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ON A CLASS OF UNBOUNDED OPERATOR
ALGEBRAS III

ATSUSHI INOUE

In this paper we continue our study of unbounded
operator algebras begun in previous papers. In particular,
the unbounded Hilbert algebras are studied. The primary
purpose of this paper is to give necessary and sufficient
conditions under which an unbounded Hilbert algebra is
pure.

1. Introduction. In the previous paper [6] we began our study
of unbounded Hilbert algebras and raised the following problem.

Problem. Let &, be a maximal Hilbert algebra in a Hilbert
space 9. Does there exist a pure unbounded Hilbert algebra over &,
in §?

In this paper we find that if &, = § then the answer is affirma-
tive. That is, if &, #* §, then the maximal unbounded Hilbert
algebra Lg(=;) is a pure unbounded Hilbert algebra over &, in 9.
It therefore seems that our study of a class of unbounded operator
algebras called EW#-algebras is significant. For, from ([6] Theorem
3.10) if =, # © then there necessarily exist pure EW*-algebras over
the left von Neumann algebra Z/,(=;) of &, and if 2, is a semifinite
von Neumann algebra with a faithful normal semifinite trace ¢, on
Ay and L¥(p,) = U, N L(p,), then there exist pure EW*-algebras over
A, such that are isomorphic to standard EW#*-algebras.

2. Basic theory for unbounded Hilbert algebras. We give
here only the basic definitions and facts needed. For a more complete
discussion of the basic properties of unbounded Hilbert algebras the
reader is referred to [6, 7].

Let = be a pre-Hilbert space with an inner product [|] and be a
x-algebra. Let © be the completion of &7. Suppose that & satisfies;

(1) ¢Elm = (*1&), &nez,
(2) 1) =@e*0), &9 lea.
Now, we define 7(£) and 7'(¢) by;

& =4¢&n and T =715, nez.

Then, by (2), we know that 7n(¢) and #'(¢) are closable operators on
9 with the domain <& and 7#(&)* D w(E*), n'(&)* D n'(€*).

105
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DeriniTION 2.1. If &7 satisfies (1), (2) and (3) &t is dense in
9, where

2, = {£e =; n(f) is continuous with respect to the
pre-Hilbert space structure of &},

then <7 is called an unbounded Hilbert algebra over &2, in § and
w(resp. ©') is called the left (resp. right) regular representation of =,
In particular, if &, * <2, then &7 is called pure.

Let &2 be an unbounded Hilbert algebra over &, and let £ be
the completion of &2, Clearly <, is a Hilbert algebra and the com-
pletion of <z, is the Hilbert space £. Let m(resp.n’) be the left
(resp. right) regular representation of < and let w(resp. 7;) be the
left (resp. right) regular representation of the Hilbert algebra <.

Let 2 be a family of closable operators on a Hilbert space. Then
we denote by A the closure of Ac¥ and put A = {4;4¢}.

For each xe¢ 9 we denote 7w, (x) and wy(x) by;

()¢ = m(Hx , w(x)E =7w@x, €.

Then 7, (x) and 7 (x) are linear operators on § with the domain ;.
The involution on <& is extended to an involution on §, which is also
denoted by =. Then we have m(x*) = 7,(x)* and 7y(x*) = mo(x)*.

LEMMA 2.2. (1) For each € <& we have
(&) = (&) , 7'(6) = w(8) ,
m(&*) = m(@)*, w'(EF)=7(E)*.

(2) For each <€ C (the field of complex numbers) and &, ne =7
we have

(&) + ©(1): = w(&) 4 7(n) = =€ + 1),
(&)-7(7): = n@)=()) = =) ,

(&), if A0
0 , &of =0

nT(E): = = (M) , w(&)* = n(&¥) .

[P NS—

Therefore n(<Z) 1s a =-algebra of closed operators on © under the
operations of stromg sum, strong product, adjoint and strong scalar
multiplication. Similarly 7n'(=2) is a =-algebra of closed operators

on 9.

Proof. ([6] Lemma 2.1 and Proposition 2.3)
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Let Z2(=2,) (resp. 7,(=;)) be the left (resp.right) von Neumann
algebra of the Hilbert algebra <7, and let @, be the natural trace
on ZZ(=z,)t. Let B(PH) be the set of all bounded linear operators on
$. Putting

(2 = {z € §; () e BY)} ,

(=2,), is a Hilbert algebra containing <. If &, = (2), then &,
is called a maximal Hilbert algebra in £.

Let 90 be the set of all measurable operators on § with respect
to Z(=;). For every TeINt we put

to(T) = sup [p(7(8)); 0 < 7, () < T, £ e ()]
and
L @) = {TeW; [| Tt = (| TP)* < 0}, 1<p< oo,

Then || T]|, is called the L*-norm of T in L*(p,) and f, is called the
integral on L'(p,). If p = oo, we shall identify Z,(=;) with L (p,)
and we denote by ||T|| or || T||.. the operator norm of T e Z(=;).

DEeFINITION 2.3. We define L“-spaces with respect to ¢, and =
as follows;

Lp,) = A L*(p), L3(p,) = I L*(p,) ,

and
LZ,) = {we §; m@) e L)} , L) = {we §; m(x) € Li(p,)}
respectively. For »p = 2 we set
LUZ,) = {x e 9; m(x) € L*(y)}

lell, = lI7@)l, , @ e L)
lelle = ll7(@)l. , zeL(Z) = (), .

THEOREM 2.4. L3(=2,) (resp. L“(=;)) s an wunbounded Hilbert
algebra over (), (resp.(Z)) in 9. If & is a pure unbounded
Hilbert algebra, then < is a x-subalgebra of Ly(=;). Hence L{(<Z;)
is maximal among unbounded Hilbert algebras containing 2,

Proof. ([6] Theorem 3.9)

3. Necessary and sufficient conditions under which L¢(<Z;) is
pure. Let =, be a Hilbert algebra in a Hilbert space 9 and let ¢,
be the natural trace on Z,(<=;)".
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LEMMA 3.1. For 2 < p < q we have
LA=;) = $ D Li(=;) © LU=Z,) 2 Li(=Z,) D Ly () = (),
and

LZ’(%) = N LQ(%) ’

2sn<o

where n 1is an integer.

Proof. For each ze LY <=z;) let w(x) = U|n(x)| be the polar
decomposition and let |w(x)| = S AMEE(N) be the spectral resolution of
|mo(x)|. Then,

2l = 7@ = — | VdedB0))

= vagmonn — | vde B0y

= - vagE)) - | vdp B
< llolf + llalls < o -

Hence, xe L2(=;). Consequently LI(=;) D Li<=;), and so we can
easily show that L(Z;) = Nisuce L) (n; integer).

LEmmA 3.2. If LY(=;) = L=, for some q>p=2, then
Lz, = Li(=,) for all re[p, «).

Proof. Let xe LX) = L(=;). Then, |z (x)|"? e L*(p,). Since
2 < 2q/p £ q and LY{=z;) D L¥'*(=2,) D L(=;) (by Lemma 3.1), we get
ze L¥'"(2,), ie., |7(@)["'" e L{p,). Hence, |m(x)|"? € L*(®,) N L,)-
Repeating the same argument, we get that |7, (z)|?" e L*(@,)N
(=) (=12, ---). From ¢g/p >1 and Lemma 3.1, z € Ly(<).

DEFINITION 3.3. An element ¢ of &, is called a projection if
¢t = e = ¢*. Let E(Z,) denote the collection of all projections in ;.

THEOREM 3.4. Let =, be a Hilbert algebra in 9. Then the
following conditions are equivalent.

(1) Ly(=;) is pure.

(2) L“(=;) is pure.

(8) There exists a sequence {e,} of monzero mutually orthogonal
projections in (), such that >, ||e.ll; < oo.

(4) 9 is not a Hilbert algebra, i.e., (Z;), # 9.

(5) Li(=zp) + 9.
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(6) LA=z;) + Li=,) for some 2 < p < q.

(7)) Li=z,) +# LA=,) for each p > 2.
In particular, if <, has an itdentity, then (1)~ (7) are eqvivalent
to (7)';

(7)Y L*@) # LAp,) for each ¢ > p = 1.

Proof. From Lemma 3.1, for 2< p < ¢q
LI LD Ly D(Z), .
Hence, (7) = (6) = (5) = (4) and (2) = (1) are easily showed.
1) =(7); If Li(=z;) = L=, for some p > 2, then from Lemma
3.2 we have L=z, = Ly(=;,). Since Ly(=;) is an algebra, for each

x e LY 2,), 2(n(x)) = 9, i.e., m(x) e B(H). Hence Ly(=;) is a Hilbert
algebra.

(4) = (3); Suppose that x€ 9 — (=),. Let |7, (x)| = SdeE(h) be
—_— _— 0
the spectral resolution of |7m(x)|. Since |7(x)|¢B(DH), En + 1) —
E(n) # 0 for infinite many #», and so we may suppose that E(n + 1) —
En)=0 (n=12,.--). We shall show that E(n + 1) — E(n)e
L>(p,) N L¥(@,). Clearly, E(n + 1) — E(n) € L™(@,) = Z,(=;). More-
over, we have
n+1
| E(n + 1) — E(n)|; = @(E(n + 1) — E(n)) = —S” doy(E(N)*)
n+1
= — 7" Nag BN = IEGEE = o]k

Hence, E(n + 1) — E(n)e LXp,) (n =1,2, --.), and so there exists
e, €(=;), such that E(n + 1) — E(n) = mye,) (n =1,2--:). Clearly

{e.} is a sequence of nonzero mutually orthogonal projections in (Z),.
We shall show that >3, |le,|l; < . In fact, for m > n

Siliell = 3 omle) = 3ok + 1) — E)
= pJB(m + 1) — Hn))

and {E(m + 1) — E(n)} converges o-weakly to 0(n, m — «). Since
@, is o-weakly continuous, we have

lim ki et = lim o B(m + 1) — E(n)) = 0 .
Hence, >, lle.|3 < co.

(8) = (2); For some positive integer k,, >iv;, |le. [} <1. We set
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o (=] o
= 3 lelli, a= 2 llells, ---, an= 3 llel, ---,
n=kg n=lko+1 k=kotn

bOZHOgaoly"'i bn:[l()gan]!"'

and
T = ;:io bueryin -
We shall show that ze L“(<Z;) — (=,),. For every pel[l, <)
10 llee it < | Nlog airde = w1
and so

Jim | Sibien, i = lim 36, llen, i =0
Hence, ¢ and |||} = 27,10, [*]lessn]l3- Similarly, for every
pell, ), weLi(zr) and [[z]]} = 370|b.]"[l€ali.  Therefore,
reL°(=,). On the other hand, lim,..b, = c and [le,.,|[;+0
(n=1,2 ---), and so 7,(z) ¢ B(H). Hence, 2 e LY(Z) — (Z;),. That
is, L®(<7,) is pure.

Suppose that <, has an identity.

(7Y = (7); Obvious.

(M= (7); For 1 =< p < q we have
L(p)) D L*(95) D Lpo) D L*(po) 2 L™(py) -

Suppose that L*(p,) = LY(p,) for 1 < p <gq. Let TeLYp,). Then,
| T e L*(p,) = Lp,). Hence, |[T|¥?e L'(p,). Repeating the same
argument, |T|9?"ecLp)n=12,---), and so |T]eL“?"(p,)
(n=1,2 ---). From ¢/p >1 and Lemma 3.1, |T|e L%¢p,), and so
T € L*(p)-

Let =, be a Hilbert algebra in . From Theorem 3.4, if  is
not a Hilbert algebra, i.e., (&), = 9, then Ly(<;) becomes a pure
unbounded Hilbert algebra over (&), in . So, the previous problem
is solved. If L¢(=;) is a Hilbert algebra, then £ is a Hilbert
algebra and Ly(=;) = 9. Hence we can give some conditions for
L2(<=2,) to be a Hilbert algebra.

COROLLARY 38.5. Let =, be a Hilbert algebra in . Then the
following conditions are equivalent.

(1) 9 is a Hilbert algebra.

(2) Ly(=2,) is a Hilbert algebra.
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(3) 9= LA=Z) = (Z)-

(4) Either E(=2,),) ts a finite set or S, |le,|2= o for each
sequence {e,} of mutually orthogonal projections in E((=),).

(5) There exists C > 0 such that ||ef|, = C for all ¢c E(=,),).

(6) LAZA) = LiZ,) for each ¢ > p = 2.

(7) L=z = L{=) for some p > 2.
In particular, if =2, has an identity, then (1) ~ (7) are equivalent
to (7);

(7)Y Li=z,) = LU=, for some ¢ > p = 1.

Proof. From Theorem 8.4 (1) = (2) = (8) = (6) = (7) = (7) are
easily showed.

Let E = 7,(e) and F = n,(f) for e, fe E(=),). We denote by
ENF (resp. EU F) the projection onto E$ N FO (resp. EH U F9).
Clearly, ENF and EUF in L*(p,) N L*p,). Hence there exist
projections ¢Nf and e¢U f in (&), such that EN F' = z(eN f) and
EUF =mz((Uf)

If E((=;),) is an infinite set, then there exists a sequence {e,}
of mutually orthogonal projections in E((=;),). In fact, the following
two cases are considered.

(i) There exists a sequence {e,} of E((&,),) such that

62—(61062)750, "',en—(eluezu M Uen—1)ﬂen7&0, crt .

(ii) There exists a sequence {e,} of E((=,),) such that ¢ > e,
for all » = 2.

(i); Obvious.

(ii); We set

n
Dy =€y ", pn=61'—"kL_Jzek; M)

Ay = DPp— Pnt1, B=12,---.

If ¢, # 0 for infinite many =, then {g,} is a sequence of mutually
orthogonal projections in E(=,),). If g, =0 for infinite many =,
then e, > e,., for infinite many n. Putting f, =e, —e,., {f.} is a
sequence of mutually orthogonal projections in E((<),). From the
above argument and Theorem 8.4, (2) < (4) is easily showed.

(56) = (4); Obvious.

(4) = (5); Suppose that (5) is not satisfied. For each n there
exists e, € E((=,),) such that ||e,||, < 1/n. After a slight modification
of the above, we can make a sequence {p,} of mutually orthogonal
projections in  E((=),) such that e lpall = 2 llenllf =
Dinm 1m? < oo
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4. Standard EW*algebras. From ([6] Theorem 3.10) if <& is
a pure unbounded Hilbert algebra over <, then there exists the
pure EW*algebra Z/(=2) on L¢(Z;) over Z(=Z,). So, from Theorem
3.4, if =, is a Hilbert algebra in © and (=), # 9, then there neces-
sarily exist pure EW%*-algebras over %,(=,). Hence it seems that
our study of EW?*-algebras is significant. For a more complete
discussion of the above argument we give here the basic definitions
and facts of EW*-algebras.

DEFINITION 4.1. Let ®© be a pre-Hilbert space with an inner
product (| ) and let $ be the completion of . We denote the set of
all linear operators on ® by ¥(D). A subalgebra % of ¥D) is called
a #-algebra on D if there exists an involution on %U; A — A* such
that

(Ag|m) = (&|4%)), AecU, £n1eD.
We set
A = {AcUA; AcB(D)).

Let A be a #-algebra on ® with an identity operator I. - is called
a symmetric #-algebra on ® if (I + A*A)™ exists and lies in ¥, for
every Ac¥l.

A symmetric #-algebra 2% on D is said to be an EW#*algebra
over U, if A, is a von Neumann algebra. If A = 2,, then A is called
a pure EW*-algebra.

Let A be a set of densely-defined closed operators on £ which
is a =-algebra under the operations of strong sum, strong product,
adjoint and strong scalar multiplication. 9 is said to be an EW*-
algebra over ¥, if (I + T*T)*e U for every T € U and the sub-algebra
A, of bounded operators in A is a von Neumann algebra. If A = A,
then ¥ is called a pure EW*-algebra.

Clearly if % is an (resp. pure) EW¢*-algebra, then ¥ is an (resp.
pure) EW*-algebra.

Let & be an unbounded Hilbert algebra over &, in a Hibert
space © and let ¢, (resp. +,) be the natural trace on Z(=;)* (resp.
7:(=2,)"). For every xc D we see that

Jr(x)] = w(x*) and Jr(x)] = w(z*),
where J denotes the involution * on . Hence we get that

JLp)J = L*(v) , JLi(@o)J = Li(y)
L) = (we @ mx) e L*(y)} , L) = (v € $; m®) € Livy)}
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and
Z\2Z) L)) C Ly(=2,) , 70 Z)Li(Z,) C Li(=,) .

Let wy (resp. (7')?) be the left (resp. right) regular representation of
Ly(=;) and let

Z(2)Li(2) = {T/Ly(2); T e Z|20)} »
72| Li(Z) = {T'|L(20); T' e 7(Z)} »

where T/L¢(<;) is the restriction of T onto Ly(=,). Then ny(2),
("N 2), Z(2)/L:(=Z;) and 7;(Z;)/L3(Z,) are %-algebras on Ly (=)
under 75(8)* = n3(6*), (&) (8) = (7'):(¢*), (T/L(=)) = T*/Ly(=;) and
(T'/Ly(=2)) = (T")*|L:(=,), respectively.

NoTATION. We denote by Z(22) (resp. 7°(&)) the f-algebra on
Ly(Z,) generated by n3(2) (resp. (7'):(2)) and Z(Z,)/L:(Z;) (resp.
72| L (Z,))-

THEOREM 4.2. Let & be a pure unbounded Hilbert algebra over

9, in a Hilbert space . Then Z (D), Z (L°(=;) and 7z (L(=2;))

(resp. 77(2), 77 (L*(=;)) and 7 (Li(=2;))) are pure EW*-algebras on
() over Z(=;) (vesp. 75(=;)). Furthermore, we have

Z (L3(2) = z (LY(=Z,)) , 7 (L:(2) = 7 (L(Z))
and
JZ () = 7 (2), J7Vr(2) =% (D).

Proof. From ([6] Theorem 3.10) Z(2), % (L“(=;)) and
7z (Ly(=2,)) are pure EW*algebras on Ly(=,) over Z(<=;). Similarly
we can easily prove that (=), 7 (L*(=;)) and 7 (Ly(=;)) are pure
EW#*algebras on Lg(=Z;) over 7,(=Z). We shall show that
Z (L(=2,)) = % (L3(Z;)). Clearly, Z (L*(2,)) € Z (L:(=;)). Suppose
that 2e L2(=;). Let 7w (x) = Ul|xw,(x)| be the polar decomposition of
7(z) and let |7 (z)| = S:o ME(\) be the spectral resolution of |7 (x)].
Then, |7 (z)| = U*n(x) = n,(U*x) € L(p,). Since |7 (x)| is p,-restrict-
edly measurable, E(\,)* € L*(p,) for a positive number \,, Hence,
|7(@) | E(o)* € L(@)(LA(0) N L™(9,)) € L*(9,). Therefore we have

@) = | MEBQ) + 7@ | Eow)*
e Z(Z) + Lp,) -

Hence, n3(U*x) € Z2 (L°(=;)), and so wy(x) € 2 (L°(=,)). Consequently
7z (L3(2;) = ZZ (L°(=;)). Similarly we can show that 7°(L3(=2))) =
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77(L(=2;). Since JH(Z) = 73(=2,) and Jr(x)] = m(x*) for every
r e, we see that JZ(2)J = 7°(=2).

DEFINITION 4.3. Z/ () (resp. 7°(2)) is called the left (resp. right)
EW*algebra of <.

THEOREM 4.4. Let <7, be a Hilbert algebra in a Hilbert space 9
and (), = 9. Then L(=Z;) is a pure unbounded Hilbert algebra,
and Z(Li(=,)) and 7°(Ls(=2,) are pure EW*algebras on Li(Z,)
over Z(2,) and 7,(2;,), respectively.

Proof. Theorem 3.4 and Theorem 4.3.

DEFINITION 4.5. Let 2 be an EW*-algebra. 9 is called a standard
EWtalgebra if there exists a pure unbounded Hilbert algebra &
such that A = Z(2).

Let 2, be a semifinite von Neumann algebra on a Hilbert space
H and let @, be a faithful normal semifinite trace on 2. Let J(A,)
denote the set of all measurable operators with respect to 2, From
([4] Proposition 4.3) M(2A,) is an EW*-algebra over . Let M, be
the maximal ideal associated with ¢,, i.e., M, = {T e U; (| T'|) < <o}.
For every T eIM(A,)* we put

HUT) = sup @(4),

AeMmy tAST
70
and

LA (@o) = {T e M) [| Tl,:= pI TI")? < oo}, 1=Sp< oo,
L (@o) = .

Then Ly(p,): = L*(p,) N L¥(p,) is a maximal Hilbert algebra in the
Hilbert space L*p,) under the inner product (S|T) = p(T*-S) and
L(@y): = Nazp<e L7(9,) is a maximal unbounded Hilbert algebra over
L3(p,). Let Z(p,) be an unbounded Hilbert algebra in L¥g,) over
L3(p,). Then 2(p,) is regarded jas a =-algebra on  under the
strong sum, strong product, adjoint and strong scalar multiplication.
We denote by A(Z(p,)) the set of closed operators on § which is
the =-algebra generated by <(p,) and %. Then A(Z(p,)) is an
EW*-algebra over ¥, and it is isomorphic to the left EW#*algebra
% (Z(90))-

THEOREM 4.5. Let ¥, be a semifinite von Neumann algebra on
a Hilbert space 9 and let ¢, be a faithful normal semifinite trace on
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+. If L¥p,) is mot o Hilbert algebra, i.e., L*(p,) # L3 (p,), then
there exists a pure EW*-algebra A over A, such that is isomorphic
to a standard EW*algebra. In particular, if Nrerowy 2(T) is

dense in 9, then we may regard A as o pure EWialgebra over ¥U,.

COROLLARY 4.6. Let A, be a semifinite von Neumann algebra
on o Hilbert space © and let @, be a faithful normal semifinite
trace on A;. If U is a pure EW*-algebra over U, such that A C
A(Ly(py)), then A is isomorphic to a standard EW*algebra.

Proof. We can easily prove that % N L¢(p,) is a pure unbounded
Hilbert algebra over Lg(p,) and 2 is isomorphic to Z/ (U N Ly(p,)).
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