invariant under L, and (L — \) is invertible
on _17.

The projection of 2% onto &4 along 7] is denoted by P,. Hence
P77 = < and (I — P)% = 4.

An eigenvalue ) of L is isolated if there exists ¢ > 0 such that
(M — &, A + ¢) contains no other members of sp L. The set of isolated
normal eigenvalues of L is called the discrete spectrum of L which
we denote by sp,(L). The remaining part of the spectrum will be
called nondiscrete and is denoted by sp,.(L).

REMARK. If L is self-adjoint, the nondiscrete spectrum is the
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essential spectrum of L.

DEFINITION 1.3. (A, 0) is a bifurcation point for (1.1) if every
neighborhood in & of (A, 0) contains a nontrivial solution of (1.1).

DEFINITION 1.4. If 7 is a subset of &, 7? and 7z are defined
to be 777 = {u|(n, u) €77} and 7z = {M| (A, u) € 7" for some u}. For
WcCR, £, or &, W denotes the closure of W in the respective
space.

The first theorem shows that bifurcation from an isolated
eigenvalue )\, of L having odd multiplicity is not dependent upon L
being compact, but rather on the behavior of L —\ near the eigenvalue
Noe

THEOREM 1.1. Let L be as above and let H satisfy H-1. If \,
is an isolated mormal eigenvalue of L having odd multiplicity, then
(N, 0) s a bifurcation point for (1.1).

Proof. In order to prove this theorem, (1.1) will be rewritten
in the form u — C(\, u) = 0 where C is compact. Let @, =1 — P,
and split (1.1) by

Lonu = )\4P10u + PZOH()\:, u)

(1.3) L@Q;u = NQu + Q; H(\, u) .

A solution of (1.1) is equivalent to a simultaneous solution of the
two equations in (1.8). Seleet p,€po(L). Instead of (1.3) we may
write

PZ w = (L — #O)onu . PZOH(K’ u‘)

(1.4) 0 N — N —
Q;u = (L — N)7Q HN, u)

where (L — \)™ is to be interpreted as (L — \)™*|_#5,. Thus, (1.4)
is valid for e {n\} U {o(L)\{t:}}. Adding these equations we get

u = G\, u) + G\, )

_ L= ) Pyu
(L5) oo =5
Cn, u) = ((L - N"Q,, — x.?iO/T())H()\,, u) .

Note that C;: & — <Z is compact and linear in u for each fixed .
C,: & — & satisfies H-1. Define
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(1.6) o0\, ) =I—-C <) — G, 2).

Clearly, (1.5) or @(\, u) = 0 is equivalent to (1.1) for the specified
values of A when L is bounded. If L is unbounded, the question
arises as to whether % is in dom (L) if (\, u) is a zero of @. Noting
(1.4), which is obtained from (1.5) by projecting onto &5 , .#;, respec-
tively, we see that @, u is in dom (L). Since P, % is in an eigenspace
of L, u = P,u + Q;u is in dom (L).

If the assertion of the theorem is not true we can find a neigh-
borhood ¢ of (A, 0) such that the only solutions of (1.1) in &~ are
trivial solutions and o(L)\Z # @. Select f#,co(L)\Z such that
(1.1) is equivalent to (1.5) for all ne . Select ¢ >0 such that
[—e 4+ N, M + €] X {0} #” Applying the homotopy property of
degree theory we obtain

1.m deg (2(n, -), &% 0) = constant IN— 2] <e.
Select A and X such that Ay — ¢ <A< N <A <A+ & Then

deg (2, ), &4, 0) = index (I — Ci(, -), (1, 0))
deg (2(%, +), %, 0) = index (I — C(}, +), (*, 0)) .
Thus, using (1.7) and (1.8),

(1 9) indeX (I - Cl(l” ')9 A’y 0))
' = index (I — C,(X, ), (%, 0)) .

(1.8)

However, since the multiplicity of A, is odd,

index (I - Cl(b’ ')9 (21” O))

(1'10) = —index (I - 010_\;; ')’ (X’ 0)) *

Since the indices in (1.9) and (1.10) are either +1 or —1, we have
a contradiction. Thus, such a neighborhood ¢ can never be found.
This proves that (A, 0) is a bifurcation point.

REMARK. If A, 0 is an eigenvalue of L having odd multiplicity,
then the hypotheses of Theorem 1 are satisfied if L is compact or
if L is self-adjoint with X, isolated in sp L.

It is possible to give conditions under which a/r\l eigenvalue of a
linear operator L is normal.A In the following, <& will denote the
comple/)\ciﬁca/iiion of <%, and L will be the unique linear extension g{
L to . <& will be thought of as <& x <& and for a pair (x, y) € &,

we define the norm ||(z, ¥)|ls = VIlz|]*+ ||y ]|]* where || -] is the
norm in ZZ.
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LemMA 1.1. spL =RNsp L. If X is in the point, continuous,
or restdual spectrum of L, then it is also in the point, continuous,
or residual spectrum of L respectively. If N is a real eigenvalue
for é, then its multiplicity (finite or infinite) is the same for L as
for L.

Proof. It is easily seen that sp L — R N sp L, with parts corre-
sponding. To consider the reverse inclusion, select a real )\ in the
pgint spectrum of L. Then there exists (x, ) = (0, 0) such that
(L — \)(z, y) = (0, 0). Thus, at least one of # and y is a nonzero
eigenvector of L associated with \. .

Now select a real A which is an approximate eigenvalue Aof L,
but not an eigenvalue of .. Then (E — ) is injective. Since (L — )

is/\not invertible, there exists {(x,., ¥.)}.=12 » €ach term of unit

“-norm, such that

L = N, P+ 1L — Ny, [P = (L= M@, ya) |5 < —;—2 .
For each » we may select z, as one of the pair z,, ¥, such that
(L —N)z,|| <1/n and ||2,]| = 1/2. Since (L — \) is injective, \ is
an approximate eigenvalue of L, but not an eigenvalue.

Finally, let a real » be in the residual spectrum of L. (ﬁ — )
is injective, thus showing (L — \) is also injective. There exists
(24, 2,) egf} and ¢ > 0 such that ||(z, 2,) — (L — M)z, y)||% > ¢ for all

(z, y) e é In particular.
(1.11) 12, — (L —NMz| + ||z — (L — Ny l*>e.

It follows that ||z, — (L — M| > ¢/2 or ||z, — (L — Nz || > ¢/2 for
all . Hence \ is in the residual spectrum of L. We now also know
that the real part of the continuous spectrum of L is the continuous
spectrum of L.

Suppose A\ is an eigenvalue of L and L, and let % and 5%
denote the principal manifolds associated with A. Let (z, y)e,i%.
Then it is knowrl that |[(L — M)z, ¥)|ls = 0 for some n. Since
L =Mzl < [[(L— 7", 9)]|2, we know

L =Mzl = [[(L =Nyl =0

thus proving that .Q% C ¥ X . Now seleet (x, y)e & X &
Then there exists » such that || (L — )"z || = || (L — ?»)”/g\/ [ =0. Thus
I1(L — A)*(x, ¥)||5 = 0 which shows that &5 X &5 C &2,

THEOREM 1.2. Let A, be an eigenvalue of a bounded linear
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operator L having finite multiplicity and isolated in sp L. Then
N 18 @ normal eigenvalue of L. Moreover, sp (L | _#7) Csp L\{\}.

Proof. Since ), is isolated in sp L and is of finite multiplicity,
N\, is a normal eigenvalue for L. R
N A . .« e
The projection P, of <Z onto &, is given explicitly by

(1.12) B, = ——1—,§ (L — 2D)dz

2wy Jap
where D is a bgunded domain in the complex plane with )\, in its
interior and sp L\{\,} in its exterior. From (1.12) it is clear that

P, is bounded. Moreover, if /f//:'O = (f — IA’ZO).%?\, then

0
A s AN N\ A~ N\ A~
L\ A5G A5 — 45, and spL| .47 = sp L\{\} .
Any x €. <# can be written uniquely as
(1.13) (x, 0) = (2, ¥) + (2, — )

where (z,, y)es,%\o and (x,, -y)e////\;o. Let us define P, & — Z&
by P, = .. Since

(1.14) (P, 0) = (,, 0) + (0, 0),

we have P,(P,x) = P,x, making P, a projection with range in the
principal manifold of L associated with »,. Moreover, let 2z be in
that manifold. Then (2, 0) = (x, 0) + (0, 0) uniquely, showing P,z = «.
Thus the range of P, is the principal manifold of L associated with
X. Denote the range of P, by &, and the e range of I — P, by
A4, Itisclear that L:._#j, — .#;, since L: /fG — A5, It remains
to show that sp(L|.#3)Csp L\{x Select a real \¢sp L\(\}.
According to Riesz-Nagy [6] and Lemma 1.1, L — X is invertible on
.///;0 For xe. 13, (1.13) shows there ex1sts Yy €%, such that
(z, y)e///lo If (z, y) and («, 2) are in ///;0 with ¥ and 2z in &,
then (0, ¥y — 2) € 45, N &, showing y = z. (L — k}\‘(w y) must be
of the form (a', ¥') with y egﬁ and (2, ¥')e.#3,. Thus, since
@, 0) =0, —¥) + (=, y)e,gﬁ0 + /IG we see that «’e._#5. There-
fore L — M 1s injective and surjective on .#73,.

If T: 5)” —Z is defined by T(x, y) = «, we see that P, = T° PZ
Since T and on are bounded, P, is continuous and .#;, = {u | P,u = O}
is a closed subspace. We now know

(i) (L —NA%, = A7,

(ii) (L — ) is a closed map

(iii) (L — N).73, is of second category

(iv) (L —\)7*is well defined on .77;,.
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The bounded inverse theorem states that [[(L — \)™|| < o. This
shows that sp (L | .47 Csp L\{\}.

COROLLARY 1.1. Let Ny, Ay, +*+, N, be eigenvalues of a bounded
linear operator L having finite multtplicity and isolated from
SP L\(hy, My, o+, N} Then each Of Mo, My, *++, N 18 @ mormal eigen-
value of L and P= P, + P, + -+ + P,, 18 a bounded projection
onto Ui, &, = &£ Moreover, if 4" =~ P)&, sp(L|4")C
sp L\{No, Ny, <+, N}

Proof. The result follows using a proof similar to the preceding
one, observing that P,.o P, = 0 whenever j # k.

2. A global alternative theorem. In this section we will show
that the local bifurcation exhibited in Theorem 1.1 is a global property
with an alternative-type result.

For 77 C &, a subcontinuum of 7 is a subset of ° which is
closed and connected in . _# will denote the closure of the set
of nontrivial solutions of (1.1) in &. Let &, denote the maximal
subcontinuum of _# U (), 0) containing (A, 0). B, will denote the
open ball in <& centered at 0 and having radius p. L and H will
be as in §1.

LEMMA 2.1. Let K be a compact metric space and A and B
disjoint closed subsets of K. Then either there exists a subcontinuum
of K meeting both A and B, or K = K, U Ky where K, and K; are
disjoint compact subsets of K containing A and B respectively.

Proof. See [5].
The following lemma is due in part to Rabinowitz [5].

LEMMA 2.2. Suppose N, is an isolated normal eigenvalue of L
having finite multiplicity. Assume &, is bounded, (Z)Rn Sp.«(L) =
@, and &, N{R X {0}} = (A, 0). Then &, s compact and there
exists a bounded open set &7 C & such that €, C &, 0 N F = @,
(PR N sp.a (L) = @, the trivial solutions contained in & are the
points (N, 0) where |\ — \,| < € for some & < g, = dist (\,, sp L\{\,}),
and || (x, u) — (&, 0)|| = 2¢, for some positive &, whenever (N, u) €07
and pespL.

Proof. &, is a compact set. Indeed, let {(n,, w,)} be any
sequence in &%,. By hypothesis the sequence {)\,} is bounded away
from sp.;(L). By passing to a subsequence .#;c.#" ={1,2, +--}



BIFURCATION FROM NORMAL EIGENVALUES 453

we can obtain lim,.. ... N =N, and lim, .. ,c HQ\,, u,) = w
for some NeR, we 24 Since %, is bounded, we then know that
lim, w, e, (L — N)u,, = w. Since N ¢sp,,(L), N is either in the re-
solvent of L or is a normal eigenvalue. In the first case (L — \)™*
is well defined, yielding lim, .., nc., %, = (L — N)"'w. In the second
case, let P be the projector onto the eigenspace corresponding to .
Then lim,.. ,e..-, (I — P)u, = (L — 2)"(I — P)w. By passing to an-
other subsequence _#;c.#7 we can find a wve ¥ such that
lim, . pesy o = v + (L — N7 — P)w. In either case, continuity
shows that the limit point is in &,

Since &, is compact, we may find a dJ-neighborhood U, of &%,
such that (U,)x N sP..(L) = @ and U, contains no trivial solutions
other than points (A, 0) where | N — N\, | < & < & for some ¢ > 0.

K = U, N _# is a compact metric space (with the induced metric).
The proof of this fact is similar to the proof of the compactness of
&, B, and oU, N .~ are disjoint closed subsets of K, and K does
not contain a subcontinuum which meets both &, and U, N .~
Thus, using Lemma 2.1, there exist disjoint compact sets K, and
K, such that K = K, U K;, €, < K,, and oU,N .# c K,. Select an
¢’ > 0 such that &' < dist (K,, K;) and define ¢, to be the &'-neighbor-
hood of K,. Finally, let & = U,N &’ In case & N{R x{0}} #
v — &, N +6) < {0}, we may add (v, — ¢, N + €) X B, to &, for r
sufficiently small.

I’ = sp L N 7 has finitely many elements. Since

(F%) " spu(l) =2 and 8 N{I x {0} =@,
it is clear that dist (027, {sp L x {0}}) > 0. Select a positive &, such
that 2¢, < dist (07, sp L x {0}).

LEMMA 2.3. Suppose N, and N, are distinct normal eigenvalues
of L. Then & = & D &5, DA, adirect sum of subspaces, where
A= N5, 045, and P = P, + P, projects onto & D F along
AN

Proof. Since X, is normal, we may write & = & + /], as
described in Definition 1.3. For x, € &, let us write
T, =, + .’sz(e.,%o@z/f/}fo) .
Then
N2, = Ny + L,

with Lx,e._#;. However, Nz, =\%, + M%. Thus x,=0 and
5 T AN,
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Select a ye._#5,. It can be written uniquely as y, + y. with
¥,€ %, and y,€ &5, Since y, = y — ¥, We see that y,e 73, N A,

Since &, C .73, it is clear that P, o P, = P, oP, = 0. More-
over, .4 is the nullspace of P. Thus P = P, + P, is indeed the
projector onto & @ &5, along 47

The following theorem is modeled after an alternative theorem
which Rabinowitz proved for (0.3) when L is compact.

THEOREM 2.1. Suppose N, is an isolated normal eigenvalue of
L of odd multiplicity. L is as before and H satisfies H-1. Then
(N, 0) 28 @ bifurcation point of (1.1) possessing a continuous branch
&, such that one and only one of the following alternative occurs.

(i) &%, ts unbounded

(ii) &5, ts bounded and (B3)r N SPaa(L) = O

(iii) &, ts compact, (B3)r N8P (L) = @ and %5, contains
(M, 0) where N, is a normal eigenvalue of L different from X\,

Proof. Assume the theorem is false. Then we may find a set
¢ and a positive constant ¢ as specified in Lemma 2.2. Let o, denote
a closed interval with 7% in its interior and contained in R\sp,.(L).
If o,Nspa(L) ={Ny Ny ==+, N}, let P=P, + P, + -+ + P, (each
N, 0 < 7 < m, is a normal eigenvalue of L). Then, using the same
derivation as in Theorem 1.1, we may show that (1.1) is equivalent
to

U = Cl()‘y u’) + CZ(X” ’Zl,)

- (L — ¢)Pu
(2.1) C(n, u) = N
P

— — -1 — — -
Cw ) = (L =M= P) = =2 )HO, )

for nea, ¢ 0,

Define O(\, u) = u — C(\, u) — C(\, u) as before. For 0<
[N — N =6, (A, 0) is an isolated solution of (1.1) in {\} X &&. Thus,
there exists o(A) > 0 such that (A, 0) is the only solution of (1.1) in
(M X Bopy.  Let p,(0\) = dist (A, 0), ~#) and choose o(\) = 1/2(0,(\)).
Define p(\) = o(n, + €) for X =X, + ¢ and p(\) = p(\, — €) for N <
N — & We may select p(h, — ¢) and p(n, + ¢) sufficiently small so
that B, N (0) = @ for |N — \,| = ¢. Since (1.1) has no solutions
on d(* — Boy) for n == A\, deg (D(\, *), &' — By, 0) is well defined
for such . We will prove that

(2.2) deg (2(\, ), &* — By, 0) = 0

for those \.
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Let A >\, and A, > ) such that A\, €0,\Zx. Define

p = inf {o(#) | e [n, N},

which is positive due to the definition of p(A). Let % = & —
[\, Mx] X Bo. % is a bounded open set in [\, My] X <Z and @(7, u) = 0
for (v, u) €0Z (the boundary of Z in [\, ] X <&Z). By the homo-
topy of degree, for v e[n, M.,

(2.3) deg (®(7, +), &7 — B,, 0) = constant .
Since 7% = @,
(2.4) deg (P(\y, *), &2* — B, 0)=0.

®(\, +) has no solution in {\} X (B, — B,). Thus
(2.5) deg (@(\, ), Boyy — B,, 0) = 0.
Combining (2.3), (2.4), and (2.5) and using the additivity of degree
we get
(2.6) deg (2(\, +), @* — Bo, 0) = 0.

Similarly, (2.6) holds for A < \,.
Once again applying the homotopy of degree,

2.7 deg (@(», +), &%, 0) = constant

for [A — | <&
Select A, X such that Ay — & <A< N <A<\, + & Using the

additivity of degree, we see that
deg (2(», +), 4, 0) = index (2(2, -), (1, 0))

+ deg (@(&7 '), ﬂj - B—P(_Z;, O)
deg (Q()-"; '), ﬁz; 0) = index (@(Xy ')7 (7—\" 0))

+ deg (2(X, -), &% — B,, 0) .

(2.8)

Applying (2.6) and (2.7) to (2.8) yields
(2.9) index (2(x, *), (, 0)) = index (2(}, -), (}, 0)).

These numbers are either +1 or —1 and since )\, has odd multiplicity,
they differ by a factor of —1. This is incompatible with (2.9),
proving that the hypotheses of Lemma 2.2 do not occur in this
situation. Thus (i), (ii) or (iii) must occur.

LEMMA 2.4. Suppose N, is an 1isolated eigenvalue of L having
finite multiplicity. Assume &7, is bounded, (Z3,)r N SP.(L) = O,
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and &, N {R x {0}} = A X {0} where A ={\, -, N} and N <\, <
cor < Nye Then &5, 18 compact and there exists a bounded open set
& C& such that &, C O, 07 N F = @, (Tr) Nspua(L) = @, the
trivial solutions contained in 7 are points (N, 0) where N\, — & <
A< N, + € for some € < g, = dist (4, sp L\A), and || (A, u) — (&, 0) || = 2¢,
for some positive &, whenever (N, u) €07 and pesp L.

Proof. The method employed in the proof of Lemma 2.2 applies
here.

THEOREM 2.2. Suppose \, is an 1isolated normal eigenvalue of
L of odd multiplicity. L 1is as before and H satisfies H-1. Then
(N, 0) is a bifurcation point of (1.1) possessing a continuous dbranch
&, such that one and only one of the following alternatives occur.

(i) &, is unbounded

(ii) &%, s bounded and (Z;)r N SP.. (L) # @

(ili) &, 1s compact, (B3)r N SP.a (L) = @, and &, N {R X {0}} =
oy Ny w00, N} X {0} where N, +--, N, are normal eigenvalues of L
distinct from N\, and the sum of the multiplicities of N, My, =+, Ny,
18 even.

Proof. Suppose (i), (i), and (iii)’ do not occur. Then &, is
compact, (Z3)r N 8Pws (L) = @, &5, N {R X {0}} = {\, Ny, -+ -, M}, and
the sum of the multiplicities of these eigenvalues is odd. We may
sUpPpose Ay < Ay < 20 < N\,

Construct an open set ¢ and select € >0 as specified in
Lemma 2.4. Also, define o,, P, and ®(\, u) as in Theorem 2.1. Then
deg (@(, -), &7, 0) is well defined for N, — ¢ < N <\, + ¢, and more-
over,

(2.10) deg (@(», -), 7%, 0) = constant

for vy, —e <A<\, +¢& Select A and X such that A —& <A <\,
and A, <X <\, +¢. Then, using degree arguments from Theorem
2.1, we see that

index (I — C(y, +), (&, 0)

(2.11) = index (I — C,-(%, ), (%, 0)) .

These numbers are either +1 or —1. However, the assumption that
the sum of the multiplicities is odd implies that

indeX (I - Ci(l’y ')y (&, 0))

(2.12) — ___indeX (I — CI(X, '), (-)—"y 0)) °

This contradiction proves that one of the alternatives (i), (ii),
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(iii)’ occurs.

REMARK. If )\, is an isolated normal eigenvalue of L having
even multiplicity and if (A, 0) is a bifurcation point, then one of
the alternatives in Theorem 2.2 must occur. Note that (iii)’ occurs
even if &, loops back to (n, 0).

Examples of the three alternatives. Examples of (i) are common.
In particular, this situation occurs whenever (1.1) is linear (i.e.,
H = 0). Examples of (ii) and (iii)’ are more difficult to construct.

Let <#, = R® with general element % = (u,, ,), the normal inner
product (-, -),, and norm |[|-||,. Define L:.<Z — <%, and B(u): R x
P, — 2, by means of the matrices

“=lo o

03

B = (1 llulli/4)
—llwlia (it

(2.13)

and consider
(2.14) Lu = Mu — B(u)u] .

First let us show that ||u]|, <1 whenever (\, ) is a solution

of (2.14) in &,,, or &,. Direct computation yields
(Bw)w, u), = [[wl]i .

Since the only solution of (2.14) of the form (0, ») is (0, 0), it is clear
that &, and &, consist of solutions (A, ) with A = 0. Assuming
X\ = 0, take the inner product of both sides of (2.14) with w yielding

lwllf = (Bwu, u), = 0.
In other words,
(2.15) Nullt = llulli.

Now assume {(\,, %,;)}n=1s... are nontrivial solution of (2.14) with
A, = . Dividing (2.14) by )\ and inserting these solutions yields

(2.16) I):—“ = w, — B(u,)u, .

Since || u, |, £ 1 for all n, a subsequence of {u,},-,,.,... must converge

to some w, a solution of

Bv)yv=w.
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The only such w is (0, 0) since
2
By = i, w) + L2li(ru, —u).

The second term is nonzero whenever « = (0, 0) and is always or-
thogonal to u. Assume lim,_. || %,|l, =0 and divide (2.16) by || u, |,
yielding

1 u u u,
2.17) =L ) = 2 — B(u,)[—2—).
L) = o~ B ()
We may find N such that » > N implies
|1 U, 1
s e < 4

and

| B ()l < -

This contradiction along with the result that ||«]|| <1 implies that
&, and &, are bounded in R x &&. Thus, (2.14) is a finite-dimen-
sional example of (iii)’.

Let < Dbe a real Hilbert space with an orthonormal basis
{®1}4=1,..., inner product (-, +),, and norm || - ||, Define & = Z, P FZ,
with general element (x,y). If (x;, y;)e<Z for j =1, 2, define
(@, 9,), (@ ¥2)) = (%, ), + (¥, ¥2), and let || - || be the corresponding
norm. Using this framework, the preceding example can be modified
to exhibit (ii) and (iii)’ in the infinite-dimensional case.

Let M =sup {\| (A, u) € &, (of the 2-dimensional problem)}. Define
a linear operator L, <#Z — <% by Lux y)= (Le, (M + 1)y) and
H,:R x & — % by H,\, (z,¥)) = (+1B(x)x, 0). Then &, for

(2.18) L = s — Hy(\, u)

is an example of (iii).
If instead of L, we defined a linear operator L;: <& — <& by
Lg(z, 0) = (Lx, 0) and L0, #,) = (0, M + 1/k)p,), then &, for

(2.19) Lzu = — H,(\, w)
is an example of (ii).
3. Another global result. In this section we give another

global result for (1.1). This result was initially proven by Turner
[8] in the case where L is compact. While being related to the
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work in §2, this result gives additional information concerning . %
The restrictions on H(\, #) can now be relaxed. In addition to those
H’s satisfying H-1, we can now admit H(\, u) satisfying hypothesis
H-2:

(H-2) H(\, u) = J(\, w)u where for each (A, w) in R X <&, J(\, u) is

a compact linear map and J(\, w)u is the result of applying
J(\, u) to u.

L and &7 are defined as before.
For pe R, define
(8.1) n(t) = lim sup L& = MHQ, w) ||

TS Il

where n(¢t) = o if (I, — )™ does not exist. We let
(3.2) 0 ={rln(y <1}.

0 is clearly a subset of o(L), and whenever H satisfies H-1 they
are the same set since n(y) = 0 for e o(L).

THEOREM 3.1. Let H satisfy H-1 or H-2 and let [a, d] be an
interval in R/sp,; (L) containing an odd number of eigenvalues of
L counting multiplicities with n(e) <1 and n(d) <1l. Given a
simple curve joiming (a, 0) to (b, 0) in R X R, missing (R — {a} —
{8}, 0) and (sp.. (L) X R,), there are at least two nontrivial solutions
O, u) and N2, u®) of (1.1) such that (A2, || u'?||) lie on the curve.

Proof. We begin by showing that there is a neighborhood of
(@, 0) in & such that none of the problems
(3.3) Lu =xu +tHMu) (0=t=1)
has a nontrivial solution (A, ) in that neighborhood. If there were

a sequence 0 < ¢, <1 and nontrivial solutions (\,, u,) of (8.83) such
that »,—a and ||, ||— 0 as n — o, then it would follow that

(3.4) Un = (L _ x"rb)—11”.'IL'H-()“'114 un)
% || [ % ||

for all n, implying that n(a) = 1. The same result holds for (b, 0).

Let C be any simple curve in R X R, which connects (@, 0) to
(b, 0) and misses (R — {a} — {b}, 0) and sp,,(L) X R,. Because there
are neighborhoods of (a, 0) and (b, 0) in & which do not contain
nontrivial solutions (A, ) of (1.1), showing there are a pair of so-
lutions (A, ||« ]||) on a simple curve &, joining (a, @) to (b, &) for a
suitably small a > 0 (&, C {R\sp,s (L) X R.}) is equivalent to proving
the theorem. Choose such a &, and let it be given by &, = {(\M7),
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rM)|1=7=2}. Let &, (0=t =<1) be the curve {(\(9), 7(7)) |1 =
7 < 2} where

M) = M) + 1 = E)a + (7 — 1)(b — a))
r7) = tr(n) + 1 — He .

{ZJosi=1 1s a continuous family of curves which deforms &, into &,
the horizontal segment joining (a, &) to (b, @).

Let spLN(Z)r={N\, =+, M}, a subset of sp,(L), and define
P=P, + .-+ P,,. Rewrite (1.1) as

(3.5)

uw = G\, u) + G\, w)

O, wy = L= talPu
(3.6) N
P

Gy, w) = (I = 27U = P) = L) HO, )

for N in a neighborhood of (&"): and ¢, € R\(¥)r chosen such that
sp (L — p,)P)c R,. Note that if H satisfies H-1 or H-2, then C,
does also.

We let

3.7 RQ={uez 1< ||ull <2}
and for each t€[0, 1] define
P(u) = u — Cn(l w ]), w)

3.8) T ri(lDu
-l (i, ZG2 )

taking Q2 into <& @, is well defined, for (&) C(&)r for 0 <t < 1.

If o(u) =0 for some we 2, then multiplying through (3.8) by
(r(llw [D)/Ilw]] shows that A = M(|| %)) and u, = (r([|w|))w/l|w] is a
solution of (1.1) with (A, || %) on &,. We will show that @,(u) =0
has at least two solutions in 2 by showing

|deg (9, Q)| = |deg (2, 2,0)| =2.

To do this we will prove deg (®,, 2) = deg (9, 2) and then solve
the simpler problem involving @,.

It must be shown that deg (@,, 2) is well defined for each ¢ € [0, 1].
Let us assume @, (u) =0 with ||| = 1. Using (8.5), M(|u|) =a
and 7(||w|]) = @. Looking at [r(|ul))/||u[}(P(u)) =0 we see a
member of the family of equations in (8.3) has a solution (A, v) with
llv]l = @ and M = a. This is impossible, showing @,(w) = 0 implies
l|%]| #+ 1. Similarly, @,(u) =0 implies ||u|| # 2. Thus, deg (2., 2)
is well defined and the homotopy invariance of degree shows that
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(3.9) deg (9,, 2) = deg (2, Q) .
It remains to show that

(3.10) | deg (2, 2)| = 2

where

(3.11) Do) = u (L — tto)Pu

@t (ul—10—a) — g

Thus, the zeros of @, are found from the solutions of the linear
eigenvalue problem (L — ft,)Pu = Zu. For the remainder of the
proof assume the eigenvalues of (L — #¢,)P are simple. If not, and
{tt, -, tt.} are the repeated nonzero eigenvalues of (L — y,)P and
E, ---, E, are the corresponding rank-one eigenprojectors, then for
¢ > 0 sufficiently small (L — )P + ¢ 3,7, jE; has simple eigenvalues
and yields a corresponding @; with deg (?,, 2) = deg (9;, 2).

The solutions of @(u) = 0 must satisfy E,u = % for some k. If
the eigenvalues of L in [a, b] are A, -+, X, (N; = #; + 1,), then

(3.12) l<lu|=14+2"¢ 9,
b—oa
There are two such «’s in 2. Let us select one and ecall it u,.
Since (L — ,)P has finite-dimensional range B = P<Z,

deg (@0} ‘Q) = deg (Qo; Q ﬂ B) M
Thus,

n

(3.13) deg (@, 2,) = kzl [index (@,, u,) + index (@, —u,)]

where the indices are calculated in B. Let us calculate index (9,, u,).
We may assume B has a norm coming from an inner product (-, -)
which at u, agrees with the original norm. Moreover, we may
assume (u;, ;) = 0 when j == k. Using the same notation || - || for
the new norm, we may differentiate (8.11) and get a map taking w
in B to

(L — 1)Pw (y, 0)(b — )L — 12)Pu,
3.14 —
@1 v T Tallle+ (lul - D — ) — aF

which simplifies to

3.15 _ (L= p)w (U, wYb — a)u, )
1) Y Ne = Mo " [ ] Qv — )

Assume N, <N\, < ---. The map in (8.15) has no zeros near u, and
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has n eigenvalues, those in (— oo, 0] being

1-M=t pci<n.
A — Mo
Thus, the Leray-Schauder index theorem shows index (9, u,) =
(—1)**. The map in (3.14) results from —u, also, yielding

(3.16) index (@,, u,) + index (@,, —u,) = 2(—1)*7% .

The sign in (8.16) changes as we go from w, and —u, to %,,, and
—,., Showing |deg (9, Q)| = 2.

COROLLARY 3.1. Under the hypotheses of Theorem 8.1, there is
a continuum of pairs (\, ||ul]), where (\, u) is a solution of (1.1),
joining ([a, b], 0) to

(i) infinity in R X R* or

(ii) sp.q(L) x RT or

(iii) (Sp(L)/le, b], 0).

4, Applications. In this section we will demonstrate the appli-
cation of Theorem 2.2 to a class of differential equations. We will
consider equations of the form

4.1) Du(x) = zu(x) + HOn, u)(x), xe 2 S R*, ve R!

where D is a real differential operator. In the case that 2 is
bounded, D usually defines an operator L in a real Banach space
which has an inverse A. In this case, the equation

w(x) = Muw(x) + AH(N, u)(x)

can be studied. In the situation where 2 is bounded, A is frequently
compact and the equation can be studied using existing theory.
Equations of this type are treated in [5] and [8].

In the case that 2 is unbounded, this approach fails since A is
usually not compact. I wish to treat such a class of equations:

(4.2) —@E@W @) + q@)u(@) = z(@) + H), w)(@) z€(0, <),
uw(0) =0

where prime denotes differentiation with respect to . This equation
was studied by Stuart [7] when H was a k-set contraction. In the
case where H is compact, further information can be gained about
the solutions, and all normal eigenvalues can be treated in contrast
to only a special subset of them. Conditions on H, p, and ¢q will
be given below.
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Our first step is to select a space of functions on which to define
our operators. Let L? denote the Banach space of all real measurable
functions % on [0, o) such that

Hull, = (S:o uz(ac)dac)u2 .

Let &7, denote the space of all infinitely differentiable functions with
compact support in (0, ). Let H) denote the closure of &, in the
Sobolev space W0, ) with norm

Wawlll = (1wl + [l w ).
We make the following assumptions about p and ¢:

(H-3) »:[0, ) — R is continuous and continuously differentiable
in (0, =) with »" bounded and 0 < P, < p(z) < P, < = for all
x €0, o).

(H-4) ¢:[0, =) — R is continuous with 0 < @ < q(x) £ Q, < =
for all x €]0, ).

Let L denote the operator defined by
D(L) =z,
Lufe) = (—p@)w' (@) + q@yu(@) (ze(0, =), ueD(L))

where D(L) denotes the domain of L.
LEMMA 4.1. Under hypotheses (H-3) and (H-4), L has ¢ unique
sclf adjoint cxtemnsion L in L* with

D(L) = H; N W0, =)
and $p,, (L) S [Q, ) where Q = lim,_., inf q(x).

Proof. [1].

LemMma 4.2, Suppose (H-3) and (H-4) are satisfied.

(a) If % ts a normal eigenvalue of L, then the multiplicity
of N, is ome.

(b) L7 exists and is a bounded operator from all of L* into
itself.

(c) L is a positive self-adjoint operator wnm L. Moreover, L'*
18 @ linear homeomorphism of Hi onto L* where LY* denotes the
positive square root of L.

Proof. (a) This follows Theorems 6.10 and 6.14 of Chapter 13
of [1].
(b) For ¢ez,,
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(L3, 9) = || @I @F + (@s(@))do -

Thus, ¢ = 0 implies ¢ = 0 almost everywhere since p and ¢ are
bounded from zero, and L exists. Clearly (Lg, ¢) = P,||¢ >, so L™
is bounded.

(c) In (b) it was shown that L is positive. Thus, L has a
unique positive self-adjoint square root, L'?. Since LY is closed,
D(LY*) = H;; since LYA(LY*(Hy)) = L? range (L% = LA

REMARK. (H-3) and (H-4) can be relaxed as long as the results
of Lemmas 4.1 and 4.2 hold.
A point (A, u)e H; X R is called a weak solution of (4.2) if

[ tran @) @) + d@ut)s@ide
= (@) + HO, wi@)ple)do
for all ¢ e &,

LEMMA 4.3. Let H satisfy (H-1) and let (\, u) be a weak solution
of (4.2). Then uwe Win Hy = D(L) and

Lu = xu + H(\, u) .

Hence, u satisfies 4.2.

Proof. [7].
A point (A, 0) is a trivial solution of (4.2). Let

S=SU{(®, 0)| N is a normal eigenvalue of L}

where S denotes the set of all nontrivial solutions of (4.2).

THEOREM 4.1. Let H-1, H-3, and H-4 be satisfied, and let N,
denote a mormal eigenvalue of L (all operators are defined in H}).
Then &, S R x (H; N W) and &, satisfies only one of

(i) &5, ts unbounded

(ii) &, is bounded and (ZF)x N SDua (L) # O

(iii) &%, is compact, () N 8Pwa (L) = @, and &, N {R x {0}} =
Moy Ny v o0y N} X {0} where N\, -+, N, are nmormal eigenvalues of L
distinet from X\, and the sum of the multiplicities of N, Ny ¢, N,
s even.

Proof. The alternatives follow from Theorem 2.2. The result
of the nature of the elements of &, follows from the fact that
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&), & R < D(L) (see §1).

Much more knowledge of the nature of & can be gained if
the choice )\, and H are more restrictive. In particular, let us
consider those eigenvalues of L which lie below the essential sp,; (L),
namely those characterized by

N, = sup inf {|| L"*w ||*> we H}, ||u|| =1, u e V*}
Ves,

where &, is the class of all (» — 1)-dimensional subspaces of L%
Clearly N, < M., as long as A, € 8p,.. (L). The eigenfunction associated
with X, in the corresponding linear problem,

(—p@)w' (@) + q@)u(x) = ru(x) (v e(0, =), u(0) =0),

possesses exactly (¢ — 1) simple zeroes in (0, «). (see [1], pages
1480 and 1547). Since these eigenvalues are simple, it follows from
Theorem 2.4 of [1] that near (A, 0), &, is a simple curve. Thus
©",/(\;, 0) consists of at most two components &;; and <;. (This
applies to all normal eigenvalues A, of L.)

These components can be studied in greater detail if the nonlinear
term H satisfies more stringent conditions. For instance:

(H-5) H\, u)(x) = w(x)[G(N, u)(@)] for all x = 0 where
G u): [0, o) — [0, =), |G\, w)(@) | = M| u(w)]
for x = 0, and |G(\, u)(x)| < N.

THEOREM 4.2. Suppose all the conditions H-1, H-3, H-4, and
H-5 are satisfied. Then for N\ €sp,.(L), ©; has the following
properties:

(1) There is a neighborhood & of (\;, 0) in R X H! such that
&, 0 s a simple curve and if (A, u)€.S” N, u has evactly
(i — 1) simple zeroes in (0, o).

(2) &5, comsists of at most two components, &, and &, .

(3) If (\, w) €&, then u has exactly (1 — 1) simple zeroes in
0, ).

(4) If (\ w)e, then 0 < N = N

(5) {lulll(\ w)e&;,} ts unbounded.

Proof. The first part of (1) and (2), are proven in [5] and (5)
follows from (4) through the application of Theorem 2.2. Thus,
only (3), (4), and the last part of (1) remain to be proven.

In a similar setting these have been shown by Stuart [7], and
his techniques apply in the present situation.
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