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ON A CLASS OF UNBOUNDED OPERATOR
ALGEBRAS 1II

ATSUSHI INOUE

In this paper we continue our study of unbounded operator
algebras. On the basis of the space L“[0, 1] introduced by R.
Arens [1] we define and investigate unbounded Hilbert
algebras. The primary purpose of this paper is to investigate
the relation between unbounded Hilbert algebras and
EW*-algebras and the structure of some EW *-algebras.

1. Introduction. In a previous paper [10] we began our study
of EW”-algebras. For the definitions and the basic properties concern-
ing EW”-algebras is referred to [10]. It is well known that semifinite
von Neumann algebras are related to Hilbert algebras. That is, if 9,isa
Hilbert algebra, then the left von Neumann algebra %,(9,) is defined and
UN(Dy) is a semifinite von Neumann algebra and conversely if 2 is a
semifinite von Neumann algebra, then there exists a Hilbert algebra %,
such that U is isomorphic to the left von Neumann algebra %(%,). In
this paper we study the above facts about EW7-algebras. So, our
starting point will be the extension of Hilbert algebras.

DEeriNiTION 1.1. Let & be a pre-Hilbert space with inner product
(| )and a *-algebra. If @ satisfies the following conditions (1) ~ (3);
M) Eln)=(*|&), &ne;

2 =M€, &niE€D;
By (2) we define 7 (¢) and #'(n) by;

m(ém=nm'm)é=¢n, &neED

Then =(¢) and ='(n) are closable operators on & and we have
m(€)* D w(§*)and w'(n)* D w'(n*). Wecall 7 (resp. 7') the left (resp.
right) regular representation of &.

(3) Putting

Do={&£ € D; w(&) is continuous},

95 is dense in 9, then 9P is called an unbounded Hilbert algebra over
D,. In particular, if 9, # 9, then 9 is called a pure unbounded Hilbert
algebra over %,.

In §2 we investigate the properties of unbounded Hilbert algebras
and we introduce examples of such unbounded Hilbert algebras (L*[0, 1],
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Le(—o,2), Li(—ow,0) Li(—o,), L{(G), L3(G) (G; unimodular
locally compact group)).

In §3 we consider the noncommutative integration with respect to a
von Neumann algebra as constructed by Segal in [14]. Let &% be a pure
unbounded Hilbert algebra over %,. Then L“(%,) and L3(%,) are
defined and they are pure unbounded Hilbert algebras. In particular,
L$(2,) is maximal in pure unbounded Hilbert algebras containing
9,. Furthermore 9° (resp. 9) is a *-subalgebra of pure unbounded
Hilbert algebra L°(9,) (resp. L5(9,)) (Theorem 3.9.). We can define a
left EW?”-algebra U (2) of a pure unbounded Hilbert algebra & over %,
i.e., U(P) is a minimal EW~-algebra on L3(%,) over Uy(D,) and
U(D) D w(D), where we denote by A the smallest closed extension of a
closable operator A and we put % ={A; A € %} (Theorem 3.10.).

In 84 we define traces on EW?™-algebras and we investigate the
structure of some EW”*-algebras.

DerINITION 1.2. Let % be an EW~*-algebra and let ¢ be a map of
" into [0,%]. If ¢ satisfies the following conditions (1) ~ (3), then ¢ is
called a trace on UA*;

(1) e(S+T)=¢(S)+¢(T), STEA,;

(2) e(AS)=21p(9), Az0, Sed;

3) e(S*S)=¢(SS7), Se.

If the conditions ¢(S)=0, S € A" implies S =0, then ¢ is called
faithful. If, for each increasing net {T,} of ?[* that converges o-weakly
to § € A" (hereafter we denote T, T S), we have ¢(T,) T ¢(S), then ¢ is
called normal. If ¢(S) <= for every S € %", then ¢ is called finite. If,
for each S € U, there exists a net {T.} such that T, T S and ¢(T,) <,
then ¢ is called semifinite.

Let U (D) be the left EW*-algebra of a pure unbounded Hilbert
algebra 9 over %,. Then there exists a faithful normal semifinite trace
¢ on U(D)" such that ¢/U(D); equals the natural trace on U(9,)" and
UD)(N,), CN, (we note N, ={T € U(D); ¢(T*T) <} and (N,), =
- N, NU(D),) (Theorem 4.2.). Conversely if A is an EW*-algebra with
a faithful normal semifinite trace ¢ satisfying %A(,), CN,, then N, is a
pure unbounded Hilbert algebra over (9,), and N is isomorphic to the
left EW”-algebra U (MN,) of N, (Theorem 4.11.).

2. Unbounded Hilbert algebras. In thissectionlet & bea
pure unbounded Hilbert algebra over &, and let $ be the completion of
9. Clearly 9, is a Hilbert algebra and the completion of %, is a Hilbert
space . For each x € § we define my(x) and m(x) by;

m(x)§ = m(§)x, &€ Dy
my(x)§ = m(§)x, & E D,
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where m, (resp. ) is the left (resp. right) regular representation of the
Hilbert algebra ®,. Then my(x) and m¢(x) are linear operators on 9
with domain %,. By ([12] Theorem 3) we have

mo(Jx) = mo(x)*, mo(Jx) = ro(x)*
for all x € 9, where J denotes the involution of 9.

LEmMA 2.1. For each £ € @ we have

(1) (&) = m(§), m'(§) = my(£);
Q) w(E*)=m()", m'(¢*)=m'(§)".

Proof. (1); Clearly we get m(£)Cw(£). Hence mo(€)*D
m(€)*. Since m(€)* = m(£*) and 7 (€)* D w(£*), we have

(&) = mo(€*)* D w(£*)* D w(£).

Therefore we get m(¢) = 77?)
(2); By (1) we have

m (€)= mo(£*) = m(§)* = m(£)*.

LEmMMA 2.2. Foreach A, u € € (the field of complex numbers) and
EENNED (i =1,2) we have
m(A& + pé) = Am (&) + pm(E);
m(£&) = m(§)m(£);
m(§*) Cm(£)%;
7' (A + pma) = Am'(m) + prr'(n2);
7' (mm2) = 7' (n)7'(M);
w'(n*) Ca'(n)*.

Putting

m(§)'=7("), 7)) =7'(n%),

m(PD) and ©'(D) are # -algebras on P and we have the following
properties ;

D) 7(D) =7(Do), 7'(D)p = 7 (Do);
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Q) Jm()J =m'(§), Jn'(§)I =7(£)", (€ D;
@) #@)m'(n)=n'(n)m(), &mED;

@) wE)y=n), 7 =7'()" (€D

Hence we get

7(D)y = UDo), 7(D)y = V(Do)

where U(D,) (resp. V(D)) is the left (resp. right) von Neumann algebra
of D.

ProprosiTION 2.3. For each A €EC and £ m € D we have

m(§)ta(m)=7m(+m), w(&) 7(n)=n(én),
A-m(§)=m(AE), 7(£)*=m(£Y).

Therefore w(2) is a *-algebra of closed operators on  under the
operations of strong sum, strong product, adjoint and strong scalar
multiplication.  Similarly w'(2) is a *-algebra of closed operators on
9. Furthermore we have

Jr(&)J = w'(&)*, Ja'(€)J = m(é)*, £€D.

Proof. By Lemma 2.1. we have 7 (£) = 7 (£*)* forevery £ € 9 and
hence

m(§)tm(m)=7m(§)+m(n)=m(£*)* + m(n*)*
C(m(E")+mn*)*=m((§+1))*

=m(§+m),

and so w(&)+mw(n)=mw(£+m). Similarly 7w (&) 7(n)=m(€)m(n)=
m(én) and A - 7w(&)= w(AE) are showed. By Lemma 2.2 (2) we
have Jw(¢€)J = 7'(¢€)*, € €2 and hence Jm(¢&)J=7'(€)" = w'(£)* by
Lemma 2.1. On the other hand we can easily show Jm(§)J=
Jm(€)J. Therefore we have Jm(&)J = 7'(€)*.

Problem._ Does there exist an EW™*-algebra U such that @I—,,=
U(Dy) and A D w(D)?
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In §3 we show that there exist such EW”-algebras. In particular,
there exists an EW*-algebra such that is minimal in such EW?*-algebras
and we call it the left EW*-algebra of &.

We introduce examples of unbounded Hilbert algebras.

(1) L°[0,1]. Let L“[0,1] be the set of all complex-valued measur-
able functions f on [0, 1] such that f€ L*[0,1], p=1,2,---. By the
whole collection of L”-norms

i1 =[ [ 1], P12,

and by pointwise multiplication and involution (f*(t)= f(¢), t €[0,1])
the space L“[0, 1] is a complete metrizable locally convex *-algebra with
jointly continuous multiplication. R. Arens [1] showed L“[0, 1] is not a
locally m-convex algebra. However, G. R. Allan [2] showed that
L°[0,1] is a GB*-algebra with (L“[0,1]),= L*[0,1]. We introduce the
inner product into L“[0, 1] by;

(19)= | fOr®d fgeLo,1]

Then L“[0,1] is regarded as a pure unbounded Hilbert algebra over
L0, 1].

(2) L“(—,»). Let L“(—,») be the set of all complex-valued
measurable functions f on (— o, ®) such that f € L?(— », ©) for every real
number p=1. Under the following operations

(fg)(x) = f(x)g(x), (Af)(x)=Af(x),
f*(x)=f(x)

and inner product (f | g) = fx f(x)g(x)dx, we can show that L*(— o, x)

is a pure unbounded Hilbert algebra.

(3) L¥(G) and L$(G). Let G be a unimodular locally compact
group and let dx be a Haar measure on G. Let L”(G) be the Banach
space of measurable functions f on G for which the norm

il = rwra]” 1=p<s,
I£1. = esssupl (o)

1s finite. We note
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L(G); the space of complex-valued continuous functions with
compact supports,

L*(G)= N L’(G), Li(G)= N L’(G),

Isp=x <p=w

L:(G)= N L*(G).

I<p=2

Under the convolution f*g as multiplication, involution f* (f*(x)=
f(x™") and inner product (f| g)=f f(x)g(x)dx on L*(G), L*(G) is a
G

Hilbert algebra and L{(G) and L3(G) are unbounded Hilbert
algebras. In fact, suppose f€ L?(G) and g € L*(G) (1/p +1/q = 1).
Then by Young’s inequality f* g exists and ||[f*g|, =|/f|,llgll, where
1/r=1/p+1/q —1. Furthermore, for each fE L’(G) (1=p <x) we
have ||f*|, =|fl,- Therefore we can easily show that L*(G), L#(G) and
L3(G) are * -algebras. Since L(G)CL*(G)CLY(G)N L*G) and L(G),
L'(G)NL*G) are Hilbert algebras, L“(G) is clearly a Hilbert
algebra. We can easily show that (f|g)=(g*|f*) and (f*g | h)=
(g | f**h) for every f,g,h € LYG) (resp. L$(G)). Furthermore we
have

L*(G)C(LY(G)) (resp. L5(G),)CL¥(G),

and so (LY(G),)’ (resp. (L5(G),)) is dense in L*(G). Therefore L{(G)
and L3(G) are unbounded Hilbert algebras.

Problem. Is an unbounded Hilbert algebra L (G ) (or L5(G)) pure?

If G is a compact group, then L*(G)is an H *-algebra, and so L{(G)
and L(G) are Hilbert algebras.
If G = (—x,), then

Ly(—®,0)= M L"(—o®,x)
I<p=wx
and

Li(==9)= N I(~=)

<p=

are pure unbounded Hilbert algebras under the following operations and
inner product
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()= [ f)gtx=y)ay,

(Af)(x) = Af(x), f*(x)=f(—x),
(f!g)=f_i f(x)g(x)dx.

In fact, we note

m(flg=f*g fgEL(~=x)
and
(L3 (=0, 0)), = {f € L{.(— »,®); 7 (f) is continuous}.
We have only to show (L{(—%,®)),# Li(—»,). By the theory of

Hilbert algebras we have

(L'( = 00,%0) N L*(— %, ), = {f € L*(— »,); 7(f) is a bounded
linear operator on L[*(— o, »)}
={f € (= »,®); f € L*(~», %)},

where f denotes the Fourier transform of f. Clearly we have
(L(— %0, ))y C{f € LA(— 0, ); f € L*(— 0, )}.

Putting

0, x<1
f(x)= {

1/x, x=1

we can show feE€L%(—,2) and f&L*(—%,®), and so
L¢.(— o, o), # L.(—%,»). Consequently L{:(—,©) is pure.

3. L°-spaces with respect to noncommutative inte-
gration. Our starting point for the construction of L“-space will be
the algebras of operators measurable with respect to a von Neumann
algebra as constructed by Segal in [14]. Let % be a semifinite von
Neumann algebra on a Hilbert space $ and let ¢ be a faithful normal
semifinite trace on A*. Let U, and U, respectively, denote the set of all
projections and that of unitary operators in 2.
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DEeFINITION 3.1. A linear set © in © is said to be strongly dense
(resp. ¢-restrictedly strongly dense) provided

(a) UDCD for every U' €U,

(b) there exists a sequence of projections P, € such that P,H CD,
P; | 0 and P; is a finite projection (resp. ¢ (P:)<®). An operator
Tn? is called essentially measurable (resp. ¢-restrictedly essentially
measurable) if T has a strongly dense (resp. ¢-restrictedly strongly
dense) domain and a closed extension. Moreover if T is closed, T is
called measurable (resp. ¢-restrictedly measurable).

LemMma 3.2. ([11] Lemma 1.1.) Let T be a closed densely defined
operator nUA. Then;

(1) T is measurable (resp. ¢-restrictedly measurable) if and only if
so is | T|.

(2) LeteT=0andletT= f AdE (M) be its spectral resolution.  Tis
0

measurable (resp. ¢-restrictedly measurable) if and only if E(A)* (=1 —
E (X)) is a finite projection (resp. ¢ (E(A)") <) for a positive A.

We denote the set of all operators on $ measurable (resp. ¢-
restrictedly measurable) with respect to 2 by IN(A) (resp. V(¢)).

ProrosiTioN 3.3. ([7] Prop. 4.3.) The sets M(A) and M(¢) form
EW*-algebras over U under the operations of strong sum, strong product,
adjoint and strong scalar multiplication.

Let I, be the maximal ideal associated with ¢, that is, the set of
A €U with ¢(|A|)<ew. For every T € IM(A)* we put

pn(T)= sup ¢(A).
AEM, A=T

DEFINITION 3.4. A measurable operator Tn¥ is said to be pth
power integrable with respect to ¢ if w(|T]P)<cw. Let L°(¢p)
(1= p <) stand for the set of pth power integrable operators n. The
L’-norm of TE L°(¢) is defined as wu(]T|?)"” and designated by
|T|,. If p=c, we shall identify 2 with L*(¢).

A measurable operator T belongs to L?(¢) (1 = p <) if and only if

T is ¢-restrictedly measurable and —f APdep(E(A)Y)<x, where
0

f AdE(A) is the spectral resolution of | T'|.
0

THEOREM 3.5. [11] (1) For 1=p <x L?(¢) is a Banach space
with norm | T|, and the following properties are satisfied.
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@ Tl =IIT*|, =IU-T-U*|, for TE L’(¢) and U € A..

(b) For S, TE L*(¢) such that |T|=|S| we have |T|, =S|,
(c) For A€W and TE L*(¢) we have |A-T|, =|A|| T,

d) IfO=T,=T,= --- is a sequence of elements of L*(¢) such that
|,} is bounded, then there exists T: = sup T, andlim,_..|| T — T,|, = 0.
(2) Let 1/p+1/g =1 where 1=p, q=». Then

@ wuS-T)=p(T-S)forSEL(¢) and TE L (¢). If further-
more, S, T =0, then u(S - T)= 0; and conversely, if u (S - T)= 0 for every
T=0, then S =0.

lp. for TEL"(¢) with 2/, 1/p, =1, p. =1 (i=1,2,---,n).

{IT,

IT.

© ISl = sup  [u(S-T)|

TEL ()| Tla=1

for S € L"(¢) where the sup is attained by some T if 1=p <.
@ e T =p(S*[-ITHu(S[-[T*N=p(S-TPu(T-S))

for SEL*(¢) and T € L* (o).

(3) Let 1/p+1/q =1/r where 1=p,q, r =.

(@ IfTEL (p)and SE L' (¢), then T-S € L'(¢) and we have
IT-S =TS,

(b) Let T be a ¢-restrictedly measurable operator nU. If T-S €
L'(¢) for every SE€ L(¢)", then T € L?(¢p).

Let 9, be a Hilbert algebra. Let %(9,) be the left von Neumann
algebra of 9, and let ¢, be the natural trace on (%,)". The comple-
tion § of 9, is equivalent to an H-system [3]. Putting

(20), = {x € O; me(x) is bounded},

(%), is a maximal Hilbert algebra containing %, and Uo(%,)(%o)s C(Zo)s.
For every x €9 m(x) is ¢,-restrictedly measurable ([11] Lemma
2.3.). We can easily show that L*(¢,) = {m(x); x € D} and L*(¢,) is a
Hilbert space isometric with . Moreover we remark that L*(¢,) is an
H-system isomorphic with § by the map. x — m,(x). This follows from
the facts that (1) if xy is defined and equals z, then mo(x) - 7o(y) = mo(xy)
and (2) if my(x) - mo(y) equals m(2), then xy is defined and equals z. We
have

L'(¢o) = {Z mo(x:) - oY1) X, Yo € O}

and the integral w(T) of T = =, mo(x,) - mo(y,) equals ==, (y, | x*).
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DerINITION 3.5. We define the L“-spaces with respect to the
natural trace ¢, as follows;

L'(en= N L (o).
Lie)= N L ()

Similarly we define the L“-spaces with respect to the Hilbert algebra 9,
as follows;

L (D) = {x € ; m(x) € L* (@)},
LY(Dy) = {x € 9; m(x) E L¥(¢0)}-

ProposITION 3.6.  The space L*(9D,) (resp. L(2,)) is an unbounded
Hilbert algebra containing (2,); (resp. (2o)s).

Proof. For 1=p <o and S, T € L°(¢,)
IS Tl =S 1o [ Tl

and hence S - T € L“(¢,). _Therefore, for each x and y in L*(%,) xy
is defined and equals my(x)y. Furthermore for each T €& L”(¢,)
(1=p<w) |T|, =|T*|, and hence x*€& L*(%,) for every x€
L“(9,). Consequently L“(9,) is a *-algebra. We can easily show
L*(D,) D (D), and so L*(9,) is a pre-Hilbert space and its completion is
L (%,)=%. For every x,y and z in L°(9,) we have

(x|y)=@*[x*

and

(xy | 2) = (m(x)y | 2) = (y | mlx)*z)=(y | mo(x¥)z) = (y | x*2).

Consequently L“(%,) is an unbounded Hilbert algebra. Similarly we
can show that L5(%,) is an unbounded Hilbert algebra containing (%,),.

ProposITION 3.7.  The space L*(¢,) (resp. L3(¢o)) is an unbounded
Hilbert algebra containing m,((2,),)* (resp. mo((2,),)) under the strong
sum, strong product, adjoint, strong scalar multiplication and inner product
on L*(¢y).
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Proof. We can easily show that the map x € 9 — m(x) € L*(¢) is
an isometric isomorphism of L“(%,) onto L*(¢,). By Proposition 3.6.
L*(¢,) is an unbounded Hilbert algebra.

Problem. Is L*(9,) a pure unbounded Hilbert algebra? Does there
exist a pure unbounded Hilbert algebra containing %,?

ProOPOSITION 3.8. The following conditions are equivalent.

(1) There exists a pure unbounded Hilbert algebra 9 containing 9.

(2) L3(9,) is a pure unbounded Hilbert algebra.

3) L“(2,) is a pure unbounded Hilbert algebra.

(4) There exists a positive element x in § (i.e., wo(x) = 0) such that
xZ(Dy)yand x"€EH, n=1,2,---.

Proof. (1) = (4); There exists an element £ € & such that 7 (¢) is
an unbounded operator on . Clearly ¢*¢ & (9,), and (§*¢)" € D CD,
n= 1’ 2, e

(4) > (3); Let y = x*>. Then we can easily show that y & (9,), and

for each positive integer n mo(y) € L"(¢,). Let mo(y) =f AdE(X) be
0

the spectral resolution. For each p with 1= p < there is a positive
integer n such that n =p <n+1. Then we have

—J: APdpo(E(A)) = — fol Atde(E(A)Y)— ﬁx A" deo(E(A)Y)

=~ [ wdeE) - [ A deEQY)
< o,

Therefore mo(y) € L*(¢,), 1.€., y € L*(2D,) for every 1 =p <=, and so
y € L*(92,) and my(y) is unbounded. Consequently L“(9,) is a pure
unbounded Hilbert algebra.
(3) = (2); Since L*(9,) C L5(2,), the assertion (3) = (2) is obvious.
(2) = (1); L3(9,) is a pure unbounded Hilbert algebra containing
Dy.

THEOREM 3.9. Let & be a pure unbounded Hilbert algebra over
D,. Then D° (resp. D) is a *-subalgebra of the pure unbounded Hilbert
algebra L*(9,) (resp. L5(9,)). In particular, L5(9,) is maximal in pure
unbounded Hilbert algebras containing 9,.

Proof. By Proposition 3.8 L“(%,) and L$(9,) are pure unbounded
Hilbert algebras. In the same way as the proof (4) = (3) of Proposition
3.8 we can easily show L*(92,)D 9* and L$(2,)D %.
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Problem. Let 9 be a pure unbounded Hilbert algebra over
2,. _Does there exist an EW™-algebra ¥ such that A, = U(P,) and
AD 7 (D)?

Let 9 be a pure unbounded Hilbert algebra over &,. By Proposi-
tion 3.8 L3(%,) is a pure unbounded Hilbert algebra such that

DyCDCLYD)CSH, and L (@o)LAD,) CLUAD,).

Let 7 (resp. w3) be the left regular representation of % (resp.
L$(92,)). By Lemma 2.1 we have 75(2)= 7(D) = my(D).

Then 73(P) is a # -algebra on L$(%,) under 7w5(¢)* = w5(£*) and
L ())/L5(D): ={T/L5(9D,); T € L (¢,)} is a # -algebra on L$(Z,)
under (T/L$(9,))* = T*/L%(9,), where T/L$(D,) is the restriction of T
onto L$(D,).

NoTATION. We denote by U(Z) a # -algebra on L3(9,) generated
by m5(%) and L*(¢o)/ L 3(%0)-

THEOREM 3.10. Let & be a pure unbounded Hilbert algebra over
Dy. _Then U(D) and U(LY(D,)) are EW™*-algebras on L$(%,) such that
UD )= U(LAD))s= U(Dy) and U(L(Dy))D U(D)D 7 (D).

DeriNiTION 3.11. Let & be a pure unbounded Hilbert algebra over
Dy. U(D) is called the left EW”-algebra of %.

4. Traces on EW”-algebras. Let % be an EW*-algebra
and let ¢ be a trace on A*. We note

N, ={T € A; ¢(T*T) <}

and let M, be a linear combination of {ST*; S, T € N,}. Then, clearly,
N, (resp. M,) is a # -subspace of U satisfying A, N, CN, and N, A, C
N, (resp. AW, CIWM, and M, A, CIN,). We can easily show that the
positive part I, of M, equals {T € A*; ¢ (T) <} and I, is a linear
combination of M;. We define ¢ by;

e(S)=Ae(S)+ -+ A4e(S,), S=AS+--+AS,
LEG, S em.

Then it is not difficult to show that ¢ is a well-defined linear form on ¢,
and it satisfies
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(1) ¢S)=¢(S), Se;

(2) ¢(8*T)=¢(TS*), S, TeN,;

(3) ¢(ST)=¢(TS), seMm, TeU,
We note

&(T)=¢(T), TE A

Then ¢ is a trace on 9; and we have

(R,)=N; and @W,),= M,

DEerINITION 4.1, Let % be an EW”-algebra and let ¢ be a trace on
A", If every A € is ¢-restrictedly measurable, then 2 is called
¢-measurable.

Let & be a pure unbounded Hilbert algebra over &, and let $ be the
completion of 2. Let & be a pure unbounded Hilbert algebra over (2,),
containing 9. Let % be a ¢,measurable (merely measurable) EW*-
algebra on € such that A, = U, (D) and AD 7 (D) (U(D) and
U (L35(9,)) are examples of such EW7*-algebras), where ¢,.is the natural
trace on U\(D,)".

NotaTION.  For each S € %" we define ¢ as follows;

(x | x), if $”=m(x), x € LYD);
®(S)= {
o0, if otherwise.

THEOREM 4.2. (1) ¢ is a faithful normal semifinite trace on A".
(2) We have

N, =ANLyp)) and M, =A N L*(¢,).
(3) Putting
N(D)={x ED; m(x)EN} and M(D,)={x € H; m(x) EM,},
N(D,) (resp. M(D,)) is a pure unbounded Hilbert algebra over (%,), (resp.
(2,);) containing D (resp. P?).
(4) ¢ equals the natural trace ¢, on U«(D,)".

(5) Let u be the integral on L'(¢,). Then

¢(N)=u(T), TEM,
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In particular, for every x,y € N(D,)

@ (moly ) m)(x))—(xly)

6) AM,), CN, and AEM,), CIN,.
(7) Every element T of U is represented by

T=’I:)+’1—‘Ia ’T;)Eg)lb? 7“169}343
(8) If TE N, then we have T = (T/D,).
Proof. (2); Let TEM, and let T = U|T| be the polar decomposi-
tionof T. Since ¢ (T*T) = <p(f Tf )<, |[T|=m(x), x € L3(%,), and so

[T|€ L%¢,) and hence T=U-|T|€ L%g,)NA. The converse is
obvious. Moreover we get

M, =N2= N Lieo)) = AN L*(p0).

(3); By (2) we can easily show (3).
(4); Let TEA;. Since A,N L(@0) = mo((Do)s)s

) (x | x), if T =m(x), x € LYD,);
e(T)=¢(T)= {

o0, if otherwise
(x| x), if T =my(x), x € (Do)
{ 0, if otherwise
= ‘P()(T)-
(5); Let TEMW,. By (2) there exists an element x of L$(%,) such
that T = 7o(x). Then we have ¢(T)= (x | x)=u(T), and so ¢(T) =
w(T), TEM,.

(6); Let = be the left regular representation of €. We can easily
show that

Tm(€)= m(T¢), TEY, ¢€(D,),CE

Therefore 7(T¢)= Tw(¢§)EU and 7w (T¢)= w(T¢), T¢E € € CLY(D,),
and so Tw(¢£)EN,.
(7); Let TEA and let T=U|T| be the polar decomposition of

T. Let m = f AdEr(A) be the spectral resolution of !_T_I Since {_T_[ is
0
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a @,-restrictedly measurable operator, Er(A,)" € (I, )," for some A,>
0. By (6) A(M, ), CIM,, and so putting

7—] = TET(/\())_L = UI TlET()\o)l and ’I;) = TET(/\O),

e, TEM, and T=T,+ T,.
(8); Let T€ . By (7) we have

T=—;1_:O+_7:;, ’I(')EQI’,, ﬂewew

= TO+ W()(x), X E Lw(@(])

= (To/D,) + mo(x) = To/ Do+ mo(x) = T/D,.

(1); We shall show that ¢ is a trace on A, i.e.,
(@ ¢(S+T)=o¢(S)+e(T), SSTEA;

b) ¢(AS)=21¢(S), A =0, SEU;

) @(87S)=¢(SS*), Se.

(a); Let S,TEA". Suppose ¢(S+T)<w. Since S (or T)=
S+Tand S+T€M,’, S and T in M,*, and s0 ¢(S)= u(S)< and
©(T)=u(T)<> by (5). Suppose @(S)<x and ¢(T)<w. Since S
and T in L'(¢o)*, by Theorem 3.5. we have S+ T € L'(¢,)* and

e(S)te(T)=pS)+u(T)=pnS+T)=p(S+D=e(S+T).

(b); clear.

(c); Let SEA. Suppose ¢(§*S)<x. LetS = U|S]|be the polar
decomposition of S. Then |S|= m(x), x € L$(D,) and |S*|=|S*=
mo(x*), and so we get

@(S7S)=(x|x)=(x*|x*)= @(85").

Consequently ¢ is a trace on A*. Since ¢ = ¢, by (4), ¢ is a faithful
normal semifinite trace on A,”. We can easily show that ¢ is
faithful. We shall show that ¢ is normal. Let T, 1 T, T, TEU".
Suppose ¢(T) <. Then there exist {x,} CL3(%,) and x € L$(2,) such
that T.?>= m(x,) and T" = me(x). We can easily show that ¢(T,)=
%P 1 o(T)=|x|* Suppose ¢(T)=c and sup,¢(T,)<wx. There
exists a net {x,} of L%(%,) such that T? = my(x,). Let T = f” AdEr(A)
0

be the spectral resolution of T. Since T is g,-restrictedly measurable,
E; (X)) € (M,)," for some A,>0, and so by (5) we get
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TE:(A)*EM: and T= f AdEr(A)+ TEr(Ay)".
0

From ¢ (T) =, we have gE(f )\dET()\)> =o. Since T, 1 T, we get
0
Er(A)T.E{A)) E A, and

A(‘
Er(A)T.EHA) 1 ET()\O)TET()\O)=f0 AdEL(M).
Then we can show that

Er (A T.E(A) 1 j " AE O,

and so by the normality of ¢
& ECOTED) 1 6( [ AdEh) )=
On the other hand we have

o),

Ao

AEr (A )) = sup @ (Er(Ag) TLEAAy))

= sup ¢ (Er(A) - mo(x. ) Er(Ao))

= Slip @ (WO(ET (/\O)xa) : 77'O(ET()\U)X ’ﬁ)*)

=sup (Er(Ao)x. | Er(Ao)x?)

=sup| x. [’ = sup ¢(T.) <=

A(P
This contradicts @([

0
nally we shall show that ¢ is semifinite. Since ¢ is semifinite, there

exists a net {T,} of (M, ); suchthat T, 1 I. Let TEA". By (6) we have

)\dET(/\)> =, Consequently ¢ is normal. Fi-

T*T.T:e M, and T:T,.T:! T,
and so ¢ is semifinite.

DEerINITION 4.3. The trace ¢ of Theorem 4.2. is called the natural
trace on A",
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CoOROLLARY 4.4. For every A €U and x € L§(9,) we have

ALYD)CLYD,) and A - my(x)= m(Ax).
In particular, we have
AN, CN, and AI, CIN,.
Proof. By Theorem 4.2.(7) we get A = A+ A,, A,EU,, A, EM,,

andso A = A,+ m(y), y € L*(2,). Hence D(A)= D(my(y)) D LADy)
and we have

AL 5’(@0) = X()L (D) + X,L (D)
C L?(@())9

and

A- W()(x) = (Xo + 77'0()’ )) ' 770(x)

= Ay my(x) + mo(y) - molx)

= mo(AoX )+ mo(mo(y )x)
= W()(—A—ox + —A—lx)

= 7T()(Ax ).

Moreover, since % =% NL%g,) and % =9 N L(g,), we have
AN, CN, and AM, CI,.
For every A € 9 putting
Ax = Ax,  x € LYD,),

Aﬁ is a linear operator on L%, by Corollary 4.4.. Let =
{A; A €}. Then we have

AB=AB, M =XA and A*=A*/L¥D)=A"
for every A,B €% and A €. We can easily show that 9 equals the
left EW7”-algebra U (N(Z,)) of a pure unbounded Hilbert algebra

N(D,). So, we obtain the following theorem.

THEOREM 4.5. Let & be a pure unbounded Hilbert algebra over 9,
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and let € be a pure unbounded Hilbert algebra over (%), containing
9. Let A be a measurable EW?*-algebra on € such that A, = U«(D,) and
AD 7(D). Then U is regarded as the left EW*-algebra U (N(D,)) of a
pure unbounded Hilbert algebra (2,) over (2,), containing 9.

Finally we shall show that an EW~”-algebra with a faithful normal
semifinite trace is isomorphic to a left EW*-algebra of a pure unbounded
Hilbert algebra (Theorem 4.11). Let A be an EW*-algebra on D and let
¢ be a faithful trace on A*. For each S, T €N, putting

(A(S) [ M(T)) = ¢(T"S),
(| )is an inner product on A (t,) and by, foreach S, T€ N, and a € C,
AS)+A(T)=A(S+T), ar(S)=Ar(al),
A(N,) is a pre-Hilbert space. Let §, be the completion of A (N,). Let
U be a p-measurable EW”-algebra on © and let ¢ be a faithful normal
semifinite trace on A* satisfying AN, ), CN,.

LEMMA 4.6. The property “UAN,), CN,” leads the property
“AM, TN,

Proof. Let A €UandS €N, LetS= U|S|be the polar decom-
position of S and let |S|= [ AdEs(A) be the spectral resolution of
0

[—S—l. Since | S| is a @-restrictedly measurable operator, Eg(A,)* € (IR, ),"
for some A,>0, and so we have

AS=AU|S|= AU(J:O AdEs(A)JrlSIEs(/\o)l)

= A Uf/\ﬂ AdEs (A) + ASES (AO)L
eAMN, ) C mw'

LemMMA 4.7. Let A €. Then there exist A,€ A, and A, €M,
such that

A=A+A,.

L Proof. Let A =U|A]| be the polar decomposition of A and let
|A|=] AdE.(A) be the spectral resolution. Since |[A| is ¢-

0
restrictedly measurable, E,(A,)' € (M,)," for some A,>0. Putting
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Ao
A0=U< f AdEA(/\)> and A, = AE,(A)",
0

A EN, ALEAM,), CIM, and A = A, + A,.

LEmMMA 4.8. The pre-Hilbert space A(N,) is a pure unbounded
Hilbert algebra over A ((X,),).

Proof. We shall show that A((:,),) is dense in A(MN,). For each
TEN, let T=U|T]| be_ the polar decomposition of T. Then |T|=

U*TeN;. Let m=f AdEr(A) be the spectral resolution of

0

‘_ﬂ- Putting
S, = J AE; (M),
0

S, €(N,); and {S,} converges o-strongly to | T|, and so S2 1 |T|* and
since ¢ is normal, we get

[ASHIEF=¢(S%) T (TP =IA(TDI
and
AUTDIAS) =¢(IT]S,)
=o(ITPS. TP 1t o(ITPH=IA1UTDIF,

and hence
lim [ A(US,) = A(T)[| = Lim[|A(S,) = A(| T|)[| = 0.

Therefore A((N,),) is dense in A(N,). Since ¢ is a faithful normal
semifinite trace on A,", A((N,),) = A(N;) is a maximal Hilbert algebra,
and so we can easily show that A((M,),) is a maximal Hilbert
algebra. For every S, T €N, we define the operations on A(MN,) as
follows;

ASA(T)=A(ST),  aA(S)= A(aS),
A(S)* = A(S7), A(S) [ A(T)) = ¢(T7S).

Then it is not difficult to show that A(:,) is an unbounded Hilbert
algebra over A((:M,),). Finally we shall show that A(N,) is pure. By
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Lemma 4.7. every element A of U is represented by A = A+ A,
A€, AeM,. If AeA-UA, then A, €M, —(M,), and so
A((N,)e) # A(N,) and A ((N,),) is a maximal Hilbert algebra. Therefore
A(N,) is pure.

LEMMA 4.9. For every A € putting
V(AN (T)=A(AT), TeEN,
W(A) is a linear operator on A(N,). W (A) is a measurable EW*-algebra

on A(N,) such that ¥(A),= T(A,) = Uy(A((N,)s)) and ¥(A) D w(A(N,))
and ¥ is an isomorphism of A onto V(A).

Proof. By Lemma 4.6. AN, CN,, and so ¥(A) is a linear operator
on A(JN,). For every S €N, we have ¥(S) = m(A(S)), where 7 is the
left regular representation of the pure unbounded Hilbert algebra A (t,).
We shall show ¥(A), = ¥(A,). Clearly we have ¥(U,) C¥(A), Con-
versely let ¥(A)E ¥(YA),, By Lemma 4.7. A =A,+A, A€,
A EM,, andso V(A)=m(A(A))EVYEN,), Since A((M,),)isa maxi-
mal Hilbert algebra, A(A,)€ A((M,)s), i.e., A € (N, ), Therefore A =
Ayt A e, and so ¥Y(A)EV(2,). By the theory of von Neumann
algebras, W(A,)= U(A((N,),)). Moreover it is easy to show that
YA)DYN,)=7(A(MN,)) and ¥ is an isomorphism of A onto
Y(A). Since A is ¢-measurable, we can easily show that W(A) is
measurable.

LEmMMA 4.10. Let s be the natural trace on W(2)*. Then we have
e(A)=y¢(¥(A)), A€
Proof. By the definition of the natural trace ¢ we get
M, = (A W)) =¥ E)
and moreover for every A € I,
e(A)=[A(AHF = y(m(A(A)) = ¢y (¥(A)).

By Lemma 4.6. ~ 4.10. and Theorem 4.5. we obtain the following
theorem.

THEOREM 4.11. Let WA be an EW?”-algebra and let ¢ be a
faithful normal semifinite trace on A*. Suppose that U is a ¢ -measurable
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EW”-algebra and AN,), CN,. Then A(N,) is a pure unbounded
Hilbert algebra over A ((N,),) and putting

W(A)A(S)= A(AS), SEN,

for every A €U, W(A) is a linear operator on A(N,). The isomorphism
W is extended to an isomorphism ® of U onto the left EW*-algebra
UAR,)) of A(N,). Let ¢ be the natural trace on P(A)'. Then

o =yod,
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