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A FORMULA FOR THE NORMAL PART OF THE
LAPLACE-BELTRAMI OPERATOR ON THE
FOLIATED MANIFOLD

HARUO KITAHARA AND SHINSUKE YOROZU

In this paper, we give a formula for the normal part of
the Laplace-Beltrami operator with respect to the second con-
nection on a foliated manifold with a bundle-like metric. This
formula is analogous to the formula obtained by S. Helgason.

1. Itroduction. We shall be in C*-category and manifolds are
supposed’ to be paracompact, connected Hausdorff spaces.

Let M be a complete (p + g)-dimensional Riemannian manifold
and H a compact subgroup of the Lie group of all isometries of
M. We suppose that all orbits of H have the same dimension .
Then H defines a p-dimensional foliation F' whose leaves are orbits
of H, and the Riemannian metric is a bundle-like metric with res-
pect to the foliation F. A quotient space B = M/F is a Riemannian
V-manifold [5]. Let L, be the Laplace-Beltrami operator on M
with respect to the second connection D[8], and let 4(L,) denote the
operator defined by (*) in §4. Our goal in this paper is the follow-
ing theorem:

THEOREM. Let L, be the Laplace-Beltrami operator on M with
respect to the second connection D and L, the Laplace-Beltrams
operator on B with respect to the Levi-Civita connection associated
with the Riemannian metric defined by the mormal component of
the metric on M. Then

A(Lp) = 672 Ly006"* — 672 Lx(6%)
where 6 1s the function given by (**) below.
This theorem is analogous to the following result obtained by
S. Helgason [2]: Suppose V is a Riemannian manifold, H a closed
unimodular subgroup of the Lie group of all isometries of V

(with the compact open topology). Let WCV be a submanifold
satisfying the condition: For each we W,

Hw)ynW={w}, V,=(Hw),DW,,

where @ denotes orthogonal direct sum. Let L, and Ly denote the
Laplace-Beltrami operators on V. and W, respectively. Then

A(Ly) = 5721,y 00/ — §7/2L (812
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where 4(Ly) denotes the operator called the radial part of L, and
0 s the function given by do, = 6(w)dh (doy is the Riemannian
volume element on the orbit H-w and dk is an H-invariant measure
on each orbit H-w = H/{the isotropy subgroup of H at w}).

2. Definition of V-manifold [1, 6, 7]. The concept of V-mani-
fold is defined by I. Satake. Let M be a Hausdorff space. A C~-
local uniformizing system {U, G, @} for an open set U in M is a
collection of the following objects:
U: a connected open set in the m-dimensional Euclidean space
(or C*-manifold).

G: a finite group of C>-transformations of U.

@: a continuous map from U onto U such that @oo = @ for
all ¢ € G, inducing a homeomorphism from the quotient space
U/G onto U.

Let {U, G, #}, {U', G', ¢’} be local uniformizing systems for U,
U’ respectively, and let Uc U’. By a C>-injection \:{U, G, ¢} —
(T, G', @'} we mean a C~-isomorphism from U/ onto an open subset
of U7’ such that for any ¢ e G there exists ¢’ € G’ satisfying relations
@ = @'on and Aeo = o'o.

A C~-V-manifold consists of a connected Hausdorff space M and
a family &# of C>-local uniformizing systems for open subsets in
M satisfying the following conditions:

(I) If {U, G, @}, {U', G, 9}e# and Uc U’, then there exists
a C=-injection r:{U, G, ¢} —{U’, G, ¢'}.

(II) The open sets U, for which there exists a local uniformi-
zing system {U, G, p} € %, form a basis of open sets in M.

The set R of all real numbers is regarded as a V-manifold
defined by a single local uniformizing system {R, {1}, 1}, then a
C=-function on a V-manifold (M, &) is defined as a C*-map M — R
defined by a C*-V-manifold map (M, &) — (R, {R, {1}, 1}).

A C=»-V-bundle over C*-V-manifold is also defined, and in par-
ticular the tangent bundle (TM, &# *) of a C*-V-manifold (M, .¥)
is defined. Let (M, # ) be a C*-V-manifold, then an h-form ® on
(M, &) is a collection of h-forms {w3}, where wy is a G-invariant
h-form on U such that wy = .o\ for any injection \: {U, G, @} —
(0, &, 20, G, 9}, {U", &, ¢'}e.#), and if the support of w is
contained in U = o(0)),

CO:_————S (O
SM NgﬁU’

where N; denotes the order of G. A Riemannian metric g on (MM,
&) is a collection of Riemannian metrices {g7}, where gz is a G-
invariant Riemannian metric on U satisfying some condition with
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any injection \: {U, G, p} — (U, &, 9'}.

3. Review of the results from [4, 5]. Let M be a complete
(p + q)-dimensional manifold with a “bundle-like matric” with respect
to a p-dimensional foliation F. We suppose that each leaf of the
foliation F' is closed.

The quotient space B = M/F is the space formed from M by
identifying each leaf to a point, and let #: M — B denote the identi-
fication map. H(S) denotes the holonomy group of a leaf S. Since
M has the bundle-like metric with respect to F and all leaves are
closed, H(S) is a finite group for any S and B is a metric space
defining the distance between two points of B to be the minimum
distance between them considered as leaves is M. B is a connected
Hausdorff space, since it is metric space and is the continuous
image }of M under x. Given any point be B, let S = 7"(b). Let
U be a flat coordinate neighborhood of some point of S. Since H(S)
may be considered as a group of isometries of the sphere of unit
vectors orthogonal to the leaf S at some arbitrary point of S, H(S)
operates the g¢-ball orthogonal to S. Thus we may consider that
H(S) operates on U such a manner that {U, H(S), #} is a local uni-
formizing system for the neighborhood 7(U) in B. The natural
injection map of two such local uniformizing systems are of C~.
Thus B is a C”-V-manifold. Since H(S) is an isometry on the
normal vectors at a point of S, the normal component of the metric
of M defines a Riemannian structure on B. Thus B is a Riemannian
V-manifold.

4. Laplace-Beltrami operator with respect to the second
connection. Let M be a (p + ¢)-dimensional manifold with a Rie-
mannian metric ( , > and a p-dimensional foliation F. Let (U, (2%,
cee, 2, yY ---,y?)) be a flat coordinate neighborhood system, that
is, in U, the foliation F' is defined by dy* =0 for 1 < a < q. Here-
after we will agree on the following ranges of indices: 1< 4, 7,
k<p,1=a, B, 7 d=q.

We may choose in each flat coordinate neighborhood system
o, @, ---, 2% 9, -+, 9y9)) 1-forms w!, .-+, w? such that {w*, ..., w?,
dy', -+, dy’} is a basis for the cotangent space, and vectors v, ---,
v, such that {o/ox!, ---, 0/0x?, v, ---, v,} is the dual base for the
tangent space. Then we may get

0 Aia

oy" “ ot

wh = dat + Aldy*, v. =

We may choose A% such that {9/ox*, v,) = 0, then the metric has
the local expression
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ds* = g.:(z, Y)w'w' + g, y)dy dy’

where

._[/0 0 .
Guje = <%, 3_’13’_ s Gapt = (Vey Vs

and x: = (&', -+, 2%), y: = (¥ -+, ¥9.
We may uniquely define the “second connection” D on M as
follows (cf. [8]);

0 . 0 0 _ yi O
(a) Da/axa T = ,}i-é-g-ﬁ—ka vaﬁ—rﬁjé’gﬂ-

Da/ax”)ﬁ = I, , D, Vs = Fapv? ’

b

o p b
(b) <3x’ > < 3/92;’8 7’ ax > <8'7; D&/ﬁx"axk> ’
’l)a<’l)p, /UT> = <Dvavﬂ’ 'v7’> + <’vﬂv Dvav7'> ’
o 0N _ 0 4)
(e) Tt 507) = Tiwr s T(5000) =0,
P o D
T('Um a_xT> =0 y T(’Ua, ?)p) = Zﬁ—ax_k ,

where T denotes the torsion of D, that is, for any vector fields X,
Yon M, T(X,Y): =D, Y — D, X —[X, Y] ([, ] denotes the usual
bracket operator). Note that, in general, the torsion of D doesn’t
vanish. If the metric has the local expression

ds® = g,(x, Yw'w’ + gu(y)dy“dy’ ,

the metric is called a “bundle-like metric” with respect to the folia-
tion F. Hereafter we suppose that M has a bundle-like metric
with respect to F. Then we get

%<vay vﬁ> = <Da/axiva, 'vﬂ> + <’Uay Da/az'i’uﬁ> .

For a vector field X on M, div,X is defined by
div,X: = Trace (Y — Dy X),

for any vector field Y on M. For a function f on M, grad, f is
defined by

grad, f: = (§° Da/awf)—— + (g aﬁDvﬂf)'Ua

= (7920 )L + @0
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where (%) and (§**) are inverse matrices of (g,;) and (g.;) respecti-
vely. We define the Laplace-Beltrami operator L, with respect to
the second connection D by

Ly(f): = div, grad, f,
that is,

Lo(f) = 352 (50-0) ) = 0T tize()

+ ﬁ“"va(w(f ) — G Af)

Let B be the C*-V-manifold M/F. Let &(B) (resp. 2(B) be
the space of C~-functions (resp. C*-functions of compact support)
on B, and let & (M) be the space of C~-functions on M which are
constants on leaves. We may define a map @: & (M)— £ (B) by
O(f)(w(m)): = f(m) where fe& (M), meM and 7w: M — B, then @
is of one-to-one. Let &Y(M): = 0~(=(B)).

It is clear that fe & (M) if and only if 9/0x*(f)=0 for 1<i=<p.

LEMMA. If fe& (M), then Ly(f)e & (M).

Proof. For fe& (M), we get
Lp(f) = g%vuvs(f)) — G v (f) -

Since gus = gup(y) and 'ty = (1/2)§7°{va(gss) + ve(gas) — Vs(ges)}, We get
g% = §*(y) and so 0/0x'(Ly(f)) = 0. Thus we get L,(f)e & (M).

REMARK. Let L be the Laplace-Beltrami operator with respect
to the Levi-Civita connection associated with the bundle-like metric.
In general L(f)e & (M) for fe&(M).

For L, and fe&(B), we define 4(L,) by

(*) ALp)(f)b): = Lp(@7(f))=(b)), beB.

This is well-defined by lemma. Roughly speaking, 4(L,) seems to
be an operator projected on B of the normal part of L,.

5. Proof of theorem. Using the same notations as above
sections, we give a proof of our theorem.

The isotropy subgroup H, at each point m e M is compact and
the orbit H-m is compact. We fix a Haar measure on H and a
Haar measure on H,, we get an H-invariant measure d/ on each
orbit H-m = H/H,. Since M has the bundle-like metric, ds® =
9./, Yw'w? + g..(y)dy*dy®, the volume element M of M is given by
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dM = Gz, y)dx' N\ =+« ANda®> N dy* A\ -+ N\ dy*
(= G@, y)w' N\ -+ Nw” N dy* A -+ N\ dy°)

where

G(z, y): = \/det <81 ;0 ) .

af

For a flat coordinate system (U, (2, «--, 2%, %', --+, ¥9)) and the
projection z: M — B,

do = G'(y)dy* A\ --+ A dy?,

where G'(y): = V/|det (g.s)|, is regarded as the volume element dB
of B, since {U, H(S), #n} is a local uniformizing system for w(U) in
B. Also we get

G(z, y) = V']det (g.:(z, ¥))|-G'(v) .
However
V]det (g.(x, w))| w' A -+ - A w?

is the volume element dS,, on the leaf S,, through a point m=(z, ¥)
(that is, on the orbit H-m). Thus, if fe&YWM) we get from the
Fubini’s theorem that

|, sanr = {1\ ras. laB@om)
where “__” denotes the image under.@. aS,, is invariant under H,
so it must be a scalar multiple of dh,
dS,, = o(m)dh .
Then the function ¢ belongs to & (M ).' We put
() 5: = 0(0) .

Thus we get

§K faM = S HH.mf(h-m)dﬁ]é(ﬁ(m))dB(ﬂ(m)).

B

The normal component of the bundle-like metric ds*=g,;(x, y)wiw’ +
9.s(y)Ay°dy® is dsy = g.s(y)dy°dy®, thus L, is defined by the Levi-
Civita connection associated with the metric defined from dS%.
Thus we observe that

A(Lp) = Ly + lower order terms.
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The operator L, restricted to &% M) is symmetric with respect to
dM(cf. [8]), that is,

(=) | Lo)riamt = | £Lu(f)am

for f,, f,e &LYM).
For fe & (M) and me M, we get

|, fdh = f(tmpe

where ¢ denotes a nonzero constant S dh. Putting f, = &(%), fo=
H-m - il
o(f,) for f,, foe &YM), we get

| Eatrarad = [\ Lu(f)fdh paB

I

SB[MJCszdB

Il

¢\ Lo(ryram.
Thus we get from (***)
[ Lo(rsr0dB = | 1L 00dB

for f, f,e&%M). By the definition of A(L,) we get L,(f) =
ALp)([f) for fe& (M), so

|, AL F0aB = | fALoNFIdE .

This expression implies that 4(L,) is symmetric with respect to
0dB. Since L, is symmetric with respect to dB, 072Lgzod'/? is
symmetric with respect to é dB and it clearly agrees with L; up
to lower order terms. The symmetric operators A(L;,) and §'/2Lz06"2
agree up to an operator of order < 1, thus this operator, being
symmetric, must be a function. By applying the operators to the
constant function 1, we get

ALp)(1) — 672L500"%(1) = — 6 2L ,(5Y2) .
Thus
MLp) = 672 L5082 — §72Ly(547) .

This completes the proof of our theorem.

REMARK. The example of “RS-manifold of almost fibered type”
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given by S. Kashiwabara (Apendix 5 in [3]) is a foliated manifold
with a 1-dimensional foliation and bundle-like metric. Each leaf of
the foliation is a “S-geodesic.” This example is constructed from
the space D which consists of all points x.e, + x.6, + ¢, + te, such
that |2,|=1(1=1,2,8), 0=¢t=<1, where (e¢,e¢,¢,e¢) denotes an
orthonormal frame with origin o in Euclidean 4-space. If S-geode-
sics are of direction of e¢,, a leaf through the origin o has nontrivial
holonomy group. Then § = 1.

REMARK. The semi-reducible Riemannian space are a special
class of foliated manifolds with bundle-like metrices. The metric
of such a space has the local expression

d §* = o(y)q.;(¥)da’'da’ + ga.s(y)dydy’
(c¢f. [4]). Then ¢ is defined from o.
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