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ON FINITE REGULAR RINGS

ROBERT E. HART WIG AND JIANG L U H

Several new properties are derived for von Neumann
finite rings. A comparison is made of the properties of von
Neumann finite regular rings and unit regular rings, and
necessary and sufficient conditions are given for a matrix
ring over a regular ring to be respectively von Neumann
finite or unit regular. The converse of a theorem of Henriksen
is proven, namely that if Rnxn, the n x n matrix ring over
ring R, is unit regular, then so is the ring R. It is shown
that if R2 2 is finite regular then a e R is unit regular if and
only if there is x e R such that R — aRΛ- x(a°), where a0

denotes the right annihilator of a in R.

1* Introduction* In [13], Henriksen posed the question whether

a finite regular ring is unit regular. This was subsequently proven
in part by Ehrlich [4] for a particular class of regular rings. An
example of finite regular rings which are not unit regular was recently
given by Bergman (1974) (see Handelman [8]). In his paper [8],
Handelman showed that a regular ring R is unit regular if and only
if, for any finitely generated projective right i?-modules A, B, and
C, A0U=A©C implies B=C. He also characterized unit regular rings
by perspectivity on the lattices of their principal right ideals. The
purpose of this paper, however, is to characterize finite regular rings
and to compare their properties with unit regular rings. Some of
the results of the theory of generalized inverses [1] are used to show
that in a regular ring, the properties of finiteness and unit-regularity
each correspond to a suitable cancellation law for principal ideals.
These cancellation laws are closely related to the substitution property
of Fuchs [5], and the cancellation law of Ehrlich [4]. We shall use
a result by Vidav [15] to show that if the matrix ring Rnxn is unit
regular then so is ring R. Let us begin by defining our concepts
and by stating some useful general results. A ring R is called
regular if for all a e R, there is a solution a~ e R to the equation
am = a. The element a~ is called as inner or 1-inverse of a [1].
Similarly, any solution to axa = α, xax — x is called a reflexive or
1 — 2 inverse of a, and will be denoted by a+. For example, a~aa~
is always such a solution. An element a e R is said to have a group
inverse a*eR if it is a group member, i.e., a belongs to some mul-
tiplicative group of R. Necessary and sufficient conditions for α* to
exist are that a2R = aR, Ra2 = Ra, or axa = α, xax = x, ax = xa, for
some x e R [10]. A regular ring R with unity is called unit regular
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[3] if every aeR has a unit inner inverse a~eR. R is called von
Neumann or Dedekind finite, finite for short, if it contains a unity
1 and ab — 1 => δα = 1. It is easily seen that unit-regular rings are
finite. An idempotent e2 ~ ee R is said to be finite if eRe is finite.
The ring of n x n matrices over R will be denoted by Rnxn, while
Rn denotes the free module of n x 1 columns over R. Isomorphisms
will be denoted by =, similarity by p&, and internal and external
direct sums by + and 0 respectively. As usual, the right and left
annihilator of a will be denoted by a0 = {x e R; ax = 0} and °a =
{x eR; xa = 0} respectively, while the Jacobson radical is given by
^(R). Throughout this paper all rings are assumed to have unity 1.

For two idempotents e, f eR, e ~ f means that e = pp, f = pp
for some p e eRf and p e fRe, while e <| / denotes the well-known
[14] ordering for compatible idempotents defined by e = ef = fe, or
equivalently by eRe £ fRf.

We shall make continued use of the following facts which hold
for idempotents e and / in any ring R with unity [14].

( i ) e ~ f <=^ eR = fR as right j?-modules

*=> Re = Rf as left iϋ-modules.

(1.1) (ii) β * * / « = > e ~ / and 1 - β~ 1 - / .

(iii) eR = fR==>e^f.
(iv) β — p/g, #>, Q' invertible = > e ^ /.

In addition we shall use the result that

LEMMA 1. If R is a ring, and A, B, C, D are matrices in RnXn,
then the following are equivalent in pairs.

(a) ( i ) ΛRnxn 0 BRnxn = CRnXn 0 ΌRM as RM-modules.

(ii) ARn 0 BRn ~ CRn 0 DRn as R-modules.

(β) ( i ) ARnXn + BRnxn ^ CRnxn + DR%xn as RnXn-modules.

(ii) ARn + BR% ~ CRn + DRn as R-modules.

Indeed, if Φ\ βγ = Ψ\ Q \X + Φ\ β \Y is the given isomorphism in (ai)

then the mapping χ, given by

1
Ax

By]

0

B
y

will be a desired isomorphism for (an), while conversely if χ ^ =
ΓA1 ΓOΊ L-o Ĵ

χ\ * \x + χ ϋ \y is the isomorphism given by (ctiϊ) then the map φ
defined by
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pH* u . . . ,* .ηΓ ΓArΓ
W J L χ k J

is one of the desired jβftXn isomorphisms for (ai). Similar maps can
be defined for case (/3). In particular, if E and F are idempotents
in Rnxnf then

(1.2) E~F~=~ ERnXn s FRnxu <=> ER« =

In addition, if for example^ = Γ̂ 1 °Ί and F = ϊζ1 ίH then

(1.3) E~F<=

The dual result for left modules is obvious. Lastly, we note that
in any ring R,

(1.4) aR = δ# = > Ra = Rb.

Indeed, if ax = b and a = by, then the mapping ra 1—> rα# is a desired
isomorphism. Let us now turn to some useful results concerning
finite rings.

2* Finite rings*

THEOREM 1. Let R be a ring with unity 1 and suppose that e
and f are arbitrary idempotents in R. The following are equivalent.

( i ) R is finite

(ii) eR
( ' ] (iii) Re Q Rf, e ~ f =^ Re = Rf .

(iv) e ~ 1 = > e = 1 .

Proof, (i) ==> (ii). Let ei2 £ /J? and e~f. Then e — fe and β =
pp, / = pp for some p 6 eRf, p e fRe.

Consider now

x =

Then icy = 1 and hence, since R is finite, y = x~\
But now fy = fp + f-fe-f + fef = fp-e + efe feRf +

eR = βi2/ + βJ? £ βiί. Thus / 6 eRy'1 = ei2 and so /jβ = eiί. We
may again replace e ~ f by either eiϋ = fR or i2e =

(ii) => (iv). Let e ~ 1 and ei? C R. By (ii), eJ? = R, which implies
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that 1 = ex for some x, or e — ex = 1.

(iv) =* (i). Let αδ — 1 and set e = ba = e2. Then e ~ 1, because
e = pp, 1 = pp where p = b and p — a. In fact, p 6 eRl = δαi? as
p = δαδ = δ and p e Ii2β = ϋ?δα as j? = αδα = a. Hence by (iii) e — 1
and so ba = 1 as desired. Part (iii) follows by left-right symmetry.

REMARKS 1. The last part should be compared with the result
of Vidav [15], and Fuchs [5], which states that a regular ring is
unit regular if and only if e ~ / =* e & f.

2. The second part is best possible in that neither e nor / may
fail to be idempotent. Indeed, if R is finite then aR = R =*> aR — R,
as seen from the example of the ring of integers with a = 2. On
the other hand, a ring R with the property that aR = R=> aR = R
must be finite, yet need not be regular as seen from the following
counterexample.

EXAMPLE 1. Let R, = I ̂  | Π , where R = R is the real field.

Then clearly Rx is not regular since L Q O c\\θ 0 I 0 0 "

now thatΓj ^R^R,. We claim thatΓj b^R1=R1. Let φ: Γj ]

.BI d e n o t e t h e g i v e n i s o m o r p h i s m s u c h t h a t I Λ I = < ( Λ ί ) =

ώ π / . N o w α ' ^ 0 s i n c e α ' = 0 w o u l d i m p l y t h a t
[y G J

0 δ' 1 0

0 0

c' Φ 0. For if c' = 0, then φ

a' V
0 c1

0 b'
0 - α '

0 br

0 - α '

Ό 0

0 0

-1 OΊ
0 OJ

"0 b'
0 - α '

= 0 ,

Next we claim that

tion. Thus a' Φ 0 Φ e' and

, which implies that a' — 0, a contradic-

α' V is invertible. Hence

a b

0 c

as desired.

COROLLARY 1. // i2 is finite ring and if e2 — e e R, then the
corner ring eRe is also finite.
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Proof. Suppose that (eae)(ebe) = e. Then eR = eαeϋ! and iϋe =
Hence Reae — Rebe{eae) and thus by (1.4) eR = eaeR = ebe(eae)RQ

eR, ensuring by Theorem 1, that eR = (ebe)eaeR. This implies that
e = ebe(eae), as desired. We may consequently order the compatible
idempotents with the usual partial ordering relation "<Γ\ The
following corollary is equivalent to the one above.

COROLLARY 2. If R is a finite ring and B is a subring with
unity, then B is finite.

Proof. Let R be a finite ring and let B be a subring of R with
unity e. Suppose that x, y eB and xy — e. If / = yx = /2, then
(f%f)(fyf) — f a n ( i thus since fRf is finite by Corollary 1, it follows
that y2x2 = fyf(fxf) = yx. On premultiplication by x and post-
multiplication by y this yields yx = eyxe = β. It is obvious that
Corollary 2 implies Corollary 1. It should be noted here, that the
latter result can also be proven directly, as pointed out to us by
the referee.

COROLLARY 3. If R is a finite ring and e2 = e e R, then the
centralizer Ce — {x e R \ xe = ex} is finite.

COROLLARY 4. If R is a finite ring and e2 = eeR, then eae is
a unit in eRe if and only if eaeR = eR.

Proof. If eaeebe = e then clearly eR = eaeR. Conversely, if
eR — eaeR, then for some xeRf eaex = e — (eae)exe. Since eRe is
finite, it follows that e = exe(eae) implying that eae is a unit in eRe.

We remark that this also follows from the fact that the maximal
subgroup He containing e is the group of units in eRe and that
He = {x e R; xR = eR, Rx = Re}. Finiteness shows that eaeR = eR <==>
Re = Reae.

We next obtain as a corollary the result by Kaplansky [14] p.
11, which says that an idempotent e finite if it is not equivalent to
a smaller idempotent.

COROLLARY 5. Let R be a ring and and let e, f be idempotents
in R such that fRf is finite. Then

eRe £ fRf, e ~ f =* e = f .

Proof. Since e = ef = fe, eRf = f(eRf) Q fRf. Now eRf and
fRf are isomorphic as right /^/-modules, since the map erft-*perf,
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with e = pp, f = pp,pe eRf = e(fRf)f, p e fRe = f(fRf)e, is an
example of such an isomorphism. Hence by Theorem 1, eRf = /β/ ,
which ensures that / = exf for some α? or e = β/ = / as desired.

We remark that if R is a unit regular ring then eRe = R^>
eRe = i?, as seen from the example where R = Uΐ^Rt, Rt = Z)(a
division ring) and β — (0,1,1, •)• The following is a partial converse
to Corollary 1.

PROPOSITION 0 (Savage). If R is a ring with unity 1 such that
fRf is finite for every idempotent element f Φ 1, then R is finite.

Proof. Replace B by R and e by 1 in the proof of Corollary 2.

PROPOSITION 1. Suppose R is a ring with unity 1 and let
denote its Jacobson radical. Then R is finite exactly when
is finite.

Proof. =>: Suppose we denote R/^(R) by R and the elements
from R by α, 6 etc. Let ab = ϊ . Then 1 — abe ^f{R), implying that
1 — (1 — ab)l = ab is & unit. That is abc = 1 = cab for some c. Since
R is finite it follows that bca — 1 and so (bc)a = 1. Hence α has left
and right inverses and thus is a unit with (α)""1 = 6.

<= : Conversely, suppose 5 is finite and that ab = 1. Then
α6 = ϊ=>6α = ϊ = > l — 6αe ^ ( l ϋ ) . And so 1 — (1 — ba)l = δα is a
unit in ϋ? implying that δαc = 1 = c&α for some ceR. Hence a has
left and right inverses and thus is a unit with inverse b = α"1. This
result should be contrasted with the fact that R/^f{R) may be
unit regular without R being regular (cf. [5], Lemma). Indeed, if R
is any nonsemisimple Artinian ring, then R cannot be regular while
R/^(R) is semisimple Artinian and hence unit regular.

Finiteness is closely related to the existence of group and Drazin
inverses of the elements in R [2], [10]. We recall that the left (right)
index l{a)(r(a)) of aeR is the smallest value of p(q) for which ap+1R =

apR(Raq+1 — Raq), and that if both are finite, they have to be equal,
[2]. This common value is called the index i(a) of a. A ring is
called strongly τr-regular if every a in R possesses a Drazin inverse.
Now a has a group inverse a* in R exactly when i(a) = 0 or 1 that
is exactly when a2R = aR and Ra2 = Ra or when axa — α, xax = x
and ax — xa for some xe R. The following is a generalization of
the concept of finiteness.

We say that a ring R satisfies property (&, I) where k and I are
nonnegative integers if, for a e R, ak+1R = akR => Raι+1 — Ra1. Clearly
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all strongly π-regular rings satisfy this property [2].

PROPOSITION 2. Let R be a ring with unity 1. Suppose R
satisfies property (k, I) for some nonnegative integers k and I. Then
R is finite.

Proof. This follows immediately from the fact that if ab = 1
then i(a) = r(α) = l(a) = 0.

It is unknown if the converse is true in general, but we shall
see shortly that this is the case for subrings of finite regular rings.
Presently we do have the following result dealing with the ring

[7? 7?Ί
Q p . This ring will be used repeatedly as a source of examples

and counter examples.

[ r> 7?~1

0 R V
Then

( i ) R is finite if and only if R1 is finite
(ii) if R has property (1, 1) then so does R19 in which case

both R and R^ are finite.

Proof. Since part (i) is easily established we turn to (ii). Suppose

that M= ΓQ ^ Ί , X = ΪQ f\ and M2X=M. Equating entries shows that

(2.3) ( i ) u2a = u

(i i) w2d = w

(iii) u2c + (uv + vw)d = v .

Since R has property (1, 1), u2R = uR=>Ru2 = Ru and thus u% exists.
Similarly w*eR. Hence

uu*u2 = u2 and wd — w%w2d — w*w .

Then multiplying (2.3)-iii through on the left by uu* yields

(2.4) u2c + uvd + uu%vw%w — uu*v .

Substracting this from (2.3)-iii gives

(2.5) (1 - uu*)v(l - ww*) = 0 .

This, however, is exactly the consistency condition needed for M to have

a group inverse: Mι — Q Λ , where c = —u*vw% + (1 — uu*)vwn +
n(l *) i f i MM*MM M%MM* M* d MM} M*Munv(l - ww*), satisfying MM*M=M, M%MM* = M* and MM} = M*M.
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It is clear that ikf* 6 Rλ. For semi-simple rings the first part of this
proposition may be proven with aid of Proposition 1. It is not known
if the (fc, I) property is inherited by R2X2.

3* Finite regular rings* Let us first give a couple of preliminary
observations for regular rings.

PROPOSITION 4. Let R be a regular ring and let a, b e R.

(3.1) ( i ) Ra = Rb ==> aR ^ bR

(i i) If a~ and or are two inner inverses of α, then

aa~ ~ aa=, a~a ~ a=a, 1 — aa~ ~ 1 — aar, and 1 — a~a ~ 1 — a=a .

Proof, (i) Let Ra = Rb. Then Ra+a = Rb+b and so a+a ~ b+b.
Hence a+a — pp, b+b — pp for some p e a+aRb+b = a+Rbf and p e
b+bRa+a = b+Ra. If we set q — apb+ and q — bpa+, then clearly
qq = aa+, qq = bb+, while q e aRb+ and q e bRa+. Thus aR — aa+R =
bb+R = 6i?. The converse follows by symmetry.

( i i ) Clearly aa~R = aa^R, Ra~~a = ,Bα=α and a0 — (1 — a~~a)R =

(1 — a=a)R, °a = R(l — αα~) = ΐ?(l — αα=).
If i2S(A) and CS(A) denote the row-space and column space of

a matrix A respectively [1], then we have:

COROLLARY 6. For rectangular matrixes over a regular ring R,

RS(A) ~ RS(B) <=* CS(A) = CS(B) .

For future reference we add the following.

PROPOSITION 5. In a regular ring R,

( i ) abR = aR <==> °b Π Ra = (0) <=> bR + (1 - α~α)i2 = i?

(ii) Λα6 - Rb*=>a°f)bR = (0) -=> Λα + R(l - bb~) = β .

Proof. First we lecall that abR = aR => °(ab) = °a. Now let
a? 6 °δ Π -Rα, that is xb = 0 and x — ya for some /̂ 6 i2. Thus if αδjR =
αi?, then 0 = #6 = /̂αδ => 0 = ya = α?. If we now write °δ D i?α =
°δ Π °(1 - α~α) = °(bR + (1 - α"α)β) then °b f] Ra = (0) => 6J? +
(1 — a~a)R = i?. It is obvious that the latter implies abR = αiϋ.
Symmetry now yields the second result.

THEOREM 2. Leί R be a regular ring with unity 1 ami ieί a,
δ, c δβ elements of R. Suppose that I and J are right ideals in R.
The following are equivalent.
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(3.3)

( i )

(ϋ)
(iii)

(iv)

(v)
(vi)

(vii)

(viii)

(ix)

(x)
(xi)

R is finite
aR £ bR together with aR = bR or Ra = Rb ==>

I £ bR, I ^ 622 = »

I £ J, I = J, J complemented ===>
I=R =>
aR = R ==>
aR®I= cR, cR £ αi? = >
aR@bR = aR =>
Γe 0 Ί

Lo/J
Γe OΊ

~Lo oj = "
αi? + δi? s aR —»

Λα^ = i?αi+1 = > αfti2 = ft^+'J? /or some k^O.

aR

7 =

1 =
1 =

aR

1 =

b =

/ =

b =

= bR

bR

J

R

= R
(0)

0

= 0

0

A^ analogous and equivalent result holds for left ideals.

Proof, (i) => (ii): Let e = aa+ and / = bb+. Then e~ f and
eR Q fR. By Theorem 1 eR = fR and so aR = 622.

(ii) => (iii): Since I = bR=* I = aR for some α e 22, the result is
clear.

(iii) => (iv): Any complemented one-sided ideal is principal in a
ring with unity.

(iv) => (v): Take J = 22 in (iv).
(v) => (vi): Clear with aR = /.
(vi)=>(i): If α& = l then Rb = R=>bR=R. By (vϊ)bR = R, implying

that b is a unit with a as inverse.
(ii)=>(vii): Let φ: aRξ&I—>cR be the isomorphism. Then ψ(a9 0) =

ex for some a; e R, ^(0, ί) = ^ £ cί2 and 0(α22, 0) = cα i?. Hence aR =
cxR £ αJ? and so by (iii) aR = c Ĵ? S c22 C aR. Now ^ = α22 n 2i =
cx22 Π 2Ί = Φ(aR, 0) Π ̂ (0, J) = φ[(aRf 0) Π (0, I)] = ^(0, 0) = (0). Hence
I = /i = (0) and so I = (0) as desired.

(vii) => (viii): Trivial.

(viii)« (ix): By (1-3) [ j °]' - [ζ J] « β22 0 /22 ^ eR and hence
setting e = aa+ and / = bb+ yields the desired equivalence.

(viii) => (x): External cancellation laws always imply the corre-
sponding internal cancellation laws since the directness of the sum
aR + bR implies that aR + bR ^ aR 0 622.

(x) => (i): Let β2 = e, then eR = R = eR + (1 - e)R implies by
(x) that e = 1, ensuring by Theorem 1 that R is finite.

(ii) => (xi): If 2?αfc = Rak+1 then αfci? = αfc+122 £ αfc22 and hence
αfc22 = ak+1R guaranteeing that (akY exists.

(xi) ==» (i): This was shown in Proposition 2.
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The left analogue follow by left-right symmetry.

COROLLARY 7. Over a finite regular ring aR £ R φ R, and
aR = aR φ aR implies a = 0. In particular R ^ iϋ © R.

REMARK. In Example 2 we shall see that the isomorphic inclusion
law for right ideals:

(3.4) IQJ.I-J ==> 1= J ,

will not be true in general in a finite regular ring, if / is not a
principal ideal.

PROPOSITION 6. Let R be a finite regular ring. Then
( i ) aR Q baR => aR = baR and Ra = Rba
(in) Ra £ Rab ==> Ra = Rab and aR = abR.

Proof, (i). aRQbaR=>a = ba(ba)+a=>Ra=Rba(ba)+aQRa(ba)+aQ
Ra. Hence by Proposition 4, aR = a(ba)+aR Q aR and thus again
by (3.3) aR = a(ba)+aR ==> baR = ba{ba)+aR = αiί. Lastly, i26α = i?α 2
i2δα and so by (3.3) iϋ&α = J2α. Part (ii) follows by symmetry. We
note in passing that Proposition 5 applies and that, for example, in
(i) aR = bnaR, Ra = i£6"α for all w = 1, 2, .

COROLLARY 8. In a finite regular ring R
( i ) aR £ bacR => αi? = δαci? α̂ cZ i2αc = Rbac.
(ii) i?α £ Reab => Ra — Rcab and caR = cabR.

PROPOSITION 7. Let R be a subrίng of a finite regular ring R*
and let aeR. Then

aR = a2R ===> Ra = Ra2 .

Proof. Since aR = a2R, there exists a; e R, such that α ~ a2x and
so αi2* = cfR*. Now E* is finite regular and thus by (3.3) #*α = R*a2,
which implies that a — ya2 for some yeR*. Hence ya = y(a2x) =
(ya2)x ~ axeR. Now let b — ya — ax, then yb = yax — bxe R and
also ba = τ/α2 = α. Thus (t/6)α2 — ya2 = α or J?α2 = i?α as desired.

COROLLARY 9. // i? is a subring of a finite regular ring and
aeR, then

ak+1R - akR = > i?αfc+1 - Rak .

Proof. Since ak+1R = akR <=> a2kR = αfeiϊ, and J2 = ak+1 = Rak <=> J?α2& =
Rak, we may apply Proposition 7 to αfc.



ON FINITE REGULAR RINGS 83

It is clear from Corollaries 1 and 3 and the identity eae[e(eae)~e]eae =
eae, that if R is finite regular, then so is the corner ring eRe, where
e2 = e 6 R. This should be compared with the following result by
Kaplansky (unpublished), which states that eRe inherits the unit
regularity from a ring R. We add the proof for completeness. [W.
Desch, private communication].

PROPOSITION 8 (Kaplansky). Let R be a unit regular ring and
e be an idempotent element in R. Then eRe is unit regular.

Proof. Let ere be an arbitrary element in eRe and u=(ere + l — e)~
be a unit. Since (1 — e)u(l — e) — 1 — β, ereu(l — e) = 0, (1 — e)uere = 0,
eu(l — e) = u(l — e) — (1 — e) and (1 — e)ue = (1 — e)(u — 1), we have
ere(e(u — u(l — e)u)e)ere = ere and e(u — u(l — e)u)e eu~ιe — e =

eu~xe*e(u — u(l — e)u)e.

Related to the corner ring is the following well-known result
which generalizes a result of [15].

PROPOSITION 9. Let M be a right unital A-modules where A is
a ring with unity 1, and let R = End^ (M). If e2 — eeR and E =
ΈnάA (eM) then eRe ~ E.

It should be observed here with aid of Corollary 4, that if u is
a unit in a regular ring R and e — e2 e R, then eue is a unit in eRe
exactly when (1 — e)u~\l — e) is a unit in (1 — e)R(l — e). Indeed,
from (3.2) we see that

eueR = eR <===> ueR + (1 - e)R = R <=> eR + u~\l - e)R = R
( 8 ' 5 ) <=> (1 - e)vr\l - e)R = (1 - β)J2 .

4* Cancellation laws* We begin by defining four strong cancel-
lation laws for internal direct sums of principal right ideals. Let R
be a ring with unity and let α, b, c, de R. We define,

Cj n : aR + bR = cR ,

Cίn: αi? + 6i? ^ cR + di2, αJ? = cR ==> bR ^ di2

Qn: aR + bR = aR + dR ==> bR = dR

Qn: aR + bR = aR = > bR = (0).

There are two common ways of weakening these laws. We may
define for a fixed g eR9
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Cfi(g): aR + bR = gR = cR + dR, aR~cR==>bR^ dR

C'P(g): aR + bR^ gR ̂  cR + dR, aR = cR => bR = dR

Qf(g): aR + bR ̂  gR ̂  aR + dR => bR = dR

Q?(g): aR + bR^gR^aR =>bR = (0) ,

and

C$(g): aR + bR = cR + dR, aR = gR ~ cR ==> bR ̂ dR
Cj%): aR + bR = cR + dR, aR = gR ~ cR => bR ̂ dR
C$(g): aR + bR = aR + dR, aR = gR =>bR = dR

C$(g): aR + bR = aR , aR ̂  gR =>bR = (0) .

These laws may be considered as local cancellation laws, specifying
a property of element a, or element g or be considered as a global
cancellation law, (holding for all a) specifying a property of the ring
R. The case g = 1, of course, being of special interest. For any
fixed g it is clear that locally, and hence globally, Q? and C$> coincide,
while C$, <= C$, => C$ for k = 0, 1, 2, 3. Moreover,

In fact, if C[

o

n holds and ̂ : aR + bR —> cR + dR is an isomorphism
then φ(a)R + ̂ (δ)Λ = cR + ώi?, and so if aR = cR then φ(a)R = cR
ensuring that bR = φ(b)R = dR. Analogous implications hold for the
weaker cancellation laws.

We may similarly define the corresponding local or global cancel-
lation laws for external direct sums of principal right ideals:

CΓ: aRφbR = cR@ dR, aR = cR = > bR = dR

CΓ: aR®bR = aR@dR, = > bR = dR

Qx: aRφbR = aR = - bR = (0)

Ctf(g): aR@bR~gR^cR® dR, aR ~ cR => bR ^ dR

Clf{g): aR@bR = gR^aR@dR , =>bR^dR

CJ%): aRφbR-gR^aR =>bR^ (0)

and

Cl?,(g): a dR,
dR,

aR =
aR =

aR =

gR =
gR
gR

cR
—=>bR

=~bR

= dR
^dR

= (0).Q?,(g): aR®bR~aR

We note that Co

ex and Co

e^ are trivial, while Co

e* is impossible. Indeed,
if aR φ 6i2 = ci? φ ώi? then αi? = ci? and 6i2 = di2. It is easily seen
that locally, and hence globally,
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(4.2)

with an analogous result for the weak external cancellation laws.
It is always true that the external cancellation laws imply the

corresponding internal cancellation laws, but the converse may not
be true in general. When R is regular we may of course replace
the ring elements in these laws by idempotents. By analogy to the
above, we may define local and global internal and external cancella-
tion laws for right ideals, and for right i?-modules. For example,

and

The latter type of cancellation law was used by Ehrlich [4] and
reduces to C<i?(l), when applied to complemented (and hence principal)
ideals in R.

If we consider ^(M) as a condition on the module M then it is
implied by Fuchs' substitution property for right j?-modules, which
states that the right ίJ-module M obeys the substitution property if

A + B = C + D and A = M=C,

implies that for suitable module E,

A + B = E + B = E + D.

Also, when considered as local conditions on A = M, it follows that

(4.3) C:x<=>C

Before turning to our main comparison between finite and unit
regular rings, let us first examine some of the interdependence
between the above cancellation laws. First, it is clear that each
cancellation law for modules implies the corresponding one for ideals
which in turn implies the one for principal ideals.

By analogy to the above, it is easily seen that for right Λ-modules

( 4 . 4 ) Ci' ~ = Ci = - C<" ,

for internal as well as external cancellation laws for all possible i.
Also,

(4.5) Cjn ~ Cίn = - Cϊn = - Cin

and
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(4.6) CΓ — Cίx ~ Cϊx ,

with analogous implications for G*' and G*", and again C3' and C3" being
identical.

As mentioned earlier the internal laws for, say (principal) ideals,
may not imply the corresponding external law. We do have however
that for modules,

(.47) Cίn — CΓ ,

with analogous results for G*' and Cz". It is exactly the equivalence
of the internal and external laws which appears naturally in the
study of regular rings. Lastly, if we take M = gR in the cancellation
laws Gi', ΐ = 1, 2, 3, then because of the much stronger condition we
may conclude that

(4.8) Cί%22) — CFGJNR) <==> Cnΰ) — α % ) i = 1, 2, 3 .

Indeed if, say, i = 1 all that is needed is that Q?(g) => il?(gR).
Therefore, let A 0 B ~ gR ~ C 0 D, A = C, where A, By C, D

are right iϋ-modules. If φ: A@B~* gR and ψ:C®D~>gR are the
isomorphism, then there is aeA,beB, such that ψ(a, 0) + 0(0, b) =
φ(a, b) = g and hence gR = φ(a, 0)R + ^(0, b)R with ^(α, 0)J? = A,
φ(0, b)R = 5. Likewise, there are ceC, deD such that

#i? = f (c, 0)R + ψ(0, d)R ψ(c, 0)R = C, ψ(0, d)R = D .

Since φ(a, 0)R ~ ψ{c, O)JB, it follows by Q?(g) that C = φ(0, b)R s

By analogy to the substitution property of [5] it can be shown
that the cancellation law d is inherited by internal as well as external
direct sums of modules obeying these laws.

We have now arrived at the following relationship between
finiteness, unit regularity and these cancellation laws.

THEOREM 3. Let R be a regular ring with unity 1, and let eί9

fif i = 1,2 be idempotents in R.

(a) The following are equivalent.
1. R is unit regular.

2. Q*

3.
4.
5.
6.
7.
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8.

9.

(β) The following are equivalent.
1. R is finite.

4. Csn

o . O3/ (X)

6. C3

e?(l)
7.
8.

Proof, (a). (1) <=> (2). This has been proven by Handelman [8].
Alternatively, the unit regularity of R2X2 could be used to prove this.

(2) <=> (3). This follows from (1.3) on rewriting Ctx using idempo-
tents.

(2) => (4) => (5) « (6). This always holds.
(6) => (1). This follows from the result of Ehrlich [4] Theorem

2, which states that if R = End^ (M) is a regular ring, where M is
a right A-module, and l e i , then R is unit regular exactly when

Since regular rings are faithful, this includes the cancellation law
Cin/Γ)\.
0>(ll).

R — 11 4" J\ — ijί "T" e/2> ^1 = *2 :- e/i = e7"2

for complemented right ideals, which reduces to C{?(1). An alternative
proof is obtained from Theorem 4 and Corollary 1 of [5]. Indeed,
if R/bR = R/dR and we pick a, c such that aR + bR = R = cR + dR,
then aR = cR. Hence by Cj?(l), δi? = di2, which by Corollary 1 of
[5] ensures that R is unit regular.

The equivalence of the latter four parts was established in (4.8).
(β) The equivalence of (l)-(4) is contained in Theorem 2, while

the equivalence of (5)-(8) follows from (4.8). Lastly, if Qf holds
and eR = R = eR+ (1 — e)R, then e = 1 ensuring that i? is finite.

REMARK. In his paper [8], Handelman actually showed that
unit regularity is equivalent to the external cancellation law Cfx for
finitely generated projective modules. It is an open question whether
finite regularity is equivalent to CΓ for modules of this type.

We close this section with a counterexample showing that the
isomorphism inclusion law (3.4) as well as the external cancellation
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law Cix may not be valid for non-principal right ideals in a unit
regular ring.

EXAMPLE 2. Let R be a unit regular ring and let

M =

A

0

d

0

d
, AeRnXn, n^of

be the ring of all infinite matrices over R which consist of a direct
0

d
sum of a finite matrix A and an infinite scalar matrix D =

0
It is easily verified that S is again a unit regular ring. Now let

, be the ideal of all matrices

1 0 ••

; JUT = [ { f o\,

in S that have zero tail and let a —

TT

Ό

1°
1 *

1

0 0 and I = HJ, where

is the infinite row-shift matrix. Then I and J are

right ideals in S such that IQJ, 1 = /(as S-modules) Iφj and aR+I =
J,I=J,aRΦ (0).

5* Matrices over regular rings. In this section we shall give
necessary and sufficient conditions for the matrix ring R2X2 to be
finite regular or unit regular. We shall need some preliminary results
dealing with 2 x 2 matrices over a regular ring R. If b = paq, with
p and q invertible, then the sets of reflexive inverses {b+}, {a+} are
related through {b+} = q~ι{a+}p~1. Thus each reflexive inverse b+ is
of the form q~la+/p~l for some a+ e {α+}. Hence bb+ = paa+p^ for some
α+, but this is not necessarily true for all aa+. We do have, however,
that b = paq=>bR - paR => bb+R = bR = aR = aa+R => bb+ - aa+, for
αW choices of <x+ and δ+. It is this "decoupling" of the idempotent
bb+ from aa+, this allows us to select suitable b+ and a+ independently
from each other.

If M = f ί is an arbitrary matrix in the regular ring J?2X2,

then it can be shown that [10] there exists a reflexive inverse M+

of M such that simultaneously
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(5.1)

where

(5.2)

and

a e<

uu+(l — αα + ), e2 = ss+(l —

(1 - a + a)v + v, / 2 = w + ^ + (

vv+

a = (1 -

/S = [a+c

(1 - u+u)s+s

αα+)]

- s+s)

u = (1 — aa+)c, v = 6(1 — α + α), z — d — ba+c

with s = (1 — vv+)z(l — u+u). In these expressions a+ is arbitrary
but the same choice of a+ must be used throughtout. Moreover (5.1)-
(5.2) remain valid if ( )+ is replaced by (•)" throughout. Since MM+

and M+M are triangular idempotents they are similar to diagonal
matrices. Indeed, for example

Λ o
o /,

A β

P /,
(5.3)

We thus may state

PROPOSITION 10. // M = ? ^ e R2X2, where R is a regular ring,

then

(5.4)

for suitable idempotents elf e2 given by (5.2).

COROLLARY 10. / / E2 — EeR2X2, where R is a regular ring,

then E ~ \f} for suitable idempotents e1 and e2 in R.

Because (5.1)-(5.3) also hold for matrices of the form M =

[ A ί^~λ

g D e RnXnf where A e Rpxp and D e Rqxq, with p + q = n, we may

extend these results by induction to Rnxn. In particular, if M =

α i
, where ae R, b and c are columns in Rn 1 and D e JB(%_1)χ(%_1),

then there exists an M+ such that ikίM+ ^ Λ1 E; fo r suitable

idempotents e xei2 and E1eR(n_1)x{n^1). Hence by Lemma 1, MRn =
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•gίjβ*-i = eιRθE.R^1, and so we may now repeat the reduction

with E19 By induction we obtain MRn = ejt φ 0 e%Jβ for suitable

idempotents ei e R, i — 1, , n, and thus we have

COROLLARY 11. If MeRnXnf where R is a regular ring, then

t 0

0

for suitable idempotents et e R, i = 1, , n. In particular if E2 =
'ex 0~

EeRnXn then E for some e* = eteR9 i = 1, •• , n.

We now recall from Theorem 2, that if R is regular then R2X2

is finite regular if and only if MR2X2 = J?2X2 => MR2X2 = i22χ2 So if
we let £7 = ikflf+ be given by (5.1), then ER2X2 = MR2X2~I2R2X2 where
Jn is the identity matrix in i?ΛXft. From (1.2) we see that this holds
exactly when Γ^1 ®~\R2 ~ R\ or

(5.5) e,R^e2R = RφR .

Since R2X2 is regular exactly when R is, we have proven the following.

THEOREM 4. If R is a regular ring with unity 1, then R2X2 is
finite if and only if for any two idempotents e19 e2 e R,

(5.6) ejt ex = e2 = 1 .

It is well-known that finiteness for J?2X2 implies that of R. Let
us now examine the converse question for regular rings. We begin
by noting that

MX = I for some XeR2X2 <==> MM" = I for all M"

<==> MM+ = I for some M+ ,

and hence using (5.1)-(5.2) we see that

MX = I for some XeR2x2 <=> (1 - uu+)(l - αα+) = 0 ,

(1 - ss+)(l - vv+) = 0

while

YM = I for some Ye R2X2 <=» (1 - α+α)(l - v+'y) = 0 ,

(-L ~~~ iλ/ U/1\X o S I — v/ .

(5.7)

(5.8)
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Thus R2X2 is finite if and only if these are equivalent. We shall
show now that if R is regular, then R2X2 will not be finite if there
exist elements a and x in R, with a not unit regular, such that

(5.10) R = aR + x(a°) .

We begin by noting that (5.8) and (5.9) are, with aid of regularity,
equivalent to

( i ) uR = (1 - aa+)R

(ϋ) sR = (l-vv+)R
} (iii) Rv - 22(1 - a+a)

(iv) Rs = R(l - u+u) .

Suppose we select c = 1, d = 1 + &α+c and b = (1 — αα+)#. Then
% = 1 and w = 1 — αα+ is idempotent so that (i) holds. Now if (5.10)
holds, then by (3.2)

(5.12) uR = (1 - αα+)i2 = (1 - aa+)x(l - a+a)R = i;22 .

Hence, by regularity (1 — w+)w = 0 so that s = (1 — vv+){l — u) —
1 — OT+, if we pick u+ = ̂ . It now follows that (ii) and (iv) also
hold. Indeed Rs = jξ(l — OT+) = 0/y = °u — R(l — u). Now consider
the last identity Rv — R(l — a+a). This implies that

(1 - aa+)R = vR=z(l- a+a)R ,

and so aa+ ̂  a+a since always aa+ — a+a. But the latter is locally
equivalent to a being unit regular [12], which is excluded by assump-
tion. The structure of (5.10) should be compared with the represen-
tation R — aR 4- u(a°), u a unit which is equivalent to a being unit
regular [12]. We note in passing that none of the "obvious" choices
for x seem to work. For example, x = 1 implies that a2R = aR,
which if R is finite, ensures that a* exists so that a is unit regular.
Let us now turn to unit regular rings.

THEOREM 5. If R is a regular ring with unity then R2X2 is
unit regular exactly when for any idempotents e19 e2, flf f2 6 R,

ejt Θ ejt = fjt Θf2R = - (1 - ex)R 0 (1 - e2)R

' } ^ ( 1

Proof. That (5.13) is necessary is an immediate consequence of
a result of Handelman (see [8, Theorem 2]).

Now suppose (5.13) holds, and that E2 = E - F = F\ By (5.1)
there exist 1 — 2 inverses E+, F+ such that
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EE+
1 0

0 e.
, FF+ "Λ o

o /J*
Hence by (l.l)-ii,

I - EE+ -
0

and I - FF+
1-Λ 0

0 1 - / ,0 1 - e2j

But now we may apply (3.1)-ii with E~ — E and E^ = E+ to show that

"1-β, 0 Ί _ _ Π-/i 0
- EE+

0 1 -
, I-F.

o

Consequently if E ~ F, then

o *J i x i - L o fj
and so by (1.3) e,R@e2R = fjtξ&fjt. Using (5.13) and (1.3) once

more yields " o ^ l — e ~ ( ) l — f a s ^ e s ί r e ( ^ T i l i s r e s u l t

is easily seen to generalize to Rnxn, wi th aid of Corollary 8.

COROLLARY 12. // R is unit regular then (5.13) holds.

We may also use Theorem 3a to characterize the unit regularity
of i?2 x 2.

THEOREM 6. If R is a regular ring then R2X2 is unit regular
if and only if for any idempotents et, fi9 gif hi e R, i = 1, 2,

(5.14)

,R 0 e2R 0 fjt © fjt = gxR © 2̂i2 0 ĴB 0
β2J? = sr.jR 0 g2R

fjt@fjt = KR 0 h2R .

Proof. By Theorem 3a, R2X2 is unit regular if and only if for
all A, B,C,De R2X2 such that

(5.15) and AR2X2~CR2

it follows that BR2X2 = DR2X2. Suppose now that (5.14) and (5.15)
hold. Then by (5.4) there exist eif fif gt and hi9 i = 1, 2 such that

[

0

_0

0

0"

0"

-^2X2 =

R ω\
-^2X2 \L/

L

_o
Λ
0

0"

Λ.

1^2X2 = , and

" 2

•fci 0

0 Λ.
R,
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With aid of Lemma 1 this implies that ejt φ eji = gxR φ gJR and
ejt φ e,R φ fjt φ f2R s QιR φ g2R φ AldR φ h,R. Hence by (5.14)
i 1 » \R2 = Lx1 , LK2 which by Lemma 1 ensures that
υ J2J L υ ^ J

BR2X2 — Λ o
.0 /J

-L^2Y.2
0

Conversely, if i?2X2 is unit regular, it suffices to take

e1

0

0
D

Lo Λ J ' o »
and

and apply Theorem 3α and Lemma 1.

REMARK. We may replace the idempotents in Theorem 6 by
arbitrary regular ring elements.

Our last result will be the converse of a theorem by Henriksen
[13].

THEOREM 7. If RnXn is unit-regular for some n ^ 1, then R is
unit regular.

Proof. It is well-known that if RnXn is regular with identity
for some n ^ 1, then so is R. So let e ~ f with e = pp, f = pp

and peeRf.pefRe. Then E = [ $ / , ] = [? /°J[? Λ° J = ^

- [ί /I] = [ί /! J [J /!,] = Ϊ P ->»•"' 6 £« «F =
and PeFRnXnE= ϊffe Ώ. Hence E ~ F and so by the

unit regularity of RnXn, I — E ~ I — F. That is,

0 0

as i?MXm-modules, which implies by (1.2) that

"(1 - e)Rl Γl - β 0

0 oF =
-f 01 _ Γ(l - f)R

o o f -L o
as iϋ-modules.

Hence (1 — e) ~ (1 — /) as desired.
We remark that this result may also be obtained from Theorem

5 extended to RnXn, which is far less transparent however.

6* Conclusions* We have compared some of the properties of
finite regular and unit regular rings, and have shown that both are
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closely related to the study of generalised inverses on the one hand,
and a study of cancellation laws on the other. We have seen that
the finiteness property may often replace the concept of rank (cf.
Prop. 6) in matrix calculations, and that the finiteness of i?2x2 de-
pends, for a regular ring on the existence of certain nonunit regular
elements.

It will be of interest to study the semigroup and subgroup
structure of finite regular and unit regular rings.

We conclude with several open problems.
1. If R is finite does a2R = aR => Ra2 = Rai
2. Does C{n imply regularity?
3. Does C[n => Ctx in arbitrary rings? If the answer to 2 is

affirmative, then the answer is yes.
4. Is a finite regular subring of a unit regular ring also unit

regular?
5. Is finite regularity equivalent to CΓ for finitely generated

projβctivβ modules?
6. When does I £ J, I = J => I = J for right ideals?
7. If R is finite regular can R φ R = R φ R φ R as ^-modules

hold?
8. Is the (k, I) property inherited by i?2x2?
9. What sort of finite regular ring satisfy C*n or C2

ex?
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