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ON RAMSEY THEORY AND
GRAPHICAL PARAMETERS

LinpA LESNIAK-FOSTER AND JOHN ROBERTS

A graph G is said to have a factorization into the subgraphs
G, -+, G, if the subgraphs are spanning, pairwise
edge-disjoint, and the union of their edge sets equals the edge set
of G. For a graphical parameter f and positive integers
ny, ng, -+, me (k = 1), the f-Ramsey number f(n,, n,,---, n) is
the least positive integer p such that for any factorization
K, = U, G, it follows that f(G,)=n, for at least one i
1=i=k. In the following, we present two results involving
f-Ramsey numbers which hold for various vertex and edge
partition parameters, respectively. It is then shown that the
concept of f-Ramsey number can be generalized to more than
one vertex partition parameter, more than one edge partition
parameter, and combinations of vertex and edge partition
parameters. Formulas are presented for these generalized
f-Ramsey numbers and specific illustrations are given.

1. Introduction. A subgraph H of a graph G is called
spanning if H has the same vertex set as G. A graph G issaid to have a
factorization into the subgraphs G,, G,, - - -, G, written G = UX, G, if
the subgraphs are spanning, pairwise edge-disjoint, and the union of their
edge sets equals the edge set of G. It is permissible for a subgraph G, to
be empty; i.e., have no edges.

Let f be a graphical parameter, and let n;, n,,---, n, (k=1) be
positive integers. In [2], Chartrand and Polimeni defined the f-Ramsey
number f(n,, n,, - - -, n,) as the least positive integer p such that for any

factorization K, = Uk, G; of the complete graph of order p, it follows
that f(G,)= n; for at least one subgraph G, 1=i=k. If w(G) is the
maximum order among the complete subgraphs of G, then the w-
Ramsey number is the ordinary Ramsey number (see [3; p. 16]) in k
variables.

The chromatic number x(G) of a graph G is the minimum number
of colors which may be assigned to the vertices of G so that adjacent
vertices are assigned different colors. The vertex-arboricity a(G) of G
is the minimum number of subsets into which the vertex set of G may be
partitioned so that each subset induces an acyclic subgraph. Chartrand
and Polimeni [2] gave formulas for the y-Ramsey numbers and the
a-Ramsey numbers. We present a result which holds for several
“partition” parameters (including chromatic number and vertex-
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arboricity as special cases). Furthermore, it is shown that the concept of
f-Ramsey number can be generalized to more than one
parameter. Formulas are presented for these generalized f-Ramsey
numbers, and specific illustrations are given involving chromatic number,
edge chromatic number, vertex-arboricity, and arboricity.

2. Vertex partition parameters. A graphical property p
will be called co-hereditary if (1) every subgraph of a graph having
property p has property p and (2) the graph consisting of disjoint graphs,
each having property p, has property p.

Let v be a graphical property which the trivial graph K,
possesses. We define the vertex partition number v(G) of a graph G as
the minimum number of subsets into which the vertex set of G can be
partitioned so that each subset induces a subgraph having property
v. Clearly, v(G)=1if and only if G has property v. The limit lim v of
a vertex partition parameter v is defined as limv = lim,_.v(K,), pro-
vided this limit exists. We write limv = o if y(K,)—>®as n —>o. We
assume that all properties v under discussion are co-hereditary and that
limv =, Itis a consequence of the definitions that v(H)=v(G) if H
is a subgraph of G, for such properties v.

For positive integers n,, n,, - - -, n, and vertex partition parameter v,
the v-Ramsey number v(n,, n,, - - -, n,) is the least positive integer p such
that given any factorization K, = UL, G, it follows that v(G;) = n, for at
leastone i, 1=i=k. Sincelimv = o, foreachi, 1 =i =k, there exists a
positive integer m; such that v(K, )= n. Hence, since v is co-
hereditary, v(n,n,---,n) exists and is bounded above by
r(m, my---,m), the Ramsey number in the k variables
m,, m,, -+, m. We also note that v(n,, n, ---, n) is symmetric in
Ry, Nyt 0y My

There are properties v which are not co-hereditary and for which
limv# » such that v(n, ny, -+, n) does not exist for certain positive
integers n,, n,, -+, n.. For example, if v denotes the property of being
connected, then v(G) is the number of components of the graph
G. Then v(3,3) does not exist since for every positive integer p, there
exists a factorization K, = G, U G, such that neither G, nor G, has more
than two components.

For a vertex partition parameter v and positive integer k, let v(k)
denote the largest integer p for which there exists a factorization
K, = UX, G, such that »(G;,)=1for i =1,2,---, k. Then we have the
following lemma.

LemMMA 1. If v is a vertex partition parameter for which limv = o
and the corresponding property v is co-hereditary, then v(k) exists for every
positive integer k.
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Proof. Since v(K;)=1and K, = UL, K|, it follows that #(k)= 1 for
each positive integer k. Since lim v = «, there exists a positive integer p
such that v(K,)=2. Hence, if we consider an arbitrary factorization
K, =UL, G, where m =r(p,p,---,p) is the Ramsey number in k
variables, then G; contains K, as a subgraph for at least one i, 1 =i =k,
say i = j. Therefore, v(G )= v(K,)= 2, which implies that (k) exists
and, in fact, v(k)< m.

We can now present a formula for any v-Ramsey number.

THEOREM 1. Let ny, n,, -+, n (k 2 1) be positive integers, and let v
be a vertex partition parameter for which the corresponding property v is
co-hereditary and limy = . Then

v(n,ny--,m)=1+ ﬁ(k)-f[ (n; —1).

Proof. If n' =1 for some i =1,2,--- k, then v(n,n,---,m)=1
and the theorem follows. Thus, we assume that n, =2 for each i,
1=i=k, and let

p=l+17(k)-ﬂ(n,—1).

First, we verify the inequality v(n,, n, -+, n)=p. Assume that
this is not the case. Then there exists a factorization K, = UL, G, such
that v(G)=n,—1fori=1,2,---,k. Foreach G, i=1,2,--- k, let the
vertex set V(G,) be partitioned into v(G;) classes so that for each
“p-class” o, v({x))=1, where ( « ) denotes the subgraph induced by
the class <. Then G, has a w-class «; containing at least 1+
v(k)IE,(n — 1) vertices, G, has a wv-class «, containing at least
1+ v(k)-If;(n, — 1) vertices of o« ,, and, in general, for 1 =1<k, if

o, o, -+ -, o are v-classes, respectively, of G, G, - - -, G, for which

1 25

k

z1+ (k) [[ (n—1),

=I+1

1
0 -
=1

then G, has a v-class o ., such that

Hence, each G, 1=i=k, has a v-class «; such that |k, «,|=
1+ 5(k). Let U be a set of 1+ #(k) vertices in M, « , and define H,
to be the subgraph in G; induced by % for i =1,2,---, k. Then
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K1+ﬁ(k)= H,UH,U ---UH,

where v(H,) =1for 1 =i = k since v is co-hereditary. This, however, is
impossible. Therefore, v(n,, ny, - -, m)=p.

In order to show that v(n,, n, ---, n,)=p, it suffices to exhibit a
factorization K,.,=UX, G, such that »(G)=n-1 for i=
1,2,---,k. Let r=1II,(n — 1), and consider r pairwise disjoint copies
of K;«), labeled K}, K, - - -, Kb By definition of #(k), there exists
a factorization K;u,= UX, F; such that v(F)=1for i=1,2,---, k. We
denote by F, the F, contained in K}, [ =1,2,---,rand i =1,2,--- k.
With each of the r k-tuples (¢, €5, ", ), 1=¢=n—-1land 1= =k,
we identify a complete graph K, | =1,2,---, r, in such a way that the
identification is one-to-one. Then, for each i=1,2,---k and [=
1,2, - -, r, we associate with F, the k -tuple identified with K}, Let the
graph G, (i =1,2,---, k) consist of the graphs F,,, F,,---, F, where a
vertex of F, is adjacent to each vertex of F, if and only if the ith
coordinate is the first coordinate in which their associated k-tuples
differ. It then follows that K, ,= U, G. For each i=1,2,--- k,
define V,, to consist of the set of all vertices v such that v is a vertex of an
F, whose associated k-tuple (¢;, €5, -, ¢ ) hasc,=j;j=1,2,---,n — 1.
Then {V,;, V.o, - - -, V.noi} is a partition of V(G;) for which the subgraph
(V,,) consists of r/(n;_,) pairwise disjoint copies of F, J=1,2,---,n, — 1.
Hence, v(V,;)=1 for each such j, which implies that v(G,)= n,_, for
i=1,2--- k.

For the chromatic number y, it follows that y(k)=1 for all
k =1. Hence, we obtain an immediate corollary.

CoroLLARY la. (Chartrand and Polimeni [2]). Ifn,, n,, - -, n are
positive integers, then

k
x (ny, nz,---,nk)=l+l_1 (n; —1).

The edge-arboricity a,(G) of a graph G is the minimum number of
subsets in a partition of the edge set of G such that each subset induces
an acyclic subgraph. For the vertex-arboricity a(G) of G, we have
another corollary.

CoroLLARY 1b. (Chartrand and Polimeni [2]). If n,n, ---, n
are positive integers, then

k
a(n,ny,---,n)=1+2k H (n; — 1).
=1
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Proof. Again, it suffices to evaluate a(k). First, we observe that if
there is a factorization K, = U%, G, where a(G,)=1fori=1,2,---k,
then k 2 a,(K,)={p/2}. Since p =2k is the largest such integer, we
have a(k)= 2k and the desired result.

As one further illustration of Theorem 1, we consider the 2-
chromatic number y?(G) of a graph G (see 1), defined as the least
number of subsets in any partition of V(G) such that the subgraph
induced by each subset contains no path of length two. Also, we define
the edge chromatic number x,(G) of G as the least number of colors
needed to color the edges of G so that adjacent edges are colored
differently.

COROLLARY 1lc. For positive integers ny, ny, - -+, n,

k
Xa)(nl» ny, -, nk)= 1+2{§} H (n, - l)
1=1

Proof. To determine y®(k), it is equivalent to determine the
largest integer n such that y,(K,)= k. Since x,(K,)=p if p is odd and
xi(K,)=p—1if p is even, it follows that n =2{k/2}, which gives the
desired result.

The concept of the v-Ramsey number can be generalized. Let
v, vy, 7, Ve be vertex partition parameters where again we assume the
corresponding properties are co-hereditary and limy, = for each i
I=i=k. Then we define the (v,)i-Ramsey number (v,)i(n,, ny, -+, ny)
as the least positive integer p such that given any factorization K, =
UL, G, it follows that v,(G,) = n, for at least one i, 1 =i = k. Following
an earlier argument we note that (v, )f(n,, n,, - - -, n, ) exists since each v, is
co-hereditary and limwy, =. In this case, we do not have symmetry in
the k-variables n,, n,, - - -, n,; however, it does follow that

k —_ k
(Vi,')j=l (nu, nlz? Tt n:k) - (Vz)l (nl’ n2’ Y nk ),
where iy, i, -+, i is any permutation of 1,2, - k.
For vertex partition parameters v,, v,, -, v, we define (¥,)f(k)=

(7)f to be the largest integer p such that there exists a factorization
K,=UL, G, with v(G)=1 for i=1,2,---, k. Using an argument
similar to that given in Lemma 1, one can show that (#)f exists, and
moreover, a technique analogous to that employed in the proof of
Theorem 1 can be used to verify the following generalization of
Theorem 1.
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THEOREM 2. Let n,, n,, -+, n (k =1) be positive integers, and let
v, Uy, -+ o, v be vertex partition parameters for which the corresponding
properties v, are co-hereditary and limvy, = for 1=i=k. Then

w)i(n, nyy - m ) =1+ ()~ .Ij (n,—1).

By setting v, = v for i =1,2,---, k in the statement of Theorem 2,
we obtain Theorem 1. We present two specific illustrations of
Theorem 2.

COROLLARY 2a. Let ny,n,, -+, n, (k=1) be positive integers, and
let vy, vy, - - -, v be parameters such that v, = a for | =i =t, where 1=t =
k, and v, = x for all other v. Then

k
»)e(ny, ny, -, m)=1+2t- H (n —1).

Proof. In this case, (7,)f is the largest integer p such that there exists
a factorization K, = UL, G, with a(G;)=1for 1=i=t and x(G)=1
for all other i such that i = k. This is clearly equal to a(t), which has the
value 2t.

Similarly, since xy®(¢t) = 2{t/2} for each positive integer ¢, we have
the following.

COROLLARY 2b. Let nj, n,, -+, n, (k =1) be positive integers, and
let v, vy, v be parameters such that v, =x® for 1=i=t, where
1=t=k and v, = x for all other v. Then

(w)i(ny,ny, - - m ) =1+2{¢t/2} - fl (n —1).

3. Edge partition parameters. Let € denote a graphical
property which the graph K, possesses. We then define the edge
partition number €(G) of a nonempty graph G as the least number of
elements E, in a partition of the edge set E(G) of G such that each
induced subgraph E; has property €. It is clearly equivalent to say that
€(G) is the minimum positive k for which there exists a factorization
G = UYL, G, such that e(G,)=1fori =1,2,---, k. For an empty graph
G, we define € (G)=0. In this section, we shall henceforth assume that
€ is a co-hereditary property (so that H is a subgraph of G implies that

€(H) = €(G)), and that lime =« (i.e., lim,_. €(K,) = ®).
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Our next lemma, presented without proof, is an immediate conse-
quence of the definitions for edge partition number and factorization.

Lemma 2. IfG = UL, G, and € is an edge partition parameter, then

k
e(G)=2 €(G).
1=1
Let € be an edge partition parameter, and let n,, n,, - - -, n, (k = 1) be
nonnegative integers. The e-Ramsey number €(n,, n, -+, n) is the

least positive integer p such that for any factorization K, = UL, G, it
follows that e(G,)= n, for at least one i, 1=i = k. If n, =0 for some i,

1 =i <k, then clearly €(n,, n,, - - -, n, ) = 1; hence, we henceforth assume
that n, >0 for i =1,2,---, k. Using an argument analogous to those
used earlier, one can verify that e(n,, n, -+, n) exists since € is
co-hereditary and lime = . In this case also, €(n,, n,,* - -, n) is sym-
metric in n,, n,, * -+, A4

THEOREM 3. Let ny, n,, - -+, n (k = 1) be positive integers, and let €
be an edge partition parameter such that the corresponding property € is
co-hereditary and lime = . Then €(n,, ny, -+, n.)= N where

N = 1+max{p [e(Kp)éz (n, — 1)}.

Proof. Since lime =~ and €(K;)=0, N exists and N=
2. Without loss of generality, we assume that n,=n,= ---=n,. The
theorem clearly follows if n, =1. Thus we assume that n, = 2.

First, we establish the inequality e(n;, n,, - -, m)=N. Let UL, G

be a factorization of K,. It follows from Lemma 2 and the definition of
N that

Z e(G)= e(KN)>Z (n,—1).

Thus, €(G,)= n; for at least one i, 1 =i =k.

In order to show that e(n,, n,, - - -, m.) = N, we exhibit a factorization
Kyv..= UL, G, where €(G))=n —1for 1=i=k. Let m be the least
integer such that n,, = 2. By the way in which N and m were chosen,

€(Ky-1) ég (n,—1)= ié‘ (n; —1).

This implies that there exists a factorization
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n;—1
Ky = U H, where e(H)=1
1=1

{Cr

(m=i=kand1=j=n-1). Form=i=k, let G=U" H. For
1=i=m—1 (if such i exists), let G =Ky, the complement of
Kyv.,.. Then Ky, =UX, G, where e(G)=n—1for1=i=k

Using the fact that the edge chromatic number y,(K,) of a nontrivial
complete graph K, is p if p is odd and p — 1 if p is even, we obtain the
following corollary.

CorOLLARY 3a. Letny, n,, - -, n be positive integers. Ifn,= n,=
--=n, =1, then x(n,n,---,n)=2. Otherwise, xy,(n,, ny, -, m)=
2[(L +1)/2)+1 where L =X (n, —1).

CoroLLARY 3b. Let ny, n,, -+, n, be positive integers, and let a,
denote the (edge) arboricity parameter. If n,=n,=---=n, =1, then
al(nly Ny, - - “ nk) = 2- OtherWise,

k
al(nh Nyt nk)=1+22 (n‘ —1)
=1

Proof. The result follows from the fact that for p =2, a,(K,)=
{p/2}.

Let n,, n,, ---, n, be nonnegative integers, and let €, €, -+, € be
edge partition parameters where again we assume the corresponding
properties are co-hereditary and lime; =« for each i, 1=i =k. Then
we may define the (g ){-Ramsey number (€ )f(ny, ny, - -+, n,) as the least
positive integer p such that for any factorization K, = UL, G, it follows
that € (G,) = n, for at least one i where 1 =i = k. Again there is no loss
of generality in assuming each n, >0 since (&) (ny, ny, -+, n,)=1if n, =0
forsome i, 1=i=k. Ifwelet M denote the largest integer p for which
there exists a factorization K, = U¥, G, such that €(G)=n, —1 for
i=1,2,--- k, then it follows that M exists and that (€ )t(n,, ny, - -, m ) =
1+ M; however, it is not possible to give such a compact expression for
(e)f(ny, ny, -+ -, m) as for one edge partition parameter (Theorem 3) or k
vertex partition parameters.

As an illustration of the foregoing, we consider (a,, x,)(m, n), for
positive integers m = 2 and n = 2, defined as the least integer p such that
for any factorization K, = G,U G,, either a,(G,)Z m or x,(G,)Z n.

First we show that for every two such positive integers, we have
(a, x)(m,n)=2m +n—2. If this is not the case, then there exists a
factorization K,,.,.»= G,U G, such that a,(G,)=m —1 and x,(G,)=
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n —1. This implies that G, has at most (m — 1)(2m + n — 3) edges while
G, has at most (n —1)-[(2m + n —2)/2] edges. However, this implies
that K,,.,, has less than 2m +n —2)(2m + n —3)/2 edges, thereby
producing a contradiction.

Next, we note for every positive integer m =2 and every odd
positive integer n = 3, that (a,, x;)(m,n)=2m + n —2. Here, it suffices
to produce a factorization K,,,,-; = F; U F, for which a,(F))=m — 1 and
x:(F)=n—-1. Since 2m +n -3 is even, there exists a factorization
Komins= UL, P, where k=(2m +n —3)/2 and P, is a spanning path,
i=1,2,---,k (see [3, p. 91]). Let FF=U3'P. For m=i =k, we can
write P,=P,,UP,, where no two edges of P,, j=1,2, have adjacent
edges. If we let F,=UL,[P,UP;,], then we see that x(FE)=
n—1. Since a,(F))=m — 1, we have a suitable factorization.

Based on the previous observations, we offer the following conjec-
ture.

CoNJECTURE. For every two positive integers m =2 and n = 2,
(a, x)(m,n)=2m +n-2.

4. Vertex and edge partition parameters. lLet k =
k,+ k,, where k,, i = 1,2, is a positive integer. Denote by p,, p,, - - -, pi,
vertex partition parameters, and denote by pi.i, pes2 0, pe edge
partition parameters, for which the corresponding properties p,(1=i =
k) are co-hereditary and limp, = . For positive integers n,, n,, - - -, n,
and nonnegative integers my,., M+, My We define the (p;)i-Ramsey
number (p,)f(ny, ny, - - -, n,) as the least positive integer p such that for
any factorization K, = UL, G, p(G)=n, for at least one i, 1=i=
k. Here we also have that if i,, i,,- - -, i, is a permutation of 1,2,-- -, k,
then

(pi,- )lk=1("i1a nlza Y nik )= (px)f(nly nZ, Tty nk)-

Let (p,(n;))% denote the largest positive integer p for which there exists a
factorization K, = UL, G, where p,(G)=n, for i=1,2,--- k. An
argument similar to that used in the proof of Lemma 1 guarantees the
existence of (p,(n.))i and a straightforward extension of the proof of
Theorem 1 can be used to demonstrate the following result.

THEOREM 4. Let k, and k, be positive integers, where k =
kit+k, Fori=1,2--- k,, letp, be a vertex partition parameter and for
i=k+1, ki+2,---, k, let p, be an edge partition parameter such that the
corresponding properties p, 1 =i =k, are co-hereditary and limp, = «,
1=i=k. Then for positive integers n,, n,, - - -, n,
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(P )i(ny, ny, - ) =1+ (p.(m))) - H (n — 1),

where m, =1 for 1=i=k, and m;=n =1 fork, +1=i=k.
As an illustration of Theorem 4, we present the following corollary.

CoroLLARY 4a. Letk = k,+ k,, where k, and k, are positive inte-
gers, and let n, n,, - - -, n, be positive integers. Ifp, =y for 1=i =k, and
p.=x: for ki, +1=i =k, then

k‘l
(Pu)f(nx, ny -, nk) =1+ [Xl(nk1+1a LN PR nk)_ l] ’ II (ni - 1)-

Proof. By Theorem 4, it suffices to evaluate (p,(m;))}, where m, = 1
forl=i=k,and m,=n,—1for k,+1=i=k. However, since p, = x
for 1=i =k, it suffices to consider (p,(m,))i.:, which equals y,(n,.i,
Miigy 7 0y nk)~ 1

In a similar manner, we obtain the following result concerning
chromatic number y and edge arboricity a,.

COROLLARY 4b. Let k = k, + k,, where k, and k, are positive inte-
gers, and let ny, n,, - - -, n, be positive integers. Ifp, = xfor 1=i =k, and
p.=a, fork,+1=i=k, then

kl
(pi),;(nl’ n2’ ) nk) = 1 + [al(nk1+l7 n’k|+2; R nk)_ 1] : lj[[ (n‘ - 1)-
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