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LOCAL AND GLOBAL BIFURCATION FROM
NORMAL EIGENVALUES

JOHN ALAN MACBAIN

This paper studies the bifurcation of solutions of non-
linear eigenvalue problems of the form Lu = λu + H(λ, u),
where L is linear and H is o(\\ u\\) on bounded λ intervals.
It is shown that isolated normal eigenvalues of L having
odd algebraic multiplicity are bifurcation points, and more-
over possess branches of solutions which satisfy an alternative
theorem. A related situation is studied, and an application
explored.

Introduction* In this paper we study the bifurcation of solu-
tions of nonlinear eigenvalue problems. The equations to be studied
are of the form

(0.1) Lu = Xu + H(\ u)

where all operators are defined in a real Banach space &. L is
assumed to be linear, bounded or unbounded; /, the identity map;
and H, compact and o(\\ u ||) near u = 0. Clearly, (λ, 0) is a solution
for each real λ, and these are called the trivial solutions of (0.1).
Of more interest are the nontrivial solutions, pairs (λ, u) satisfying
(0.1) with u Φ 0. In particular, one is interested in how solutions
of (0.1) are related to solutions of the linear equation

(0.2) Lu = Xu .

The study of this led to the following definition.

DEFINITION. A point (λ0, 0) is a bifurcation point for (0.1) if
every neighborhood of (λ0, 0) in R x & contains a nontrivial solution
of (0.1).

Under quite general conditions, it is easy to show that in order
for (λ0, 0) to be a bifurcation point of (0.1), it is necessary that λft

be in the spectrum of L.
The first general existence theorem for bifurcation points was

obtained by Krasnoseljskii [2]. He considered equations of the type

(0.3) u = XLu + H(X, u)

where L is linear and compact, I and H being as before. He proved
that if λ0 is a characteristic value of L having odd algebraic multi-
plicity, then (λ0, 0) is a bifurcation point.

More recently, Rabinowitz [5] studied the same problem as
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Krasnoseljskii and proved a much stronger result. The bifurcation
from such points is a global property, with a continuous branch of
solutions joining (λ0, 0) to infinity in R x ^ or if the branch is
bounded, containing (λ1? 0) with X1 Φ λ0.

Turner [8] discovered a global result for (0.3) somewhat different
from that of Rabinowitz. Let [a, b] be an interval containing an odd
number of characteristic values of L counting multiplicities with
I/a and 1/6 in the resolvent set of L. Select C, a simple curve in
R x R+ joining (α, 0) to (6, 0). Then (0.3) has at least two nontrivial
solutions (λ(1), u{l)) and (λ(2), u{2)) such that (λ(<), | |u ( < ) | |) lie on C. A
similar result holds when the assumptions on H are weakened:
iJ(λ, u) = /(λ, u)u where J(λ, u) is a compact linear operator taking
έ%? into έ%? and J(X, u)u denotes /(λ, u) operating on u.

The main result of this paper is that the compactness assump-
tion on L is not needed. The proofs of the theorems mentioned
involve the use of degree theory. In order to apply degree theory
in this new situation, it is shown that (0.1) is equivalent to a compact
perturbation of the identity for certain values of λ. In looking for
bifurcation points we will consider the isolated normal eigenvalues
of L.

DEFINITION. An eigenvalue λ of L is defined to be normal if
( i ) the multiplicity of λ is finite
(ii) & is the direct sum of subspaces, £fx @Λ/\, where £fλ =

UΓ=i k e r (L — λ)3', <Λ\ is invariant under L, and (L — λ) is invertible
on ^Γλ.

An eigenvalue λ of L is isolated if there exists ε > 0 such that
(λ — ε, λ + ε) contains no other members of sp L.

It should be noted that all nonzero eigenvalues of a linear compact
operator are normal and isolated.

Section 1 contains a generalization of Krasnoseljskii's result.
If λ0 is an isolated normal eigenvalue of L having odd multiplicity,
then (λ0, 0) is a bifurcation point for (0.1). Since the concept of
normal eigenvalue is crucial to the proof, § 1 concludes with a set
to sufficient conditions under which an eigenvalue of L is a normal
eigenvalue.

Section 2 generalizes Rabinowitz's result. Since L is no longer
compact, it is necessary to modify his second alternative and intro-
duce a third one. Examples are given demonstrating that these
three alternatives are nonvacuous. Section 3 generalizes Turner's
result to noncompact operators L in a way similar to the two
preceding theorems. Section 4 concludes the paper by applying
these theorems to a class of ordinary differential equations of Sturm-
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Liouville type on a semi-infinite interval.

1* A local bifurcation theorem* Let & be a real Banach space
and let g7 denote R x & with the product topology. By a nonlinear
eigenvalue problem we mean an equation of the form

(1.1) Lu = Xu + H(X, u)

where L: & —> & is linear and H: g* —> & is a nonlinear operator
satisfying hypothesis H-l:

(H-l) ( i ) H is compact, and
(ii) H is o(||^||) for u near 0 uniformly on each bounded λ

interval.

A nontrivial solution of (1.1) is a pair (λ, u) with u Φ 0 which satisfies
(1.1), and the trivial solutions are the pairs (λ, 0).

In what follows, L\&-+& will be a densely defined linear
operator (bounded or unbounded) with domain dom (L). The resolvent
set of L, p(L), will be all real values of X for which there exists a
bounded linear operator C: & —> & such that

C(L - λ)x = x, x 6 dom (L)

(L — λ)C# = #, x e range (L — λ) .

C will be denoted by (L - λ)"1.

DEFINITION 1.1. The (algebraic) multiplicity of an eigenvalue
λ of L is defined to be the dimension of the subspace UΓ=i ker (L — X)j

where ker (L — X)j denotes the nullspace of (L — X)j. (JΓ=i ker (L — X)j

will be referred to as the principal manifold of L associated with λ.

DEFINITION 1.2. An eigenvalue X of L is defined to be normal
if

( i ) the multiplicity of L is finite
(ii) & is the direct sum of subspaces £fx 0 ^Ϋ\ where £fx —

UF=i ker (L — X)j, Λrι is invariant under L, and (L — λ) is invertible
on Λrχm

The projection of & onto £?x along ^Yl is denoted by Pλ. Hence
P& = £?ι and (/ - P; ) .^ - ^ .

An eigenvalue X of L is isolated if there exists ε > 0 such that
(λ — ε, λ + s) contains no other members of sp L. The set of isolated
normal eigenvalues of L is called the discrete spectrum of L which
we denote by sp^L). The remaining part of the spectrum will be
called nondiscrete and is denoted by sp^(L).

REMARK. If L is self-adjoint, the nondiscrete spectrum is the
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essential spectrum of L.

DEFINITION 1.3. (λ, 0) is a bifurcation point for (1.1) if every
neighborhood in if of (λ, 0) contains a nontrivial solution of (1.1).

DEFINITION 1.4. If T is a subset of gf, Tx and TR are defined
to be Tλ = {u I (λ, u) e 3Π and % = {λ | (λ, u) e T for some u}. For
TFci?, &, or §f, PF denotes the closure of W in the respective
space.

The first theorem shows that bifurcation from an isolated
eigenvalue λ0 of L having odd multiplicity is not dependent upon L
being compact, but rather on the behavior of L — λ near the eigenvalue
λ 0.

THEOREM 1.1. Let L be as above and let H satisfy H-l. // λ0

is an isolated normal eigenvalue of L having odd multiplicity, then
(λ0, 0) is a bifurcation point for (1.1).

Proof. In order to prove this theorem, (1.1) will be rewritten
in the form u — C(λ, u) = 0 where C is compact. Let QZQ = I — Pλo

and split (1.1) by

LPλou = \PλQu + Pλ0H(X, u)

LQλou = \Qλou + QhH(X, u) .

A solution of (1.1) is equivalent to a simultaneous solution of the
two equations in (1.3). Select μoep(L). Instead of (1.3) we may
write

(1.4) λ° λ - μ 0 λ - μ0

QλQu = {L- \)-ιQhH(\ u)

where (L — λ)"1 is to be interpreted as (L — λ)"11 ̂ 0 . Thus, (1.4)
is valid for λ e {λ0} U {p(L)\{μ0}}. Adding these equations we get

u = Cx(λ, u) + C2(λ, w)

(1.5) Λ τ λ - ^0

C2(λ, w) = ((L - λ)-ιQ2β - - * k - W , u) .
x λ — /V

Note that C^ g7 —> ^ is compact and linear in u for each fixed λ.
C2: g* —> ^ satisfies H-l. Define
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Clearly, (1.5) or Φ(λ, w) = 0 is equivalent to (1.1) for the specified
values of λ when L is bounded. If L is unbounded, the question
arises as to whether u is in dom (L) if (λ, u) is a zero of Φ. Noting
(1.4), which is obtained from (1.5) by projecting onto £fλ^ ^Vl0 respec-
tively, we see that Qλou is in dom (L). Since PXou is in an eigenspace
of L, u — Pλou + QλQu is in dom (L).

If the assertion of the theorem is not true we can find a neigh-
borhood έ? of (λ0, 0) such that the only solutions of (1.1) in <!? are
trivial solutions and p(L)\^R Ψ 0 . Select μQ e p{L)\έ?R such that
(1.1) is equivalent to (1.5) for all λ e Λ Select e > 0 such that
[ — s + λ0, λ0 + ε] x {0} c έ?. Applying the homotopy property of
degree theory we obtain

(1.7) deg (Φ(λ, •), ̂ \ 0) = constant | λ - λ01 < ε .

Select λ and λ such that λ0 — ε < λ < λ0 < λ < λ0 + ε. Then

deg (Φ(λ, .), <?K 0) - index (/ - C,(λ, •), (λ, 0))

deg (Φ(λ, •), &\ 0) - index (I - CL(λ, •), (λ, 0)) .

Thus, using (1.7) and (1.8),

index (/-C x(λ, ),λ, 0))

= index(/-Ctfλ, .), (λ, 0)).

However, since the multiplicity of λ0 is odd,

index (I -Ctfλ, •), (λ, 0))

- - index (I-C&, •), (λ,0)).

Since the indices in (1.9) and (1.10) are either + 1 or —1, we have
a contradiction. Thus, such a neighborhood #> can never be found.
This proves that (λ0, 0) is a bifurcation point.

REMARK. If λ0 Φ 0 is an eigenvalue of L having odd multiplicity,
then the hypotheses of Theorem 1 are satisfied if L is compact or
if L is self-adjoint with λ0 isolated in spL.

It is possible to give conditions under which an eigenvalue of a
linear operator L is normal. In the following, έ% will denote the
complexification of ^ , and L will be the unique linear extension of
L to ^ . & will be thought of as & x & and for a pair (x, y) e ^
we define the norm \\(x, y)\\^ = VlMI2 + \\y\\2 where || || is the
norm in &.
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LEMMA 1.1. spL = R Γ) spL. IfXis in the point, continuous,
or residual spectrum of L, then it is also in the point, continuous,
or residual spectrum of L respectively. If X is a real eigenvalue
for L, then its multiplicity (finite or infinite) is the same for L as
for L.

Proof. It is easily seen that s p L c iί ΓlspL, with parts corre-
sponding. To consider the reverse inclusion, select a real X in the
point spectrum of L. Then there exists (x, y) Φ (0, 0) such that
(L — X)(xf y) = (0, 0). Thus, at least one of x and y is a nonzero
eigenvector of L associated with λ.

Now select a real X which is an approximate eigenvalue of L,
but not an eigenvalue of L. Then (L — λ) is injective. Since (L — λ)
is not invertible, there exists {(xnf yn)}n=h2. ., each term of unit

such that

|| (L - X)xn ||
2 + || (Ir - x)yn ||2 = || (£ - λ)(^, yn) ||«* < - i .

n

For each n we may select zn as one of the pair xn9 yn such that
|| (L - X)zn II < 1/n and || zn \\ ̂  1/2. Since (L - λ) is injective, λ is
an approximate eigenvalue of L, but not an eigenvalue.

Finally, let a real X be in the residual spectrum of L. (L — X)

is injective, thus showing (L — λ) is also injective. There exists

(zlf z2) e S and ε > 0 such that || (zlf z2) - (L - X)(xt y)\\2j> e for all

(x, y) e &. In particular.

(1.11) II Zl - (L - X)x\\* + || z2 - (L - X)y |]2 > ε .

It follows that || z, - (L - λ)ί» || > e/2 or || z2 - (L - λ)a? || > e/2 for
all α?. Hence λ is in the residual spectrum of L. We now also know
that the real part of the continuous spectrum of L is the continuous
spectrum of L.

Suppose X is an eigenvalue of L and L, and let £fλ and ^
denote the principal manifolds associated with λ. Let (x, y) 6 ^ .
Then it is known that || (L — X)n(x, y) IU = 0 for some n. Since
|| (L - X)nx II ^ || (L - xy(x, y) |U, we know

|| (L - λ) a? || - || {L-Xfy || = 0

thus proving that £?λ(z£fxx £fx. Now select (̂ , y)e£fλx £fλ.
Then there exists w such that || (L - λ)%α; || = || (L - X)ny 11 = 0. Thus
|| (L - X)n(x, y) \\& = 0 which shows that ^ x ^ c ^ .

THEOREM 1.2. Leέ λ0 δβ αw eigenvalue of a bounded linear
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operator L having finite multiplicity and isolated in spL. Then
λ0 is a normal eigenvalue of L. Moreover, sp (L \ ^Ϋ\^ c sp L\{λ0}.

Proof. Since λ0 is isolated in spL and is of finite multiplicity,
λ0 is a normal eigenvalue for L.

The projection Pλo of & onto ^ 0 is given explicitly by

(1.12) Ph = --L \ (£ - zΪΓdz

where D is a bounded domain in the complex plane with λ0 in its

interior and spL\{λ0} in its exterior. From (1.12) it is clear that

PXQ is bounded. Moreover, if ^ 0 = (/ — Px0)^ then

>J>λQ and sp L \ J\, = sp L\{\} .

Any x 6 & can be written uniquely as

(1.13) (x, 0) - (xlf y) + (xu - » )

where (a?i, y ) 6 ^ 0 and (x2, -y)ejfco. Let us define P ^ o : ^ - > ^
by P;oίu = 051# Since

(1.14) (Phx, 0) = (xl9 0) + (0, 0) ,

we have Pλo(Pλox) — Pλox, making Pλo a projection with range in the
principal manifold of L associated with λ0. Moreover, let x be in
that manifold. Then (x, 0) — (x, 0) + (0, 0) uniquely, showing PXQX = x.
Thus the range of Pλo is the principal manifold of L associated with
λ0. Denote the range of Pλo by ^ 0 and the range of / — PλQ by
^ 7 0 . It is clear that L: ^V^ —> ^ 7 0 since L: ^ 7 0 —> ^ 7 0 . It remains
to show that sp (L \ <yy\^ c sp L\{λ0}. Select a real λ g sp L\{λ0}.
According to Riesz-Nagy [6] and Lemma 1.1, L — X is invertible on
^ 0 . For a e ^ (1.13) shows there exists ye£?λ{i such that
(x, y) e c>^0. If (as, 2/) and (as, z) are in ^ ^ 0 with y and 2 in .2^,
then (0, y — z)e ^ 7 0 n «£%>, showing y = «. (L — λ ) " ^ , ?/) must be
of the form (x'f y1) with i/; 6 ^ 0 and (a?', y') 6 ^ 0 . Thus, since
(a ', 0) - (0, -i/') + (xf, y') e^fχo + Jk0, we see that x' e ^rh. There-
fore L — λ is injective and surjective on <yV\^

If Γ: S ^ ^ is defined by Γ(a?, y) = x, we see that P^o = T°Ph.
Since Γ and PλQ are bounded, P^o is continuous and ^ 7 0 = {̂  | P^o^ = 0}
is a closed subspace. We now know

( i ) ( Z , - λ ) ^ 0 = ^ 0

(ii) (L — λ) is a closed map
(iii) (L — λ ) ^ 7 0 is of second category
(iv) (L - λ)"1 is well defined on
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The bounded inverse theorem states that || (L — λ)"1!! < 00. This
shows that sp (L \ ^ 0 ) C sp L\{X0}.

COROLLARY 1.1. Let λ0, xίf * ,λ w be eigenvalues of a bounded
linear operator L having finite multiplicity and isolated from
sp £\{λ0, λi, , Xn}. Then each of λ0, λx, , Xn is a normal eigen-
value of L and P — PXo + PXl + + Pλn is a bounded projection
onto U?=o £fχd = -Sf. Moreover, if Λ^ = (I - P ) ^ , sp (L | ^T) c
spL\{λ0, λx, •••, λn}.

Proof. The result follows using a proof similar to the preceding
one, observing that Pλjo Pλk = 0 whenever j Φ k.

2* A global alternative theorem* In this section we will show
that the local bifurcation exhibited in Theorem 1.1 is a global property
with an alternative-type result.

For T c £T, a subcontinuum of T is a subset of T which is
closed and connected in ^ . <Ĵ  will denote the closure of the set
of nontrivial solutions of (1.1) in if. Let ^ 0 denote the maximal
subcontinuum of J? U (λ0, 0) containing (λ0, 0). Bp will denote the
open ball in & centered at 0 and having radius p. L and H will
be as in § 1.

LEMMA 2.1. Let K be a compact metric space and A and B
disjoint closed subsets of K. Then either there exists a subcontinuum
of K meeting both A and B, or K — KA U KB where KA and KB are
disjoint compact subsets of K containing A and B respectively.

Proof. See [5].

The following lemma is due in part to Rabinowitz [5].

LEMMA 2.2. Suppose λ0 is an isolated normal eigenvalue of L
having finite multiplicity. Assume ^ 0 is bounded, ( ^ 0 ) Λ Π sp^(L) =
0, and 9^0 f) {R x {0}} = (λ0, 0). Then <^XQ is compact and there
exists a bounded open set £? c i? such that ^ o C #*, dέ? Π ̂  = 0 ,

Π spΛd (L) = 0 , the trivial solutions contained in έ? are the
points (λ, 0) where | λ — λ01 < ε for some e < ε0 = dist (λ0, sp L\{λ0}),
and II (λ, u) — {μ, 0) || ^ 2βi /or some positive e1 whenever (λ, ̂ ) 6 dέ?
and jwespL.

Proof. ^ ; 0 is a compact set. Indeed, let {(λ%, %„)} be any
sequence in <g 0̂. By hypothesis the sequence {λj is bounded away
from spU(i (L). By passing to a subsequence ^ 7 c . ^ = {1, 2, }
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we can obtain limn^x>)ne^1Xn = λ, and l i m ^ ^ ^ ^ i ? ^ , un) = w
for some XeR, w e <^Γ Since ^ 0 is bounded, we then know that
lim^c, ^ ^ ( I * — λ)t6n = w. Since λ£sp% ί Z(L), λ is either in the re-
solvent of L or is a normal eigenvalue. In the first case (L — λ)"1

is well defined, yielding limn^00fne^rίun = (L •— X)~λw. In the second
case, let P be the projector onto the eigenspace corresponding to λ.
Then l im^oo^e.^i/— P)M« — (L — X)~\I — P)w. By passing to an-
other subsequence ^Yl c ^Y[ we can find a ve ^ such that
limn^OOine^2un — v + (L — λ)-^/— P)w. In either case, continuity
shows that the limit point is in <g^0.

Since ^ 0 is compact, we may find a ^-neighborhood £7i of

such that (ί7δ)Λ n spW£i (L) = 0 and Uδ contains no trivial solutions
other than points (λ, 0) where | λ — λ01 < ε < ε0 for some ε > 0.

K = Uδ Π ̂  is a compact metric space (with the induced metric).
The proof of this fact is similar to the proof of the compactness of
^ o ^;.o and <5 Uδ Π ̂  are disjoint closed subsets of K, and if does
not contain a subcontinuum which meets both ^ 0 and d Uδ Π ^ ^
Thus, using Lemma 2.1, there exist disjoint compact sets KA and
KB such that # = 1 ^ 1 ! ϋΓ*, ^ 0 c JSΓ̂ , and 3TΓδ Π ̂  c JBΓB Select an
ε' > 0 such that ε' < dist (iί^, KB) and define ^ to be the ε'-neighbor-
hood of KΛ. Finally, let έ? = Uδ Π ̂ . In case ^ f] {R x {0}} ^
(λ0 — ε, λ0 + ε) x {0}, we may add (λ0 — ε, λ0 + ε) x Br to ^ , for r
sufficiently small.

Γ = s p L f l Λ has finitely many elements. Since

( Λ ) Π spw, (L) - 0 and 3 ^ Γ) {Γ x {0}} - 0 ,

it is clear that dist (3̂ 7*, {sp L x {0}}) > 0. Select a positive ε: such
that 2ε, < dist ( 3 ^ , sp L x {0}).

LEMMA 2.3. Suppose λ0 α^d λi are distinct normal eigenvalues
of L. Then έ%? — =5^0 φ S<flγ 0 ^ α direct sum of subspaces, where

P = P^o + P;.x projects onto ^ 0 0 β5^

Proof. Since λ0 is normal, we may write . ^ — =g^o + ^ 7 o as
described in Definition 1.3. For x1eeSfλιt let us write

X, = X0 + X2( G £f^ 0 0

Then

Xιx1 = XQxQ + Lx2

with La;2 G ^Vl^ However, λ^i = λ^o + \x2. Thus cc0 = 0 and
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Select a y e ̂ V\^ It can be written uniquely as yι + y2 with
Vi e SfXl and y2 e £fλγ. Since y2 = y - yx, we see that ya e ̂ fr

λo Π ^ J ^
Since £fha^yiQ, it is clear that ^ 1 ° ^ 0 = ̂ 0 °P; 1 = 0. More-

over, ^V is the nullspace of P. Thus P = PλQ + Ph is indeed the
projector onto ^ O 0 ^ along ^Yl

The following theorem is modeled after an alternative theorem
which Rabinowitz proved for (0.3) when L is compact.

THEOREM 2.1. Suppose λ0 is an isolated normal eigenvalue of
L of odd multiplicity. L is as before and H satisfies H-l. Then
(λ0, 0) is a bifurcation point of (1.1) possessing a continuous branch
&xQ such that one and only one of the following alternative occurs.

( i ) <g 0̂ is unbounded

( i i ) <g*x0 is bounded and 0^%)Λ Γ) sp%d (L) Φ 0
(iii) <g 0̂ is compact, C^%)Λ Π sp^^ (L) = 0 and &*λQ contains

(\, 0) where λL is a normal eigenvalue of L different from λ0.

Proof. Assume the theorem is false. Then we may find a set
& and a positive constant ε as specified in Lemma 2.2. Let σQ denote
a closed interval with ^ in its interior and contained in /ϊ\spwd (L).
If σ0 n sp, (L) = {λ0, \, , λw}, let P = P,o + Ph + + Pλn (each
λj, 0 ̂  i g ^, is a normal eigenvalue of L). Then, using the same
derivation as in Theorem 1.1, we may show that (1.1) is equivalent
to

u = d(λ, u) + C2(λ, u)

( 2 Λ ) C,(λ, u) - λ _ ^ ^

C2(λ, u) = ((L - λ Γ V - P) - ——)JB{\ v)

for λ e σ0, μ0 $ σ0.

Define Φ(λ, u) = u - Cx(λ, u) - C2(λ, u) as before. For 0 <
I λ0 — λ I ̂  ε, (λ, 0) is an isolated solution of (1.1) in {λ} x έ%. Thus,

there exists <o(λ) > 0 such that (λ, 0) is the only solution of (1.1) in

{λ} x 2^7,. Let ̂ (λ) = dist((λ, 0), ^) and choose ρ(X) = l/2(ρo(X)).
Define p(X) = ̂ (λ0 + ε) for λ ^ λ0 + ε and ρ(X) = ̂ (λo - ε) for λ <:
λ0 — ε. We may select ^(λ0 — ε) and p(X0 + ε) sufficiently small so
that Bp{λ) Π (dέ?y = 0 for | λ — λ01 ^ ε. Since (1.1) has no solutions
on d(£?x - Bpa)) for λ ^ λ0, deg(Φ(λ, •), έ?λ - ^ U ) , 0) is well defined
for such λ. We will prove that

(2.2) deg (Φ(λ, •), <?1 - BPU), 0) = 0

for those λ.
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Let λ > λ0 and λ* > λ such that λ* e <TO\5^R Define

p = inf {p(μ) \μe[X, λ*]} ,

which is positive due to the definition of p(X). Let ^ = έ? —
[λ, λ*] x WP. OS is a bounded open set in [λ, λ*] x & and Φ(7, u) Φ 0
for (7, w)e3^/ (the boundary of ^ in [λ, λ*] x &). By the homo-
topy of degree, for 7 6 [λ, λ*],

(2.3) deg (Φ(7, •), &y ~ Ky 0) = constant .

Since ^ ; * = 0 ,

(2.4) deg (Φ(λ*, •), ̂ * * - Si, 0) = 0 .

•) has no solution in {λ} x (BPU) — BP). Thus

(2.5) deg(Φ(λ, -), Bp{λ) ~ BP9 0) = 0 .

Combining (2.3), (2.4), and (2.5) and using the additivity of degree
we get

(2.6) deg (Φ(λ, •), &λ ~ BP{X), 0) - 0 .

Similarly, (2.6) holds for λ < λ0.
Once again applying the homotopy of degree,

(2.7) deg(φ(λ, •), ̂ \ 0) = constant

for I λ - λ01 < ε.
Select λ, λ such that λ0 — ε < λ < λ o < λ < λ o + ε. Using the

additivity of degree, we see that

deg (Φ(λ, •), <?K 0) = ώdex (Φ(λ, •), (λ, 0))

ί 2 g ) +deg(Φ(λ, •), ^ - 5 ^ , 0 )
K % ) deg (Φ(λ, .), &\ 0) = index (Φ(λ, .), (\ 0))

+ deg(Φ(λ, .), ^ - £ , ( i , , 0 ) .

Applying (2.6) and (2.7) to (2.8) yields

(2.9) index (Φ(λ, •), (λ, 0)) = index (Φ(λ, •), (λ, 0)).

These numbers are either + 1 or — 1 and since λ0 has odd multiplicity,
they differ by a factor of — 1. This is incompatible with (2.9),
proving that the hypotheses of Lemma 2.2 do not occur in this
situation. Thus (i), (ii) or (iii) must occur.

LEMMA 2.4. Suppose λ0 is an isolated eigenvalue of L having

finite multiplicity. Assume ^ 0 is bounded, ( ^ 0 ) Λ Ω sp%d(L) = 0 ,
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and <g% f]{R x {0}} = 4 x { 0 ) where A = {λlf , Xn} and X,<X2<
• <Xn. Tλew ^ 0 is compact and there exists a bounded open set

^ c ? such that ^aέ?, dέ? Π J? = 0, (Λ) Π spn(l(L) = 0,
trivial solutions contained in d? are points (λ, 0) where λx — ε <
λ < λn + ε /or some e<εo = dist (A, spL\A), and || (λ, w) — (μ9 0) || ;> 2εx

/or some positive ει whenever (λ, ^) e

Proof. The method employed in the proof of Lemma 2.2 applies
here.

THEOREM 2.2. Suppose λ0 is an isolated normal eigenvalue of
L of odd multiplicity. L is as before and H satisfies H-l. Then
(λ0, 0) is a bifurcation point of (1.1) possessing a continuous branch
^ 0 such that one and only one of the following alternatives occur.

( i ) ^ o ίs unbounded

(ii) <ĝ 0 is bounded and ( ^ 0 ) Λ Π spwd (L) =£ 0
(iii)' ^ ; 0 is compact, ( ^ 0 ) Λ Π sp%d (L) = 0 , α^d ^ 0 Π {R x {0}} =

{λ0, λ1? , λ%} x {0} where \, , λΛ are normal eigenvalues of L
distinct from λ0, omc? ίfee s^m o/ the multiplicities of λ0, λx, , λΛ

is even.

Proof. Suppose (i), (i), and (iii)' do not occur. Then <ĝ 0 is
compact, (&h)Λ n sp.d (L) = 0 , ΐ?i0 Π {Λ x {0}} = {λ0, λlf , λ j , and
the sum of the multiplicities of these eigenvalues is odd. We may
suppose λ0 < \ < < Xn.

Construct an open set έ? and select ε > 0 as specified in
Lemma 2.4. Also, define σ0, P, and Φ(X, u) as in Theorem 2.1. Then
deg(Φ(λ, •), <?λ, 0) is well defined for λ0 — ε < X < λn + ε, and more-
over,

(2.10) deg(Φ(λ, -), έ?1* 0) = constant

for λ0 — ε < X < Xn + ε. Select X and λ such that λ0 — ε < X < λ0

and Xn < λ < λn + ε. Then, using degree arguments from Theorem
2.1, we see that

index (I-C^X, •), (λ, 0))
( * } = i n d e x ( I - C 1 . ( λ , ),(λ,0)).

These numbers are either + 1 or —1. However, the assumption that
the sum of the multiplicities is odd implies that

index (I -C^λ, .), (λ, 0))

= -index ( I - Q λ , ),(λ,0)).

This contradiction proves that one of the alternatives (i), (ii),
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(iii)' occurs.

REMARK. If λ0 is an isolated normal eigenvalue of L having
even multiplicity and if (λ0, 0) is a bifurcation point, then one of
the alternatives in Theorem 2.2 must occur. Note that (iii)' occurs
even if <ĝ 0 loops back to (λ0, 0).

Examples of the three alternatives. Examples of (i) are common.
In particular, this situation occurs whenever (1.1) is linear (i.e.,
H ΞΞ 0). Examples of (ii) and (iii)' are more difficult to construct.

Let ^ = R2 with general element u — (ulf u2), the normal inner
product ( , X, and norm || |L Define L : ^ — > &γ and B(u): R x
^ —* ̂  by means of the matrices

L =

(2.13) V°
B(u) =

and consider

(2.14) Lu = X[u - B(u)u\ .

First let us show that WuW^l whenever (λ, u) is a solution
of (2.14) in ^ 1 / 2 or ^ . Direct computation yields

Since the only solution of (2.14) of the form (0, u) is (0, 0), it is clear
that ^ 1 / 2 and ^ consist of solutions (λ, u) with λ ^ 0. Assuming
λ ^ 0, take the inner product of both sides of (2.14) with u yielding

\\u\\l~ (B(v)u9u\^ 0 .

In other words,

(2.15) H ^ l l ί ^ l N l l ϊ .

Now assume {(λΛ, wj}n=1>2>... are nontrivial solution of (2.14) with
Xn ^ n. Dividing (2.14) by λ and inserting these solutions yields

(2.16) i ^ = un - B(un)un .
χ%

Since H ^ l ^ ^ 1 for all n, a subsequence of {un}n=lt2f... must converge
to some w, a solution of

B(v)v = v.
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The only such w is (0, 0) since

B(n)u = || u \\t(uίf u2) + K
4

The second term is nonzero whenever u Φ (0, 0) and is always or-
thogonal to u. Assume lim^oo || un Id — 0 and divide (2.16) by || un Id
yielding

(2.17) i i ( - A - ) = «« - B(u.) 1-^-)

We may find N such that n > N implies

and

This contradiction along with the result that \\u\\ ̂  1 implies that
^ 1 / 2 and ^ are bounded in R x ^ . Thus, (2.14) is a finite-dimen-
sional example of (iii)'.

Let ^ 2 be a real Hubert space with an orthonormal basis
{Ψk}k=ι,z, :> inner product ( , )2, and norm || ||2. Define ^= &{ 0 ^ 2

with general element (x, y). If (xh yό) e . ^ for j = 1, 2, define
(to, Vι\ (»2, l/2)) = (»i, £2X + (l/i, 2/2)2 and let || || be the corresponding
norm. Using this framework, the preceding example can be modified
to exhibit (ii) and (iii)' in the infinite-dimensional case.

Let M = sup {λ I (λ, u) e ^ (of the 2-dimensional problem)}. Define
a linear operator LA: & —> & by LA(x, y) = (Lx, (M + ϊ)y) and
£Γ4: J B X ^ ^ ^ by iϊ4(λ, (a?, j/)) = ( + XB(x)x, 0). Then ^ for

(2.18) LAu = Xu - i2^(λ, %)

is an example of (iii)'.
If instead of LA we defined a linear operator LB\ & —> & by

LB(«, 0) - (Lx, 0) and L*(0, yfc) - (0, M + l/fc)9>t)» then ^ for

(2.19) L 5 ^ = Xu - HA(X, u)

is an example of (ii).

3* Another global result• In this section we give another
global result for (1.1). This result was initially proven by Turner
[8] in the case where L is compact. While being related to the
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work in § 2, this result gives additional information concerning
The restrictions on H(\ u) can now be relaxed. In addition to those
H's satisfying H-l, we can now admit H(X, u) satisfying hypothesis
H-2:

(H-2) H(X, u) = J(λ, u)u where for each (λ, u) in R x &, J(λ, u) is
a compact linear map and J(λ, u)u is the result of applying
«/(λ, u) to w.

L and ^ are defined as before.
For μeR, define

(3.1) n(μ) = lim sup U & - X)~>H(X, u) \\

where w(μ) = ô if (L — μ)~ι does not exist. We let

(3.2) p = {μ I n(jtι) < 1} .

jθ is clearly a subset of p(L), and whenever H satisfies H-l they
are the same set since n(μ) = 0 for μ e p(L).

THEOREM 3.1. Let H satisfy H-l or H-2 and let [a} b] be an
interval in J2/spΛd (L) containing an odd number of eigenvalues of
L counting multiplicities with n(a) < 1 and n(b) < 1. Given a
simple curve joining (a, 0) to (b, 0) in R x R+ missing (R — {a} —
{b}, 0) and (spnd (L) x R+), there are at least two nontrivial solutions
(λ(1), uw) and (λ(2), u(2)) of (1.1) such that (λ(ί), || u{i) ||) lie on the curve.

Proof. We begin by showing that there is a neighborhood of
(a, 0) in i? such that none of the problems

(3.3) Lu = Xu + tH(\ u) (0 ^ t ^ 1)

has a nontrivial solution (λ, u) in that neighborhood. If there were
a sequence 0 ^ tn ^ 1 and nontrivial solutions (λ%, %„) of (3.3) such
that Xn —• α and 11 wΛ 11 —• 0 as w —* oo, then it would follow that

/3 4) v>n = (L - λ j -

for all n, implying that n(a) ^ 1. The same result holds for (6, 0).
Let C be any simple curve in R x R+ which connects (a, 0) to

(δ, 0) and misses (R — {a} — {δ}, 0) and sp%d (L) x Λ+. Because there
are neighborhoods of (α, 0) and (δ, 0) in g7 which do not contain
nontrivial solutions (λ, u) of (1.1), showing there are a pair of so-
lutions (λ, ||w ||) on a simple curve ^ joining (α, α) to (δ, a) for a
suitably small a > 0 ( ^ c {Λ\spΛd (L) x iί+}) is equivalent to proving
the theorem. Choose such a ^ and let it be given by ^
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r{η)) 11 ^ η ^ 2}. Let 9f« (0 ^ t ^ 1) be the curve {(λt(^), rt()7)) 11
Ύ] <; 2} where

(3.5) λ ί . ( ^ =

is a continuous family of curves which deforms ^ into ^ 0 ,
the horizontal segment joining (a, a) to (6, α).

Let sp L Π ( ^ I ) Λ = {λ:, -- , λ j , a subset of spd(L), and define
P= Ph + . . . + Pλn. Rewrite (1.1) as

u = d(λ, u) + C2(λ, u)

(3.6) λ

C2(λ, w) - ((L - λ)-(7 - P) - - Z _ W

for λ in a neighborhood of ( ^ O Λ and μ0 e R\{^^)R chosen such that
sp {(L - μo)P) c R+. Note that if H satisfies H-l or H-2, then C2

does also.
We let

(3.7) Ω = {ue^\l<\\u\\<2}

and for each t e [0, 1] define

(3.8)

taking Ω into &. Φt is well defined, for ( ^ ) Λ c ( ^ ) Λ for 0 ^ t ^ 1.
If Φjiu) = 0 for some %Gi3, then multiplying through (3.8) by

(n(IMI))/IMI shows that λ0 = \(\\u\\) and ^ 0 = (r^WuW^u/W u \\ is a
solution of (1.1) with (λ0, \\uQ\\) on ^ . We will show that Φ^u) = 0
has at least two solutions in Ω by showing

\deg(ΦuΩ)\^\deg(ΦlfΩ,0)\=2.

To do this we will prove deg (Φo, i2) — deg (Φl9 Ω) and then solve
the simpler problem involving ΦQ.

It must be shown that deg (Φt, Ω) is well defined for each t e [0, 1].
Let us assume Φt{y) — Q with | |%| | = 1. Using (3.5), χt(\\u\\) = a
and rt(\\u\\) •== a. Looking at [rt(\\u\\)/\\u\\](Φt(u)) - 0 we see a
member of the family of equations in (3.3) has a solution (λ, v) with
\\v\\ = a and λ = a. This is impossible, showing Φt{v) = 0 implies
II u II =5* 1. Similarly, Φt(u) = 0 implies || w || =£ 2. Thus, deg (Φt, i3)
is well defined and the homotopy invariance of degree shows that
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(3.9) deg (Φo, Ω) = deg (Φu Ω) .

It remains to show that

(3.10) I deg(Φ o, Ω)\ = 2

where

(3.11) Φ0(u)-u ( α + ( 1 | t t | | _ i χ δ _ α ) ) _ Λ .

Thus, the zeros of Φo are found from the solutions of the linear
eigenvalue problem (L — μo)Pu = Xu. For the remainder of the
proof assume the eigenvalues of (L — μQ)P are simple. If not, and
{&, "'y^n} are the repeated nonzero eigenvalues of (L — μQ)P and
Elf , En are the corresponding rank-one eigenprojectors, then for
ε > 0 sufficiently small (L — μo)P + ε Σ ^ jEά has simple eigenvalues
and yields a corresponding Φl with deg (Φo, Ω) — deg (Φl, Ω).

The solutions of Φ0(u) = 0 must satisfy Eku = u for some k. If
the eigenvalues of L in [a, b] are Xl9 , λn (λ̂  = μs + μ0), then

(3.12) Kll^ll = 1 + ^1^<2.

There are two such u's in β. Let us select one and call it uk.
Since (L — μQ)P has finite-dimensional range β =

deg (Φo, β) = deg (Φo, Ω Π B) .

Thus,

(3.13) deg (Φo, fl4) - Σ [index (Φo, ^,) + index (Φo, -
fc = l

where the indices are calculated in B. Let us calculate index (ΦQ, uk).
We may assume B has a norm coming from an inner product ( , •)
which at uk agrees with the original norm. Moreover, we may
assume (%, uk) — 0 when j Φ k. Using the same notation || || for
the new norm, we may differentiate (3.11) and get a map taking w
in B to

(Q u ) w _ (L - μo)Pw (uk, w)(b - a)(L - μo)Puk

K-μ* \\uk\\[a + (\\uk\\~l)(b-a)-μQY

which simplifies to

(3.15) w -w + .
\k - μ0 H ĵfclKλfc - μ0)

Assume λx < λ2 < . The map in (3.15) has no zeros near uk and
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has n eigenvalues, those in (—oo, 0] being

1 - hJZJh. , k < j ^ n .
Xk - μ0

Thus, the Leray-Schauder index theorem shows index (ΦQ9 uk) =
( — l)n~k. The map in (3.14) results from — uk also, yielding

(3.16) index (Φo, uk) + index(Φo, -uk) = 2(-l)w-& .

The sign in (3.16) changes as we go from uk and —uk to uk+1 and
— uk+1 showing | deg (Φo, Ω) | = 2.

COROLLARY 3.1. Under the hypotheses of Theorem 3.1, there is
a continuum of pairs (λ, | |w||), where (λ, u) is a solution of (1.1),
joining {[a, b], 0) to

( i ) infinity in R x R+ or
(ii) sp%d (L) x β + or
(iii) (Sp(L)/[α,6],0).

4* Applications* In this section we will demonstrate the appli-
cation of Theorem 2.2 to a class of differential equations. We will
consider equations of the form

(4.1) Du(x) = Xu(x) + H(X, u)(x), xeΩQRn,XeR1

where D is a real differential operator. In the case that Ω is
bounded, D usually defines an operator L in a real Banach space
which has an inverse A. In this case, the equation

u{x) = \Au(x) + AH(X, u)(x)

can be studied. In the situation where Ω is bounded, A is frequently
compact and the equation can be studied using existing theory.
Equations of this type are treated in [5] and [8].

In the case that Ω is unbounded, this approach fails since A is
usually not compact. I wish to treat such a class of equations:

(4.2) -(p(x)u'(x))' + q(x)u(x) = Xu(x) + H(\ u)(x) x e (0, oo) ,

u(0) = 0

where prime denotes differentiation with respect to x. This equation
was studied by Stuart [7] when H was a λ -set contraction. In the
case where H is compact, further information can be gained about
the solutions, and all normal eigenvalues can be treated in contrast
to only a special subset of them. Conditions on Hf p, and q will
be given below.
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Our first step is to select a space of functions on which to define
our operators. Let L2 denote the Banach space of all real measurable
functions u on [0, oo) such that

\\u\\2 =

Let ^0°° denote the space of all infinitely differentiable functions with
compact support in (0, oo). Let HI denote the closure of ^0°° in the
Sobolev space Wl(0, oo) with norm

We make the following assumptions about p and q:

(H-3) p: [0, oo)—> R is continuous and continuously differentiable
in (0, oo) with p' bounded and 0 < Pι <Ξ p(x) ^ P2 < oo for all
xe [0, oo).

(H-4) q: [0, oo)~> β is continuous with 0 < Q <; q{x) £ Q2 < oo
for all x e [0, oo).

Let L denote the operator defined by

D(L) - ^ 0 -

Lu(x) = (-~p(x)u\x)Y + q(x)u(x) (x e (0, oo), ̂  e J5(L))

where D(L) denotes the domain of L.

LEMMA 4.1. Under hypotheses (H-3) and (H-4), L has a unique
self adjoint extension L in L2 with

D(L) - HlnWUO, oo)

and sp.nd(L) Q[Q, oo) where Q = lim^^ inf q(x).

Proof. [1].

LEMMA 4.2. Suppose (H-3) α^ώ (H-4) α?Λβ satisfied.
( a ) // λ0 is a normal eigenvalue of L, then the multiplicity

of λ0 is one.
(b) L"1 exists and is a bounded operator from all of U into

itself.
(c) L is a positive self-adjoint operator in L2. Moreover, Lι/2

is a linear homeomorphism of HI onto If where Llί2 denotes the
positive square root of L.

Proof, (a ) This follows Theorems 6.10 and 6.14 of Chapter 13
of [1].

(b) For p e ^ Λ
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(Lφ, φ) = \" {P(X)[Φ\X)Y + Q(x)[φ(x)Y}dx .
JO

Thus, φ = 0 implies φ = 0 almost everywhere since p and q are
bounded from zero, and L~ι exists. Clearly (Lφ, φ) ̂  P1 \\ φ ]|2, so L"1

is bounded.
(c) In (b) it was shown that L is positive. Thus, L has a

unique positive self-adjoint square root, L1/2. Since L1/2 is closed,
D(Lί/2) = HI; since Lυ\Lv\Hi)) = L\ range (L12) = ZΛ

REMARK. (H-3) and (H-4) can be relaxed as long as the results
of Lemmas 4.1 and 4.2 hold.

A point (λ, u)eHl x R is called a weak solution of (4.2) if

{p(x)u'(x)φ'(x) + q(x)u(x)φ(x)}dx

S oo

{u(x) + iϊ(λ, u)(x)}φ{x)dx
o

for all φe^o™.

LEMMA 4.3. Let H satisfy (H-l) and let (λ, u) be a weak solution
of (4.2). Then ueWtΠH^ D(L) and

Lu = Xu + iϊ(λ, ^) .

Hence, u satisfies 4.2.

Proo/. [7].

A point (λ, 0) is a trivial solution of (4.2). Let

S = S U {(λ, 0) I λ is a normal eigenvalue of L)

where S denotes the set of all nontrivial solutions of (4.2).

THEOREM 4.1. Let H-l, H-3, and H-4 be satisfied, and let λ0

denote a normal eigenvalue of L (all operators are defined in HI).
Then ^Xo Q R x (HI Π Wl) and <ĝ 0 satisfies only one of

( i ) ^ ; 0 is unbounded
( i i ) ^ 0 is bounded and C ^ 0 ) Λ Π spw d (L) Φ 0

(iii) ^ 0 is compact, ( ^ 0 ) Λ Π sp w d (L) = 0 , α^d <g 0̂ Π {R x {0}} =

{λ0, λx, , λ%} x {0} where X19 , λΛ a r e normal eigenvalues of L

distinct from λ0, awcϊ ί/̂ e s^m o/ the multiplicities of λ0, λ1? •••, Xn

is even.

Proof. The alternatives follow from Theorem 2.2. The result
of the nature of the elements of ^ 0 follows from the fact that
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ίf,0 Q R x D(L) (see § 1).

Much more knowledge of the nature of <g*Xo can be gained if
the choice λ0 and H are more restrictive. In particular, let us
consider those eigenvalues of L which lie below the essential spwd (L),
namely those characterized by

Xn = sup inf {|| LU2u ||2: u e H\, \\ u || = 1, u e V1}
VeJΓn

where j^Z is the class of all (n — l)-dimensional subspaces of ZΛ
Clearly Xn < Xn+1 as long as λn $ spwd (L). The eigenf unction associated
with λΛ in the corresponding linear problem,

{-p{x)u'(x))' + q(x)u(x) = Xu(x) (x e (0, oo), u(0) = 0) ,

possesses exactly (i — 1) simple zeroes in (0, oo). (see [1], pages
1480 and 1547). Since these eigenvalues are simple, it follows from
Theorem 2.4 of [1] that near (Xif 0), ^λ. is a simple curve. Thus
r^xJ(Xij 0) consists of at most two components <ĝ + and ^™. (This
applies to all normal eigenvalues λ0 of L.)

These components can be studied in greater detail if the nonlinear
term H satisfies more stringent conditions. For instance:

(H-5) fl(λ, u)(x) = φ)[G(X, u)(x)] for all x ^ 0 where

G{Xf u): [0, oo) > [0, oo), I G(X, u)(x) \^M\ u(x) \

for x ^ 0, and | G(λ, u)(x) \ £ N.

THEOREM 4.2. Suppose all the conditions H-l, H-3, H-4, and
H-5 are satisfied. Then for λ< S spwd (L), c^h has the following
properties:

(1) There is a neighborhood έ? of (Xi9 0) in R x HI such that
c^ιi Π £? is a simple curve and if (λ, u) e £f C\ έ7, u has exactly
(i — 1) simple zeroes in (0, oo).

(2) < ^ ί consists of at most two components, *£*£ and ^ 7 .
(3) If (λ, i^e^^. , ίfeβ^ w- has exactly (i — 1) simple zeroes in

(0, 00).

( 4) 1/ (λ, w) G ί f v έftew 0 < λ ^ λ,.
( 5 ) {l| u II I (λ, u) e <^y is unbounded.

Proof. The first part of (1) and (2), are proven in [5] and (5)
follows Γfrom (4) through the application of Theorem 2.2. Thus,
only (3), (4), and the last part of (1) remain to be proven.

In a similar setting these have been shown by Stuart [7], and
his techniques apply in the present situation.
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