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C*-ALGEBRAS OF TRANSFORMATION GROUPS WITH
SMOOTH ORBIT SPACE

PHILIP GREEN

We investigate the structure of certain locally compact
Hausdorff transformation groups (G, X) and the C*-algebras
C*(G,X) associated to them. When G and X are second
countable and the action is free, we obtain a simple necessary
and sufficient condition for C*{G, X) to be a continuous trace
algebra, and show that the continuous trace algebras so
arising are never " twisted" over their spectra. When G
is separable compactly generated Abelian and X contains a
totally disconnected set of fixed points whose complement,
Z, is a trivial G-principal fiber bundle over its orbit space
ZIG, with Z/G compact, C*(G, X) can be described completely
using the Brown-Douglas-Fillmore theory of extensions of
the compact operators on a separable Hubert space by a
commutative algebra. These results yield as special cases
the structure of the C*-algebras for several infinite families
of solvable locally compact groups.

In greater detail the contents of the paper are as follows: In
§ 1 we discuss, after some preliminary lemmas, C*(G9 X) for X
having a dense free orbit with complement a finite set of fixed
points. (The possible structure of such transformation groups is
closely related to the "end theory" of G.) Complete results are
obtained when G is separable compactly generated abelian. As an
application we compute the group C* -algebras of the "α# + 6" groups
over all nondiscrete locally compact fields. (The real case was first
treated by Z'ep [30], the complex case by Rosenberg [22], while
the p-adic result was found independently by Rosenberg and myself.
The methods here are considerably less computational than those of
[22] and [30], and in particular we avoid solving any integral
equations.)

In § 2 we prove a result which permits us to reduce the study
of C*(G, X) in certain cases to the study of algebras of simpler
transformation groups. We then apply this to (Gt X) for which (1)
G is compactly generated, (2) the set Y of fixed points of X is
totally disconnected, (3) the complement Z = X\Y of Y is a trivial
G-principal fiber bundle [24] over ZjG, and (4) Z/G is compact,
obtaining a complete description of C*(G9 X) when G is in addition
separable abelian. These results are applied to find the C*-algebras
of some further locally compact groups, including a family of solva-
ble Lie groups whose C*-algebras were first computed in [22].
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(Again, our methods are simpler than those of [22].)
In the final third section we discuss free actions, i.e., those for

which the stabilizer of any point consists of the identity element
alone. We show, for second countable G and X, that C*(G, X) is
a continuous trace algebra if and only if compact subsets of X are
"wandering," and that when this happens the corresponding element
of H*(X/G, Z) is always 0. Under suitable smoothness hypotheses
it follows that C*(G9 X) is isomorphic to the algebra Coo(X/Gf

SΓ{L\G))) of continuous functions vanishing at infinity on X/G with
values in the compact operators on L\G). We also give an example
of a free action of R on a closed subset X of R3 for which X/R is
Hausdorff but C*(R, X) is not a continuous trace algebra.

We will use the notational conventions introduced above through-
out the paper, so that in particular G will always denote a locally
compact group, X a locally compact Hausdorff space on which G
acts, and X/G the associated orbit space with the quotient topology.
Except where noted we work with left Haar measure on G, and all
actions are jointly continuous left actions. The following shorthand
will be used: "group" means "locally compact group": "representa-
tion" means "strongly continuous unitary representation" when
referring to G and "nondegenerate ^representation" when referring
to a C*-algebra; "ideal" means "closed two-sided ideal." We use Z
and R to denote the integers and real numbers, respectively.

The basic facts about C*-algebras, as covered in the first four
chapters of [8], will be used without special reference.

I would like to thank my adviser, Professor Marc Rieffel, for a
number of helpful suggestions which eliminated obscurities from the
exposition.

1Φ Transformation groups with finitely many orbits* We
refer the reader to [13] or [10] for the definition of C*(β9 X) and
for the proof of the following fundamental fact: representations L
of C*(G9 X) on a Hubert space £ίf are in natural one-to-one corres-
pondence with pairs (V, M) where V = VL is a representation of G
on J%f, and M = ML a representation of Coo(X) on £ίf, such that
V(s)M(f)V(s-1) = M(sf) for every s in G and / in O,(X). (Here
sf(χ) = /(β"1*) for all x in X.) We will also need the fact, implicit
in [10], that there are natural homomorphisms (denoted φG and φx

respectively) of C*(G) and Coo(X) into the multiplier algebra (cf. [1])
of C*(G, X) such that for any representation L of C*(G, X), VL =
LoφG and ML = Loφx (Here and in the following we use the same
letter for the associated representations of a group and its C*-
algebra and similarly for the associated representations of a C*-
algebra and its multiplier algebra.) For any k in C*(G) and / in
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the product φG(k)'<px(f) is in C*(G, X); we will denote it by
k-f (and similarly will let f-k denote φx(f) φQ(k)). The set of all
such products generates C*(G, X) as a C*-algebra.

The first lemma below summarizes some basic facts about the
ideal structure of C*(G, X). Before stating it we recall that if Z
is an open subset of X> Coo(Z) can be identified with the ideal of
Coo(X) consisting of functions which vanish off Z. We will frequ-
ently make this identification, but when it is necessary to distinguish
between feCoo(Z) and the corresponding element of C^X) we will
use fx for the latter. Part (i) of the following lemma will enable
us to identify C*(G, Z) with an ideal of C*(G, X) when Z is a G-
invariant; again, this identification will frequently be made when no
confusion is likely to result.

LEMMA 1. Let Z be an open G-invariant subset of X.
( i ) There is an isomorphism az of C*(Gf Z) onto an ideal of

C*(G, X) such that, for k in C*(G) and f in C»{Z)9 az(k-f) = k fx.
The map so induced from open G-invariant subsets of X to ideals
of C*(Gf X) is one-to-one and preserves finite intersections and
arbitrary unions (the 'union' of a collection of ideals being the ideal
they generate).

(ii) The kernel Ker L of a representation L of C*(G, X) con-
tains C*(G, Z) if and only if Ker ML^C^{Z). If L is irreducible
then hull (Ker ML) is not the union of two proper closed G-invari-
ant subsets of X. (For any representation L, hull (Ker ML) is closed
and G-invariant, by [10, p. 62].)

(iii) Let Y = X\Z. There is a surjective homomorphism βγ:
C*(G, X)->C*(G, Y) with kernel C*(G, Z), such that βγ(k-f) = k f\γ

for k in C*(G), f in C~(X).

Proof. Choose a faithful representation L of C*(G, X) and let
V — VLf M = ML. Then V and M\Coo{Z) define a (possibly degenerate)
representation Lo of C*(G, Z). Since LQ(C*(G, Z)) is generated by
the subset {V{k)M{f): Ai6C*(G), feC«>(Z)}, which is mapped into
L0(C*(G, Z)) by left or right multiplication by anything of the form
7(fc)or M(g) (with h in C*(G) and g in CΌo(X)), it is clear that the
image of C*(G9 Z) is an ideal of L(C*(G, X)). Taking az = Zr^Lo,
we see <xz(k-f) = k fx for k in C*(G) and / in Coo(Z). Furthermore
az must be injective since any representation K of C*(G, Z) "ex-
tends" to a representation H of C*(G, X) with VH equal Vκ and MH

equal to the canonical extension of Mκ to Goo(X).
If L is now any representation of C*(G, X) then Ker L2C*(G, Z)

iffKerL2[& /:A;eC*(G), /eOo(Z)}, iff VL(k) ML(f) = 0 for all k
in C*(G) and / in Coo(Z); but since VL is nondegenerate the latter
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can happen only if ML annihilates G*>(Z). Now let Z1 and Z2 be
open G-invariant subsets of X, with Z^Z29 and choose z in Z\Z%.
Letting H be the stabilizer in G of z we may project a quasi-invari-
ant measure on G/H to get a measure μ on the orbit i? = Gz9 and
then construct a representation L of C*(G, -X") on If(E, μ) in the
obvious way—G acts by left translation (modified by Radon-Nikodym
derivatives so as to give a unitary representation), while Coo(X)
acts by multiplication of functions. Then L annihilates C*(G, Z2)
but not C*(Gf Zλ)9 so the indicated map from invariant open sets to
ideals is indeed one-to-one. The intersection of C*(G, Zx) and
C*(G, Z2) clearly contains C*(G, Zt Π Z2), for arbitrary open invari-
ant Z1 and Z2; the reverse inclusion follows from the fact that for
kt € C*(fi) and /< e G^Z^i = 1, 2) we have A^Λ Λ fc, 6 C*(G, Z, f] Z2)
(and the fact that the intersection of two ideals is equal to their
product). For a family {Z5} of open invariant sets obviously
Όfi*(G9Zs)^C*{G9 W) where W = ΌόZό\ since CC(W) (the algebra
of complex valued functions with compact support) is dense in
Cco(W), and since any element of Ce(W) can be written as a finite
sumΣ?=i/ί> with each ft in Cc(ZjH)) for some j(i)9 we have that
U3(C*(G) Coo(Zd)) generates C*(G, W).

At this point we have proved (i) and the first statement of (ii).
The second statement of (ii) follows from the fact that the kernel
of an irreducible representation of a C*-algebra is a prime ideal, so
that if Ker L^C*(G, Zt) for i = 1, 2 then Ker L£C*(G, Z,) n C*(G,
Z) = C*(G, ^i Γl Z2). To prove part (iii) observe that a repre-
sentation K of C*(G9 Y) defines a representation H of C*(G, X)
(take MH to be the composition of Mκ with the natural homomor-
phism of Coo(X) onto Cββ(3Γ)), and that by (ii) a representation of
C*(G,X) factors through C*(G, Y) if and only if it annihilates
C*(G9 Z).

We will see later that for many interesting transformation
groups (G9 X) it is possible to find an open G-invariant subset Z
such that C*(G, Z) and C*(G, Γ)(Γ = X\Z) are known; by the above
lemma determination of C*(G9 X) then reduces to describing how
C*(G, Y) "extends" C*(G, Z). The general problem of computing
the extensions of one C*-algebra by another is very difficult, but
for certain algebras significant progress has been made in recent
work of Brown, Douglas, and Fillmore ("BDF"). (See [2], [3].) In
the following lemma we adapt their results slightly to provide a
framework for describing the extensions encountered later in this
section. (For unexplained terminology we refer the reader to [2].)
&(££?) and 3T{Sίf) will denote respectively the algebras of all
bounded operators and all compact operators on the Hubert space
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LEMMA 2. Let A be a separable commutative C*-algebra, and
a separable infinite dimensional Hilbert space, ( i ) Weak

equivalence classes of extensions of 3ίΓ(£ί?) by A are in one-to-one
correspondence with the set TA of triples (X, C, Ύ) where X is the
spectrum of A, G is a closed subset of the one point compactifica-
tion X^ of X, and Ύ is an element of the BDF abelian group
Ext (C).

(ii) Let A be the C*-algebra direct sum of a countable family
{At: i e ^} of separable commutative C*-algebras. Then any exten-
sion of 3ίΓ{3ίf) by A is isomorphic to a "direct sum" of extensions
of J?Γ(<%f) by Ai for i e ^ this decomposition implements a natural
embedding of TA in ILe^ TA..

Proof ( i) Weak equivalence classes of extensions are in 1-1
correspondence with equivalence classes of homomorphisms of A into
the Calkin algebra Jzf(βέf)/J>?~ (<%*), two such homomorphisms being
equivalent if they are "intertwined" by a unitary operator in
£f(έ%f). (This result is essentially due to Busby [4], although he
used a different definition of weak equivalence; we are using that
of [2].) When A has a unit and the homomorphisms are faithful
and unit preserving their equivalence classes are parameterized by
Ext (X); the general case follows from this since an arbitrary homo-
morphism determines a faithful unit preserving homomorphism of
a quotient algebra of A~ (the algebra formed by adjoining a unit
to A).

(ii) When there are only finitely many nonzero At this is a
consequence of [2, 4.8]. For infinitely many nonzero Aif observe
that X~ can be identified with the "strong wedge" of the Xr([15]).
For any closed subset C of X~, either C contains the point at infinity,
in which case C is the strong wedge of the sets Gt — C Π Xif or else
d is empty for all but finitely many i. The desired result can
now be easily deduced from [2, 8.2].

We now proceed to show that certain transformation groups
give rise to algebras describable by the BDF theory. The (well-
known) lemma below is a first step in that direction. Here ((?, G)
is the transformation group obtained by letting G act on itself by
left translation.

LEMMA 3. Let L be the representation of C*(G, G) on L\G)
such that VL is the left regular representation of G, and ML

represents Coo(G) by multiplication of functions. Then L is faith-
ful and identifies C*(G, G) with 3T{L\G)).
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Proof. See [25, Prop. 3.3] or (for a more elegant proof) [20].

In the remainder of this section we consider (G, X) such that
X contains an open invariant subset Z with (G, Z) isomorphic to
(G, G) and with Y == X\# a finite collection of G-fixed points. Before
proceeding further it is worth pointing out that there is a close
connection, made precise in the following lemma (which will not
actually be needed until the next section), between transformation
groups of this type and the theory of ends of compactly generated
groups. (For the definitions and basic facts of this theory used in
the following, see [20, pp. 18-21].) For any compactly generated
group G the disjoint union E = G U £, where ζ is the set of ends
of (?, carries a natural compact Hausdorff topology such that, with
G acting on itself by left translation and fixing ξ- pointwise, (G, E)
is a transformation group. With this notation we have:

LEMMA 4. Let G be compactly generated, and suppose X is
compact and contains a totally disconnected set Y of G-fixed points
such that X\Y = G (as a transformation group) and is dense in X.
Then there is a unique G-equivariant continuous map φ of E onto
X preserving the subset G (of E and X).

Proof. As Y is compact (since, being the set of fixed points,
it is closed in X) and totally disconnected, any y in Y has a basis
^ ς for its neighborhoods (in X) which consists of compact sets Q
such that Q ΓΊ Y is open in Y. Let ^£v denote the family of sub-
sets of G of the form G Π Q for Q in ^Γy.

Observe that each end ε of G contains ^ C for some z in Y:
Otherwise by compactness of Y we could find a finite family {QJ
of subsets of X with union Q a neighborhood of Y, and with each
Qi in Λϊt for some yi9 but with Qt Π G not in ε. Now (in the
terminology of [20, pp. 19-20]) Qtf)G is "unbounded" in G (other-
wise yt could not be in the closure of G); and given any "seed" U
of (?, since Y is fixed by U we have

(EΛ(P, n G)) n (tf (Q,.n G)) = UP, n EΓQ,

where Pt is the complement of Qt in X. Since UPt Π ί/Q* is rela-
tively compact in G we see that Qt Π G is a "neighborhood of infinity"
in G. Then from the maximality condition for ends [20, p. 20],
Q Π G = U i(Qi Π G) cannot be in ε (otherwise one of the Qi Π G
would have to be); but this contradicts the fact that Q f)G, as a
set with bounded complement in G, must be contained in every end
([20, p. 20]).

Thus ε contains some ^£z. As X is Hausdorff and any two
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elements of ε must intersect (as subsets of G), ε can contain only
one ^fz. Hence we get a natural map .£—>Y, which extends (by
leaving each s in G fixed) to a map φ from Έ to X. It is then
easy to see (using the definition of the topology on E) that φ is
continuous, and hence, by density of G in X and compactness of E,
surjective; φ is G-equivariant by construction.

Uniqueness follows from the density of G in E.

Given an X as in the lemma but not compact, X~(with the
obvious G action) satisfies all the conditions of the lemma. Hence
in either case the number of fixed points of X is less than or equal
to the number of ends of G. It is known ([20, 4.3]) that a com-
pactly generated group has either 0, 1, 2 or infinitely many ends.
Seemingly the great majority of groups have exactly one end; the
groups with two ends are precisely those having a discrete uniform
subgroup isomorphic to Z, while the finitely generated discrete
groups with infinitely many ends are, roughly speaking, always
free products (see [6] for a more precise statement of this result,
which is due to Stallings). Among connected groups only those of
the from RxK with K compact have two ends (a result apparently
due to Freudenthal—cf. [20, p. 10]), all others having one end
(except for the compact groups, which have no ends). A non-
compact compactly generated abelian group always has one end
unless it is of the form Z x K or R x K (in which case it has 2
ends).

We turn now to the task of describing the C*-algebras of trans-
formation groups of the type just discussed. Let (G, X) be as in
the preceding lemma, with the additional restriction that Y be
finite, but with X not assumed to be compact. Since C*(Gf point) =
C*(G), we see easily from Lemma 1 that C*{G, Y) is a finite direct
sum of copies of C*(G). When G is separable abelian we may, in
view of Lemmas 1 and 3, describe C*(G, X) by producing a triple
of the sort described in Lemma 2. Note that, since we are interested
in describing only the isomorphism class of C*(G, X), there is some
ambiguity in the choice of 7(cf. the discussion on pp. 120-121 of
[2]). In particular for the algebras arising in the next few lemmas
the corresponding Ext group is a direct product of copies of Z, and
it is easy to see that different 7's in this group will define the same
algebra if the absolute values of their components agree; we choose
7's with nonnegative components, by convention.

LEMMA 5. Let X be the two point compactification Z\J{± co}
of Z, and let G — Z act on X by fixing the points at infinity and
"left translating9' the remainder. Then C*(G, X) is isomorphic to
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an abelian extension of JtTψiZ)) with triple (T x Z2, TxZ2, (1,1)),
where T denotes the unit circle, Z2 = Z/2Z, and (1, l ) e Z 0 Z =
Ext(Γ x Z2). Let X, = Z\{-oo}; tfcew, C*(G, Xx) ftαs έrίpie (Γ, ΓU
{0}, 1), w&ere 1 e Z - Ext (ΓU {0}).

Proof. Let L be the representation of C*(G, X) on l\Z) such
that y£ is the left regular representation of Z and CΌo(X) acts by
multiplication of functions. By Lemma 3, L(C*(Z, Z)) = ^T(l\Z)).
Now define / in Oo(-Xi) by /(r) = 1 for r ^ 0 and /(r) = 0 for r<0,
and let fei e Ce(Z) (regarded as a subalgebra of C*(Z)) be the chara-
cteristic function of the singleton {i}, for each i in Z. Then the
operator

Γ = 1,» - Fx(fc0).ML(/) + F^J. ik ί^/)

acts as the unilateral shift on £?([0, w)) and as the identity operator
on l\{— oo, — 1]), where those two spaces are regarded as subspaces
of l\Z) in the natural manner. The adjoint of T is therefore a
Fredholm operator with index 1.

We have shown that L(C*(G, X^Γ) contains an operator with
non-trivial Fredholm index, so by [2, Thm. 10.5] the algebra A —
L(C*(G, -Xi)~)A^(ϊ2(Z)) cannot have its spectrum A" embeddable in
R. Since, by Lemma 1 (iii) and the fact that L identifies G*{Z, Z)
with J^(£2(Z)), A is a quotient algebra of C*(<?, point)", and so has
spectrum isomorphic to a closed subset of T~= ΓU{0}, either A~ =
T or 4 Λ = ΓU {0}; but the first possibility is ruled out by the
fact that the operator U = VL{k^)ML{f)9 being the direct sum of a
unilateral shift and a zero operator, has essential spectrum T U {0},
which is not a continuous image of T. It is now clear that C*(Gf

Xj) has the invariants claimed in the lemma, since extensions with
7eExt(ΓU {0}) equal to 0, or with |7| ̂  2, can contain no operators
with Fredholm index 1 (this may be seen from [2, Thm. 10.5] for
example). The invariants for C*(G, X) now follow from the fact
that they are determined by the values "at each piece" of the
spectrum of C*(Z, {± oo}), as in Lemma 2.

LEMMA 6. Let G = R and X— [— oof oo], and let G act on X

by translation (fixing ± »), Then C*(G, X) has triple {R x Z2, S,
(1,1)) where S is the one point compactification of R x Z2 and
(1, l ) e Z ® Z = Ext OS). Let X1 = X\{- oo}, and identify R~ with
T; then C*(G, X,) has triple (R, T, 1).

Proof. Since the argument is practically identical in form to
that of the preceding lemma we concentrate on the main difference,
which is the construction of an operator of Fredholm index 1. We
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regard L\R) as the direct sum of £έf^ = L 2((- <χ>, 0)) and
Z,2((0, .00)), and produce an operator which acts as the identity on
< ĝt, and on £ίf+ as a unilateral shift with respect to the orthonor-
mal basis {Ln(t)e~t/2: n — 0,1, 2 ••} where Ln is the w~ίA Laguerre

polynomial: Ln(t) = Σ?= o (^)(—<)W (For the basic facts about
the Laguerre polynomials, consult [25, Chapter 5].) First we observe
that the operator T = VL(k)ML(f)—where / is the characteristic
function of [0, 00), Jfc = e~t/2f, and L is constructed as in the preced-
ing lemma—is in L(C*(G, XJ), even though / is not in Coo(-XΊ): choose
fj in Oo(-Σi) for j = 1, 2, . such that fd(x) = 1 for x ^ 0, /,(#) = 0
for x ^ - 1/j, and |/,•(&) | ^ 1 for all a?. Then for any h in L2(i?) a
straight-forward calculation shows that

for all x in j? (where %[_i//,oo> is the characteristic function of [—l/jf
00)), and so

II V(k)M(fd - f)(h)\\> ^ lle-^c^/^HJ-

It follows that T is the norm limit of the operators V(k)M(fά),
and is thus in L(C*(G, Xλ)). The operator lL*lR) — T acts as the
identity on L2((— 00 f 0)) while for heL2((0, 00)) we have

( ( I - T)h)(x) = h(x) - e-χ/2\et/2h(t)dt .
Jo

Using the above explicit formula for Ln(t) we see easily that

/ W' \ + I n

Σ . )(-a?)V*l + Σ
ί=o \ ^ / i=i

so I — T is indeed a shift with respect to this basis for Sίf+. The
adjoint of I — T is then an operator in L(C*(Gf JEΊ)~) with Fredholm
index 1. The rest of the argument proceeds as in Lemma 5.

PROPOSITION 7. In the following K is any separable compact
abelian group. ( i ) Let G = K x Z, and let X be the two point
compactification (K x Z) U {± °°} of G, with G acting on X by
fixing the points at infinity and left translating the remainder.
Then C*(Gf X) is an abelian extension of (an algebra isomorphic to)
^Γ(L 2 (G)), with extension triple {T x K~ x Zt9 S, ( (1,1, •••), (1,1,

•••)))> where S is T x K~ x Z2 if K is finite, and (T x K~xZ2Y
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otherwise, and ((1,1, . .), (1,1, •)) 6 (ILe** ^)x(IL«** Z) = Ext(S).
Let Xx = X\{- oo}; then C*(G, X,) has triple (T X J5T, S, (1,1, •))
where S = (Γ x K~)~.

(ii) Lβέ G = K x R, and let X be the two point compactifica-
tion (K x JR) U {± oo} of G. (X is homeomorphic to the unreduced
suspension of if.) Then with G acting on X as in (i), C*(G, -X")
has triple (R x K~ x Z%9 (B x ί T x Z2)~, ((1,1, •), (1,1, •))).
Let X, = X\{- oo}; then C*(G, X,) has triple (R x K~, {R x iT)~,
(1,1, •••)).

Proof. We prove (i) only, the argument for (ii) being virtually
identical. As in the two preceding lemmas we represent C*(G, Xx)
on L\G). By Lemma 1 C*(G, Xx) is an extension of C*(G, G) by
C*(G, {oo}) ^C*(G). Now C*(G)sCco(Γx JΓΛ) is the C*-algebra
direct sum of the subalgebras C*(Z) ~ CΌo(Γ x {χ})(χeK~), hence in
view of Lemma 2(ii) we can describe the extension by decomposing
it into a "direct sum" of extensions by the G\{Z). This is done as
follows:

Using the Plancherel theorem for K we may write L\G) =
@xeκ*l\(Z)> w i t h Vλ2) = ι\Z) f o r e^ch χ. Given a fixed χxeK~ it
is easily checked that G*£Z)~G*(Z) acts on /^(Z) as in the regular
representation of Z, while it annihilates s£(Z) for %^%i. Further-
more, if we denote by A the subalgebra of Coo(-XΊ) consisting of
functions whose restrictions to K x Z are constant on cosets of K,
then any f in A acts on sf^Z) as multiplication by the bounded
function /* on Z, where /*(r) = /(0, r) for each r in Z. It follows
easily from Lemma 5 that the C*-algebra on 4\(Z) generated by
(the restrictions of) F(C*x(Z))ikf(A) is an extension of J%^(^χ\(Z)) with
triple (Γ, ΓU{0}, 1).

But now Coo(-Xi) is the linear span of A and the subalgebra B
of functions which vanish at oo, so L(C*(G, XJ) is generated by
the above algebras on the 4(Z) together with V(C*(G))M(B). By
Lemma 3 the latter algebra is just J%?~(L2(G)). We can now readily
deduce from the definition [2, 8.1] of "direct sum" extensions that
C*(G9 Xi) has the form claimed in the Proposition.

A similar argument gives the structure of C*(G, X).

From the above proposition we can easily deduce the structure
of C*(H) for H the "ax + 6" group over an arbitrary nondiscrete
locally compact field F. (For the facts about such fields used
below, the reader may consult Chapter 2 of [5].) This group is
defined to be the semidirect product of the underlying additive
group F+ of F with the multiplicative group F* of nonzero elements
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of F, acting on F+ by multiplication. It is well known (and is easy
to deduce from the basic facts about transformation group algebras
quoted at the beginning of this section) that the group C*-algebra
of the semidirect product of a locally compact group G acting on
an abelian locally compact group A is just C*(G, A"), where A" is
given the dual action of G. In the case of the "ax + b" group,
G = F* and the dual action on (F+y = F+ is (isomorphic to) ordinary
multiplication. We have F* = Z x K or F* = R x K according as
F is non-archimedean or archimedean, where in each case K is the
compact group of elements of absolute value 1, and the summand
Z or R is a cross-section for the logarithm of the absolute value
map. It is then easy to see that the corresponding transformation
group (F*, (F+y) is isomorphic to (G, Xλ) of the preceding proposi-
tion (with G = F*; the isomorphism of (F+y with Xt sends 0 to
oo), and hence that C*(H) has the structure indicated in the pro-
position for C*(G, -Xi).

The transformation groups of Proposition 7 are rather special
in that the groups G considered there all have two ends. For
groups with one end, the only possible transformation groups of
the sort we have been considering are (G, G) and (G, G~) (where G
acts on G~ by fixing the point at infinity). In the last result of
this section we partially characterize the corresponding C*-algebras.

PROPOSITION 8. Let G be arbitrary, and let X = G~. Then
C*(G, X) is a split extension o/(an algebra isomorphic to) 3ίf{L\G))
by (an algebra isomorphic to) C*(G). If G is amenable and non-
compact the extension is essential (i.e., every nontrivial ideal of
C^(G9 X) contains C*(G, G)).

Proof. The mapfc~+& l from C^(G) to C*(G, X) is easily seen
to define a splitting homomorphism for the extension. Therefore
we need only check that for amenable noncompact G the extension
is essential. Represent C^(G9 X) on 2ίf — L\G) in the usual way
(again calling the representation L) and observe that, since any sub-
C*-algebra of J Γ ( ^ ) containing J T ( ^ ) has 3T(3if) as its unique
minimal ideal, it is sufficient to verify that for G as above the
representation is faithful. This in turn will follow if we can show
that the induced homomorphism

C{G, x)/c*(G, G) — > ^(^r)/^r(^r)

is one-to-one, or equivalently that the representation of C*(G)
obtained by composing the above splitting map with the representa-
tion L of C*(G, X) is faithful and has image intersecting the com-
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pact operators only in (0). Since this representation of C*(G) is just
the left regular representation λ, faithfulness holds precisely when
G is amenable. We conclude the proof by showing that for arbit-
rary noncompact G and arbitrary k in C*(G) the operator X(k) is
not compact unless it is 0, We may assume ||λ(fc)|| = 1. Choose
g, h in CC(G) so that ||λ(fc - h)\\ < 1/4, 11011, = 1, and \\Hk)(g)\\2>
3/4. Letting C and D be the respective supports of h and g, then
since G is noncompact we may find a countable family {sif i = 1, 2,
•••} of elements of (? such that the subsets CDst are pairwise
disjoint. Define OieCβ(G) by gt(x) = g(xsϊι)ΔG(sjψ* Then Π |̂U = 1
and ||λ(λ)(Λ)||f = ||λ(λ)flr||β>l/2. Furthermore since supp \(h)gt£
CDSi the \(h)gt are mutually orthogonal, and so ||λ(/&)(0< - 0,0112 >
τ/2-1/2 for i ^ i ; but then \\\(k)(gt - flry)||, > τ/2-1/2 - ||λ(fc) -

λ (^) | | . | | ^ . _ g.\\2 > l/2(τ/2 - 1). It is now clear that λ(fc) cannot be
compact, since {λ(fc)flrj can have no cluster point in -L2(G) and so is
not relatively compact.

In particular when G is non-compact separable abelian, C*(G,
G~) is an extension of 3T{L\G)) with triple ((Γ, {G~Y, 0) when G
is not discrete, and (GΓ, (?", 0) when G is discrete (since in that
case the associated homomorphism of C*(G) into &(LKG))/3Γ(L\G))
is unit preserving). This, together with Proposition 7 and the
earlier remarks on end theory, completely characterizes the C*-
algebras of ((?, X) such that X has a dense free orbit with com-
plement a totally disconnected set of fixed points and G is separable
compactly generated abelian. We note that Voiculescu's recent
generalization [29] of the Weyl-von Neumann theorem implies that
C*(G, (r~) is determined (whenever G is separable, noncompact, and
amenable) as the unique essential split extension of SΓ{L\G)) by
C*(G). (Of course this really describes C*(G, G~) only when C*(G)
is known.)

2* Transformation groups with two orbit types* In this
section we consider certain actions with infinitely many orbits but
only a small number of orbit types. Our first goal (Proposition 11)
is to show that in certain cases we can reduce to the study of
simpler transformation groups.

LEMMA 9. Let Z be an open G-invariant subset of X, and π
a proper (i.e., inverse images of compact sets are compact) G-equi-
variant continuous map of Z onto a locally compact Hausdorff
G-space Y. Then there is a continuous homomorphism π* of
C*(G,Y) into C*(G, X) such that π*(k f) = h (foπ)x for alike
C*(G), f 6 Coo(Y). If G is amenable this homomorphism is injective.
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Proof. A slight modification of the argument for Lemma 1 (i)
yields the first statement. To prove the second we invoke [26, p.
28] to see that (in the notation of that reference) the representation
L = Σ^Indp of C*(G, Y) (the sum being taken over all peC^YΓ)
is faithful, when G is amenable. Since Ca>(Y) is naturally embedded
as a subalgebra of CΌo(X), we can find (by [8, 2.10.2]) for each p a
representation pr of Coo(X) such that o'\Coo{Y) strictly contains p.
Then Ind p' restricted to C*(G, Y) strictly contains Ind p, and there-
fore Σ^Ind// is a representation of C*(G, X) whose restriction to
C*(G, Y) strictly contains L and so is faithful. Since this represen-
tation of C*(G, Y) factors through π* the latter map must be
injective.

We will use this lemma to identify C*(G, Y) with a subalgebra
of C*(G, X) whenever there is no ambiguity in the choice of π.

REMARK. It can be shown that the last statement of the lemma
is false when G is not assumed amenable. In fact, as was pointed
out to me by Jonathan Rosenberg, we can take G — SL2(R) and
X — G/H where H is the subgroup of upper triangular matrices in
G; the fact that not every representation of G is weakly contained
in a representation induced from H implies that the natural homo-
morphism of C*(G, point) into C*(Gf G/H) is not one-to-one.

The following lemma is a slight refinement of [8,11.5.3].

LEMMA 10. Let Sί = (A(t), Θ) be a continuous field of C*-algebras
on the locally compact Hausdorff space T, A the C*-algebra defined
by Sί, and BQC two sub-C*-algebras of A. Suppose that for all
t19126 T, ε > 0, and ceC there exists beB with \\b(tt) — c(ί<)|| < ε
for i = 1, 2. Then B = C.

Proof. The result follows from an easy modification of the
proof of [8,11.5.3] once we observe (using the Krein extension
theorem and the weak compactness of the closure P(A)~ of the set
of pure states of A) that any foeP(C)~ extends to an feP(A)~,
and hence "lives on" some A(t). (It can also be deduced from [11.
Theorem 1.4].)

PROPOSITION 11. Let (G, W) and (G, Y) be transformation
groups such that the action of G on Y is trivial. Give X= YxW
the "diagonal" G-action: s-(y, w) = (y, s-w) for yeY, weW, and
seG.

( i ) There is an isomorphism η of C*(G, X) onto A = Coo(F,
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C*(G, TF)) = Oo(Γ)(x)C*(G, W) such that η(Jc f)(y) = k f(y9 -) for
&eC*(G), /eCΌo(Γx W) (where f(y, •) denotes the function wv-+
f(y, w) in Coo(TF)).

(ii) Assume in addition that G is amenable, and let π be a
continuous proper G-equivariant map of an open G-invariant subset
Z of X onto a locally compact Hausdorff G-space T. Then C*(G9 T)
is identified (via η) with the subalgebra C = {ψ e A, (ψ(yD9 ψ(y2)) €
C*(G, Tyvy2) for all yl9y2eY}9 where TyvV2 denotes the subspace
π{{{Vι<> V%\ x W) Π Z) of T and C*(G, TVvVJ is regarded as a subalge-
bra of C*(G, {yl9 y2} x W) = C*(G, W) x C*(G, W) by means of
Lemma 9.

Proof, ( i ) We see easily, using CΌo(X) ~ Coo(Y)®Cΰ0(W)f that
representations of C*(G, X) are in one-to-one correspondence with
triples (V, M, N) where V is a representation of G, M is a repre-
sentation of Cco(W), and N is a representation of CL(Γ) such that
the images of M and N commute, the images of V and N commute,
and V(s)M(f)V(s~1) - M(sf) for all seG,feC^(W). In other words
representations L of C*(G, X) correspond to pairs (Lo, N) where Lo is a
representation of C*(G, W) and N is a representation of C^F) such
that the images of Lo and N commute; furthermore L(C*(G9 X)) is
generated by the images of LQ and N. It then follows from the
discussion on pp. 158-159 of [16] that C*(G, X) is isomorphic to the
"maximal tensor product" of C»(Y) and C*(G9 W); since C^Y) is
nuclear [16], this is the same as the minimal tensor product, which
is isomorphic to CJX9C*(G9 W)) ([23, pp. 59-60]) (One can also see
this directly from [28, Theorem 1].) It may easily be checked that
this isomorphism has the desired effect on elements of the form k f
for k 6 C*(G) and / e C^X).

(ii) Recall that C*{G, T) is the sub-C*-algebra of C*(G9 X)
generated by elements of the form k>f where k is in C*(G), and /
in CJ^Z) "factors through" Γ. Given such an element we have,
for y19yt in Γ, that Mk-f)(yJ, η{k'f){y2)) = (k f(yl9 •), *•/(%, •))•
Clearly (f(yl9 •)» f(Vt> •)) regarded as a function on ({yί9yz}xW)ΠZ
factors through Γ^ 2 and so y(C*{G, T))QC. On the other hand
given g in Coo(TVvyJ we can, regarding ^ as a function on ([yl9 y2}x
W)Γ\Z, extend it to a function / in C^Z); then with φ = η(k f) the
above calculation shows (ψ{yΐ), ψ(y2)) — k g. (Here k can be any
element of C*(G).) Since the elements k g generate C*(G9 TyvV2) and
since C is obviously a sub-C*-algebra of A, it is clear from Lemma
10 (taking B = η(C*(G9 T)), T = Γ, and SI = the trivial continuous
field of C*-algebras defined by the decomposition of A as
C*(G, TΓ)—cf. [8,10.5]) that C - )?(C*(G, T)).
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This proposition can be used to derive a result of Rosenberg
concerning the C*-algebras of a family of solvable Lie groups.
Namely, let H be a semidirect product of R with Rm such that the
roots of the action of R on Rm all have non-zero real parts of the
same sign. Then as was observed in [22], C*(H) is isomorphic to
C*(G, T) where G = R acts on T = Rm via r v = erv for r ej?, ve
Rm. It is easy to see that we may identify T with the "proper
quotient" of Sm - 1 x X1 (where Xx is taken as in Proposition 7) ob-
tained by collapsing Sm~ι x {oo} to a single point. Hence the preced-
ing proposition applies, with TVvy2 the quotient space of {ylf y2] x
Xλ obtained by identifying (yίf oo) with (y2, oo), for all pairs {ylf y2}
in Y=Sm-\ To compute D = C*{G, TVvVi) (which incidentally is
just the C*-algebra of the proper real "ax + 6" group) as a subal-
gebra of F = C*(G, {ylf yj x XJ ^ C*(G, Jζ) x C*(G, Xx) we observe,
from the explicit formula given for the embedding π* in Lemma 9,
and from Lemma 1, that π*(D) contains the ideal I — C*(G, G) x
C*(G, G), and that π*(D)/I is the "diagonal subalgebra" of

F/I = C*(G, {(yί9 oo), (y2, oo)}) ^ C*(G) x C*(G) .

Hence

C*(G, Tyvn) - ί(elf β2) 6 C*(G, Xd x C*(G, Xt) | β(ej = β(e2)} ,

where β = β{00} denotes the canonical homomorphism of C*(G, Xj)
onto C*(G, {oo}). Therefore by Proposition 11 C*(H) is isomorphic
to the algebra

C - {^eCUS*-1, C*(G, -ZΊ)) I iβ(̂ (a/)) is constant in

One can easily verify that this description is equivalent to that
given in Propositions 3, 4, 5 of [22], i.e., that C*(JT) is an extension
of CUS™-1, JΓ(L2(i?))) by (LOR) with the index constant (in y e S™"1)
and equal to 1.

We remark without giving details that a similar argument pro-
vides the structure of the C*-algebras of the complex and p-adic
analogues of the above groups. The key feature of the semi-direct
product groups treatable by this method is that, for the associated
transformation group (G, X), X has a single fixed point whose com-
plement is a trivial G-principal fiber bundle over its orbit space,
with the latter being compact. We proceed now to investigate a
slightly more general class of transformation groups to which the
method can be applied. Namely, throughout the remainder of this
section we assume the following conditions on (G, X):

( i ) G is compactly generated
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(ii) the set Y of G-fixed points of X totally disconnected
(iii) Z = X\Y is dense in X, and Z/G is compact Haus-

dorff
( ) (iv) there is a (^-isomorphism (Z/G) x G-+Z (where

(Z/G) x G is given the "diagonal action" coming
from the action by left translation on G and the
trivial action on Z/G).

Our first goal is to show that it is possible to "build up" such a
(G, X) from copies of a transformation group having a single dense
orbit via the construction of Proposition 11.

As in Lemma 4 we will let E denote the compact space obtained
by adjoining to G its set ζ of ends, φ will denote a G-isomorphism
(Z/G) xG-+Z.

PROPOSITION 12. With (G, X) as above there is a continuous
proper G-equivariant map π of an open subset *W~ of (Z/G) x E
onto X such that W"^(Z/G) x G and π\{z/G)xG — φ.

Proof. If X is not compact, note that X~(with the natural G-
action) satisfies the hypotheses (*). We shall prove that for (G, X)
satisfying (*), and with X compact, we may find π as in the pro-
position and defined on all of (Z/G) x E; for non-compact X this
result applied to X~ yields the proposition, since we can then take
<&- = π~\X).

The construction of π goes as follows: given We Z/G, we iden-
tify G with W via φw: s^φ((W,s)). Then (G, W) satisfies the
hypotheses of Lemma 4, hence there is a continuous proper map
πw: E\-+X extending φw. Now define π by π(W,t) = πw(t) for all
We Z/G, teE.

We prove π is continuous; the other properties claimed for it
will then be obvious. Continuity at points in (Z/G) x G is clear, so
we must show for any (W, ε) in Z/G x ξ and any neighborhood V
of y = π(W,ε) that π~\V) is a neighborhood of (IF, s). We may
assume that V is compact, that F n Γ is open in Y (since Y is
totally disconnected), and that V° Π Y = V Π Y, where V° is the
interior of V. Let U be a compact symmetric neighborhood of the
identity whose interior generates G. Then an easy compactness
argument shows that we can find an open neighborhood Vι of y
such that Vλ n Y= V f] Y and W-V^ V. The subset K = V\VX

of Z is compact, so (denoting by pι and p2 the projections of (Z/G) x
G onto the first and second factors, respectively) C = p2(φ~\K)) is
a compact subset of G. Now let T(s) denote, for any seG and
TQX, the subset pi(π~\T) n (Z/G x {β})) of Z/G.
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Choose Qeε disjoint from C and "ET-connected." (See [20, pp.
19-21] for definitions and the proof that Q can be taken {/-connected.)
Then, for each s in Q and t in U, V(s) = tV2(s) = V^s) (since 8$C),
where V2 = UVt. The [/-connectedness of Q together with the fact
that tV2(s) = Vzit^s) now imply that F2(sJ = F2(s2) for all sly s2eQ.
As Vx is open so is V^s), and since π(T7, ε) = y and Qeε we must
have We F^sXfrom the way π was defined). A simple argument
now shows that V^s) x (Q U {ε' 6 ξ: Q e ε'}) is a neighborhood of (TΓ,
ε) which is sent into V by π. Hence π is continuous at (TΓ, ε), as
was to be proved.

This result tells us that when we have (G, X) satisfying (*) we
may apply Proposition 11 to the problem of computing C*(G, X).
Of course, a satisfactory solution is possible only when C*((?, E) is
known. When G is separable compactly generated abelian we can
use the results of § 1 to deduce the theorem below; the argument
is similar to that given above in computing the structure of the
C*-algebras of Rosenberg's Lie groups, and so is omitted. The
notation is that of the preceding proposition.

THEOREM 13. Let (G, X) satisfy (*), and suppose G=ZnxRmx
K where K is a separable compact abelian group, (i) If G has
one end (i.e., if n + m ^ 2), denoted oo9 let β be the canonical
homomorphism of C*(G, E) onto C*(G) = C*(G, {°°}) (using the con-
struction of Lemma 1). Then

C*(G, X) = {ψeC^Z/G, C*{G, E))\β(ψ{z)) = 0 if (z, oo) g<Sfr,
and β{f{z^j) = β(ψ(z2)) for all pairs {zlf z2} such that
π(zlf oo) = π(z2, oo)}.

Here C*(G, E) is a split extension of C*(G, G) = JT(L2(G)) by
C*(G).

(ii) If G has two ends, denoted oo^ and oo+1> let τ denote the
automorphism of C*(G) induced by the automorphism (r, ί)h->(—r, ί)
of G (recall G = Z x K or R x K), and let βt be the homomorphism
of C*(G, E) onto C*(G) - C*(G, {ooj) /or i = ± 1 . Then

C*(G, X) s {* e CUZ/G, C*(G, jg?)) I ACtW) = 0 if (z,
°°<), and

for all 2J, ̂ , z2 e Z/G and i = ±1}.

Here the structure of C*(G, E) is given in Proposition 7 (as ((?, J57)
is isomorphic to the ((?, X) of that proposition).
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The reason for introducing the automorphism τ in part (ii) of
the above proposition is that G acts "in opposite directions" near
the two ends ©o±1. We can illustrate the significance of this by
considering the example C*(R, R~). By Proposition 8 this algebra
is a split extension of J?Γ(L2(R)), which would seem to contradict
the fact that by the above proposition it sits as a sub-algebra of
the non-split extension C*(R, [— oo, oo]); the point, however, is that
the image of C*(R, Rr) in C*(R, {- oo, c*>}) ~ C*(B) x C*(R) (after
dividing out by the ideal C*(R, R)) is the "skew diagonal" {(r(α),
a) I a e C*(R)} rather than the diagonal, and it is precisely this
skewness that "untwists" the extension so as to make it split.

3* Transformation groups with continuous trace C*-algebra»
In this final section we consider free actions only. Our goal is to
find a necessary and sufficient condition for the associated C*-algebra
to be a continuous trace algebra, and, when it is, to investigate
more carefully the structure of the algebra. Rather surprisingly,
it turns out that the continuous trace algebras A which arise always
have the property that, when it is defined, the associated element
(cf. [9]) of the Cech cohomology group H\A^, Z) is 0; intuitively,
this means that (at least when G is not finite) C*(G, X) is never
"twisted" over its spectrum, even when X is "twisted" over X/G.

We begin by generalizing slightly a concept familiar from the
theory of dynamical systems (cf. [18, p. 22].)

DEFINITION. A subset U of X is wandering if {seG\sUp\
0} is relatively compact in G.

The relevant condition on {G, X) for our purposes is then that
every compact subset of X be wandering. (Note that this is always
satisfied when X is a G-principal fiber bundle over X/G.) First we
show what this condition implies for the structure of C*(G, X).

THEOREM 14. Assume that G acts freely on X and that compact
sets in X are wandering. Then X/G is Hausdorff, and there is a
continuous field ^f — ((H(x)), Γ) of Hilbert spaces on X/G such
that C*(G, X) is isomorphic to the C*-algebra defined by the conti-
nuous field of elementary C*-algebras associated to £ίf. (cf. [8,
10.4.1 and 10.7.2]). In particular C*(G, X) is a continuous trace
C*-algebra with spectrum homeomorphic to X/G.

Proof. We begin by showing that for each a; in I the map
φx: δHsx of G into X is a homeomorphism onto its image: Let U
be an open relatively compact neighborhood of x. Then ψχι{U) is
open in G, and since it is contained in the set {seG: sU Π U Φ 0}
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it is relatively compact. Hence since φx takes compact sets homeo-
morphically onto their images, φx\Ψ7\u) is a homeomorphism onto
U Π Gx. It follows that the image of any neighborhood of the
identity of G under the map φx is a neighborhood of x in Gx. By
homogeneity φx is open onto its image, and hence a homeomorphism.

Next we show that XIG is Hausdorff: If it were not we could
find a net (Wa) in X/G converging to two distinct points Y1 and F2,
and thus (by openness of the projection of X onto X/G) nets sa in G
and xa in X with xa converging to y1 and saxa to y2f where yγ e Yλ

y2 e Y2. Choose compact neighborhoods U1 and U2 of y1 and y2; the
fact that U1U U2 is wandering then implies that the sa lie in a
compact subset of G for large a. Passing to a subnet we may
assume the sa converge to some element s in G. But then joint
continuity of the action and Hausdorff ness of X imply that y^sy^
so Yx — Y2, a contradiction. Hence X/G is Hausdorίf. In particular
each orbit is closed.

Now let μ be a fixed right Haar measure on G. For each W
in X/G we define a measure μw on ΫF by choosing x in W and
letting /v be the image of μ under the map φx:G—>W. A simple
computation shows that μw is independent of the choice of x, so
Hw — L2(W, μw) is well defined. Each / in CC(X) defines by restric-
tion an element of CC(W) and hence of Hw\ in this way we associate
to each such / a field of vectors vf over X/G. Now \\vf(W)\\2 =« \l/2

\foφx\
2dμ(s) J for any x in W. The wandering hypothesis im-

plies that, given a compact neighborhood U of x, there is a compact
subset of G containing the supports of all foφy for y in U, and it
is easy to see from this that the right hand side of the preceding
equation must vary continuously in x. It follows that the left hand
side varies continuously in W. Thus hypothesis (iii) of [8, 10.1.2]
is satisfied by Γo = {vf:feCc(X)}; hypotheses (i) and (ii) are obvious
for JΓ0, SO by [8,10.2.3] there is a unique subset of ΐlwex/σ Hw con-
taining Γo and defining a continuous field of Hubert spaces over
X/G. We let 21 = (A(W), Θ) denote the associated field of elementary
C*-algebras ([8, 10.7.2]), and A the C*-algebra defined by §ί.

For each We X/G define a representation Lw of C*(G, X) on
L\W, μw) by letting C^X) act by multiplication of functions, and
G act by (Vw(s)h){x) = h{s~lx)AG{s)l/2 for heL\W) and seG. Then
for each x in X the unitary transformation Sx: L\W)—+ L\G, μ),
h\-^h°φx intertwines Lw with a representation equivalent to the
representation of Lemma 3. Hence LW(C*(G, X)) = ST{L\W)).

We wish to show, more precisely, that C*(G, X) is isomorphic
to A. Let, therefore, Γδ for any 6eC*(G, X) denote the field
(Lw(b))wex/G over X/G. By definition of Sί, T6 will be in Θ if for
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any WeX/G and ε > 0 we can find fif gi e CC(X) (i = 1, , n), such
that for some neighborhood *%f of W,

\\Lw,(b)~±6fi,gi(W')\\ < ε for all W'e^

where θfi>g. is defined (see [8,10.7.2 and 10.6.1]) to be the following
field of rank one operators: θf.g.(W0)(h) = (h, gz)L\Wς>)fi> f or all Woe
X/G and heL\WQ).

Observe that it is sufficient to check this condition for 6 in
C*(G, X) of the form &•/, where keC*(G) and feCc(X), since these
generate C*(G, X) as a C*-algebra. Given such a 6, and given We
X/G and ε > 0, we use the fact that Lw(b) is compact, and hence
can be approximated by finite rank operators, to find fi9 gi9 i = l , , n
such that \\Lw(b) — ̂ t=1θfίg.(W)\\ < ε/2. Now, arguing as in the
demonstration that any 11̂ /(1̂ )11 varies continuously in W, we see
that the "pull-backs" SxMwiAf)S*1 and SxΘfig.{W(xj)Szι (where W(x)
denotes the orbit of x) vary continuously in x. Since SsVψωίfySϊ1

is constant (being the image of k under the regular representation)
it is clear that \\Lw,(b) — ̂ t=ιθf.gi{Wf)\\ varies continuously in W
and so is less than ε in some neighborhood of W.

Now observe that, for b = k f as above, 112/̂ (6)11 is zero outside
the image in X\G of the compact set supporting /. This together
with the preceding paragraph implies that bv-+ Th defines a homo-
morphism of C*(G, X) into the C*-algebra A defined by Sί; it
remains to check that this homomorphism is injective and surjective.

We see from the fact that the "irreducible" closed G-invariant
subsets are precisely the orbits, together with Lemma 1 (ii) and (iii)
that any irreducible representation of C*(G, X) "factors through"
C*(G, W) for some orbit W, and so (by Lemma 3 and [8, 4.1.5]) is
equivalent to Lw. Hence for any beC*(G,X) we have | |δ | | =
8vj)Weχ/σ\\Lw(b)\\, which agrees with its norm as an element of A.
Therefore the homomorphism is isometric, hence injective.

To see that it is surjective we invoke [8,10.5.3]. Thus given
Wx Φ W2e XjG, let Zγ and Z2 be the inverse images in X of disjoint
open neighborhoods of W1 and W2 in X/G. By Lemmas 1 and 3,
C*(G, Z,) and C*(G, Z2) are disjoint ideals of C*(G, X) such that
LWi(C*(G, Zt)) = J2r(2W*)) for i = 1, 2, while LWι (C*(G, Z2))=(0) =
LW2{C*{G, Zx)). Therefore given any R1 e JΓ(L\Wι))f R2 e sr(L\W2))
we can find bt 6 C*(G9 Z{) so that Lw.{b^) = Rif and then putting 6 =
b, + b2 we have LWi(b) = R,. Thus by [8,10.5.3] C*(G, X) maps
surjectively to A.

That C*(Gf X) is a continuous trace C*-algebra with spectrum
X/G we may now deduce from [8, 10.7.7, 10.5.8, and 10.5.2].
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COROLLARY 15. Let (<?, X) be as in the theorem. Assume in
addition that G is not finite, X/G is paracompact (this is always
true of course if X is second countable), and that either (i) X/G
has finite covering dimension and G is separable, or (ii) X is a
principal G-fiber bundle over X/G. Then C*(G, X) is isomorphic
to C^X/G,

Proof. If X is a G-fiber bundle over X/G it is clear that the
continuous field of Hubert spaces constructed in Theorem 14 is locally
trivial, while if X/G has finite dimension, continuous fields of separ-
able infinite dimensional Hubert spaces over it are always locally
trivial by [8,10.8.7]. In either case we conclude by [9] that the
field is in fact trivial. (Nonfiniteness of G implies each L\W) is
infinite dimensional.) The desired result now follows from the
obvious fact that the continuous field of C*-algebras associated to
a trivial field of Hubert spaces is itself trivial.

As a consequence of the above corollary we see that it is possi-
ble to have C*(G9 Xx) = C*(G, X2) when X1 and X2 are not homeo-
morphic (take G = Z, X1 = R, X2 — Z x T, with Z acting by trans-
lation in each case).

It is perhaps worth pointing out the consequences of the above
corollary for actions of compact groups. Such actions always have
the property that compact sets are wandering; hence if the action
is free we know that the associated C*-algebra is a continuous trace
algebra. Gleason has proved [12] that if G is a compact Lie group
acting freely on a completely regular space X then X is a fiber
bundle over X/G. Thus when X/G (or equivalently X) is paracom-
pact we can conclude that (at least when G is not finite) the struc-
ture of C*(G, X) depends only on the topology of X/G.

We turn now to a converse of the above theorem in the case
where G and X are second countable. We will need some facts
about induced representations of C*(G, X), which may be found in
[10] or [27].

LEMMA 16. Let G and X be second countable, with G acting
freely on X, and assume that A = C*(G, X) is type I. Then the
map X —> Rep A which sends x to Ind χx (the representation induced
from the character χx of C^X) determined by x) induces a homeo-
morphism of X/G with A". The map of Lemma 1 (i) from open
G-invariant subsets of X to ideals of C*(G, X) is a bisection.

Proof. By [14] every "quasi-orbit" (in the sense of [10]) in X
is an orbit, so ([10, 5.2]) the restriction of any irreducible represen-
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tation of A lives on an orbit. Thus by [27] any irreducible repre-
sentation is equivalent to Ind (χj for some x. We can now deduce
easily from [10, p. 68] that the indicated map from X to Rep A
induces a homeomorphism of X/G with A".

The second claim follows from the preceding and the fact that
an ideal I of A is uniquely determined by the set ^ of (equivalence
classes of) irreducible representations which do not annihilate it.

It will be convenient in the proof of the next theorem to work
with the following realization of Ind χx on L\G)\ Let Vx be the
left regular representation λ of G, and let Mx(f), for / in CO0{X)9

be the multiplication operator associated to the bounded continuous
function foφx on G (where φx is as in the proof of Theorem 14).
Then the pair (Vx, Mx) determines a representation Lx of C*(G,.X)
equivalent to Indχx.

For the remainder of the paper we drop our convention that all
ideals are to be closed.

THEOREM 17. Let G and X be second countable, with G acting
freely on X. Then C*(G, X) is a continuous trace algebra if and
only if every compact subset of X is wandering.

Proof. The "if" implication is a consequence of Theorem 14.
Hence assume that A = C*(G, X) is a continuous trace algebra.

Since A is then type / and A" is Hausdorff, the preceding lemma
implies that XIG is Hausdorff. Suppose there exists a nonwander-
ing compact subset K of X; then we can choose sequences (xt) in
K and (sj in G, with the 8t not all contained in any compact subset
of G, but with s^ in K for all i. Passing to subsequences we may
assume α?< tends to a limit z in K, and s&t tends to yeK. By
Hausdorffness of X/G, z and y must lie in the same G orbit; so,
taking s in G such that z = sy, we have £*#* tending to z, where
(ί,) = (88t) is an unbounded sequence in G. Our aim in the remainder
of the proof will be to use this "double clustering" of the orbits
GXi at z to produce a positive element c in the Pedersen ideal ([19])
of A for which the function π \-+ Tr (π(c)) is not continuous on A",
thus contradicting our hypothesis that A is a continuous trace
algebra (since the ideal of continuous trace elements in such an
algebra is dense and hereditary, and so must contain the Pedersen
ideal).

Let feCe(X) be nonnegative and real-valued with f(z) = 4 and
let Q be a compact symmetric neighborhood of the identity of G.
Then Mz(f) is a positive operator of norm ^ 4 on L\G), so (since
there is a bounded approximate identity for C*(G) consisting of
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functions in CC(G) whose supports shrink to the identity) we can
find keCc(G) with support contained in Q such that ||fc||σ*(σ, ^ 1 and
such that Tz = Lz{k*fk) = V,(k)*Mβ(f)V.(k) has norm ^ 3.

Let r be the real-valued function on [0, oo) such that r{t) = 0
for t <£ 1, r(t) = t for t ^ 2, and r is linear on the interval [1, 2].
Then c = r(k*fk) is in the Pedersen ideal ιc(A) of A (cf. [19, p.
134]). Furthermore Lβ(c) = r(Γβ) is in the Pedersen ideal of
Jf(L\G)) and so ([19, p. 133]) is a finite rank operator, say of
rank n. Since the map T\->r(T) is continuous on the positive cone
of Sf{L\G)) ([17, Lemma 1]) we may choose δ < 1 such that | | r (Γ)-
Lz(c)) 11 < 1/n for each positive operator T satisfying \\T — Tz\\ < 3.

For each a; in I let fx = f°φx. Because orbits are closed, and
<px (by standard Baire category arguments, using separability of (?)
is a homeomorphism, each fx has compact support in G; we let F
denote the support of fz. Straightforward compactness arguments
show that there is a neighborhood U1 of z such that, for each x in
Ulf \fz(s) - fx(s)\ < δ for all s in Q'F, and fx{s) - 0 for all s in
Q'F\QF. Thus if we define fx

0) for such x to be equal to fx on Q.F,
and 0 off QF, then /<0) is a continuous function with \\fz - /i0)||oo<
δ. Furthermore /i1} = fx — fί0) is a non-negative continuous func-
tion, and it is readily computed that Γj0) = V(k)*M(fx

0))V(k) and
T^l) = V{k)*M(fx

1])V{k) annihilate each other (where V is the left
regular representation of G and M represents C^G) by multiplica-
tion of functions). Applying the functional calculus to the commu-
tative C*-algebra generated by Tj0) and T™ we see that r(Tx) =
r(Γj0)) + r(3T), where Tx = Γj0) + T^] is just Lx(k*fk).

We wish to show that c cannot be a continuous trace element.
Thus let U be any neighborhood of z contained in U19 and recall
that by our choice of z there exist x0 e U, sQsG such that soxo e U
but s0 is not in the compact subset Q4F of G. Letting RSQg denote
the right translate of g for any function g on G (i.e., (RSog)(s) -
g(ss0) for all s in G), we have

73 f(0) I 73 f(l) 7? f f f(°) _J_ fd)

•KSQJ XQ ~Γ -ίl'soJ xQ — -^SQJ X0 — J SOXQ J SOXO T J s0ίC0

Since the supports of R9QfΐJ and /ίjio are disjoint and all terms are
nonnegative, necessarily RSQfί^ ^ /ί°i0, so (because /θ(s0) commutes
with V(h), where p is the right regular representation of G)

Taking norms we get

lir#ιl ^ || V{kγM{fz)V{k)\\ - \\f.-f™0\\ ̂  \\τ.\\ - δ ̂  2.

Since τ{t) = t for t ^ 2, HrCΓ̂ OH ̂  2, and thus since the trace of
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a positive compact operator dominates its norm we conclude that
Tr(r(Γ£C

(

0

1)))^2.
Now consider Γi0

0). Clearly ||Γj0

0) - Tz\\ <δ so, by our choice
of 3, UrCΓJJO - r(Tz)\\ < 1/n. Computing the trace with respect to
an orthonormal basis of L\G) which includes bases for the eigen-
spaces of the rank n positive operator r(Tx), we find

Tr (r(2™) > Tr (r(Γ,)) - n l/n = Tr (r(Γ,)) - 1 .

This combined with the conclusion of the preceding paragraph yields

)-Tr(r(Γ<:0 + ^

It follows (from the freedom in our choice of the neighborhood U)
that the function π t-» Tr (π(c)) on A" cannot be continuous at π=Lz;
as was [observed earlier this contradicts our hypothesis that A is
continuous trace, and so we conclude that no non-wandering compact
set can exist in X.

COROLLARY 18. Let G and X be second countable, with G
acting freely on X and with A = C*(G, X) type I. Then the closure
of the ideal m(A) of continuous trace elements of A corresponds,
under the bisection of Lemma 16, to the G-invariant open subset
Z — {xeX\x has a wandering compact neighborhood U such that
GU is closed in X}.

Proof. First we observe that for any C*-algebra B, the open
subset ^!~V of B~ corresponding to the closed ideal I=IB = m(B)~
consists precisely of those (equivalence classes of) π such that

(i) for some ideal J of B which is a continuous trace algebra,
π 6 ^j, and (ii) π has a neighborhood basis in A~ consisting of closed
sets. This is proved as follows: Let π be in ^ . Then there exists
a positive aem(A) such that π(a) = 1. The set of c such that c(a)^
1/2 is a closed neighborhood of π contained in ^I9 and since g?τ is
Hausdorff and π has a neighborhood basis consisting of compact
subsets jof JS", it has a basis consisting of closed subsets of ^ .
Hence (ii) holds, and (i) is obvious (take J = I). Conversely, if π
satisfies (i) and (ii) let JQ be an ideal of B such that π 6 έ?jQ and
^ J ^ C ^ J . Then for any positive a in the Pedersen ideal κ(J0) the
function * H-> Tr c(a) is continuous on ^ (since ιc(J0) Q ιc(J) Q m(J))
and vanishes off ^ 0 , hence is continuous on all of B~. Therefore
fc(J0)Qm(B), so JOQI and πetfΊ.

We apply this result to our algebra A, assuming first that π
is an arbitrary element of έ?lA. Then Lemma 16 and Theorem 17
imply that any ideal / a s above corresponds to an open G-invariant
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set Y in which every compact set is wandering. The fact that π
does not annihilate J implies that the orbit corresponding to π lies
in Y. If x denotes a point in this orbit, then x has a compact
wandering neighborhood N; taking a closed neighborhood V of Gx
in X/G = A~ with V contained in the image of JV, we see U =
σ~\V) Π N (where σ: X —>X/G is the canonical projection) is a com-
pact wandering neighborhood of x whose saturation under G is closed.
It follows that the open set corresponding to I is contained in Z.

The reverse inclusion is proved by a similar argument.

Curiously enough, it is possible to deduce a nonobvious fact
about transformation groups from the preceding theorem and
standard results of C*-algebra theory.

COROLLARY 19. Let G act freely on X, with G and X second-
countable and with every orbit of X locally closed. Then X con-
tains a point with a wandering neighborhood.

Proof. C*(G9 X) is type /, by [14]. Since any type I algebra
has an ideal which is a continuous trace algebra the corollary
follows from Lemma 16 and the theorem above.

In fact the conclusion of the above corollary can be strengthen-
ed to say that the set of points with wandering neighborhoods is
dense in X, since the set of such points is G-in variant and so the
complement of its closure is a G-space satisfying the same hypo-
theses.

We conclude with an example of a free action of R on a closed
subset of Rz for which the orbit space is Hausdorff but the associat-
ed C*-algebra is not a continuous trace algebra.

EXAMPLE. The space X consists of countably many orbits, with
the points x0 = (0, 0, 0) and xn = (2~2n, 0, 0)0 = 1, 2, •) as a family
of representatives for the orbits. We describe (R, X) by giving the
maps <pn: R —>X S H sxn:

φQ(s) = (0, 8, 0) for all s

while for n ^ 1,

(2" 2\ s, 0) 8 ^ n

<Pn(s) = (β nl2-
2n-\ n cos(s - ri), n sin(s -n)) n<s< n

2n-\ s - π - 2n, 0) s ^ n + π ,
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Thus each orbit consists of two vertical half lines connected by a
half circle. It can readily be checked that the action we get is
jointly continuous, with the orbit space XjR homeomorphic to the
subset {x0, xr' } of JB3, and that x0 has no wandering neighborhoods.
The C*-algebra for this transformation group has as the closure of
its set of continuous trace elements the ideal C*(JR, Z) where
Z = \JRX* (n = 1, 2, •)• It is an extension of this ideal by a copy
of SΓ(L2{R)), and is thus a "generalized continuous trace algebra"
whose composition series is of length two.

We plan to investigate in a future paper the structure of the
C*-algebras for this and related transformation groups.
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