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FINITE GROUPS WITH CHEVALLEY-TYPE COMPONENTS

N. BURGOYNE

This article contains the proof of one part of the un-
balanced group conjecture of Aschbacher, Thompson and
Walter.

1* Introduction* In [13] Thompson discussed simple groups X
such that O(Cx(a)) Φ 1 for some involution a e Aut X and sketched
a proof of the theorem stated below in § 3. The key to this proof
is a recent result of Aschbacher [2]. Some detailed properties of
Chevalley type groups over finite fields of odd characteristic are
also required.

The purpose of this article is to prove the necessary properties
of Chevalley type groups (see §§5 and 6). To motivate these results
it seemed worthwhile to review the arguments in [13]. This occu-
pies §§3 and 4.

2* Notation* Let X denote a finite group, then

Inv X={aeX:a2 = l,aΦl)

CompX= {Y: Y<]<]X, Y= Y', Y/0(Y) quasi-simple}

L(X) = product of all ΓeComp X.

For properties of L, in particular L-balance and its implications,
see [5].

gf = {X: L(X) simple, CX{L(X)) = 1}

Λ = {Xeίf: 0{Cx(a)) Φ 1 some a e Inv X) .

For convenience, the known groups in ^ are divided into four
disjoint families.

: L(X) ~ L2(q) or A7, q = odd}

: L(X) ~ L3(4) or Held's group [9]}

: L(X) ~ An, n^9 and odd}

: L(X) a Chevalley type group of

odd characteristic, but not an L2(q)} .

In general, our notation follows Gorenstein [7].

3* The grand conjecture* This states that ^€ — ̂ €γ U ̂ C U
*s&z U ^ /^. Thompson's attack on this conjecture starts with the follow-
ing proposition. Its proof depends on several long and difficult results.
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PROPOSITION. Let G e ^/f and assume \ G \ minimal subject to
G ί ^ U ^ U ^ U ^f4. For a e Inv G let Γa = {β e Inv CG(a):
0{CG{a)) n CQ(β) £ O(Cβ(β))} Then,

(i ) Γa is nonempty for some a e Inv G.
(ii) If βeΓa and D = O(CG(a)) n CG(β) then there exists a Ye

Comp CG(β) normalized by D and such that [D, Y/O(Y)] Φ 1.

Proof, (i) If SCN3(2) of G is empty then by [11] G has sectional
2-rank at most 4. Hence by [8] G is a known group. Thus if (i)
is false, since SCNZ(2) is nonempty, the results of [4], [6], [1] may
be used. They imply that G is known.

(ii) An extended form of L-balance, see [5], implies that D
normalizes each element of Comp CG(β). Since D c£ O(CG(β)) the
result follows from elementary properties of L.

Let G, α, β9 D, Y be defined as in the proposition. Then a
lemma in [6] gives Ya = Y and [α, Y/O(Y)] Φ 1. Put Λf=<α, D, Y)
and Jlί* = M/Z*(M) then M* e ^ T and so, by the choice of G, ikί* e
c ^ for some i e {1, 2, 3, 4}.

THEOREM. M* g t^C.

The proof will be given in the following sections. The result
of [2] will be used in the following form.

ASCHBACHER'S THEOREM. Let Xe^f 7e Inv X, L eComp CX(Ύ).
Suppose L has 2-rank equal to 1 and Ύ e L then X e,

The grand conjecture directly implies the i?-conjecture, namely;
B(G)ΏB(Na(T)) for any finite group G and T any 2-subgroup of
G, where B(X) — product of all Y e Comp X with Y not quasi-
simple.

4* Proof of the theorem* Let G, a, β, D, M, Λf* be defined
as in § 3 and assume M* 6 ̂ €J. Using Aschbacher's theorem and
the results proved in §5 and § 6 we proceed, as in [13], to obtain
a contradiction.

Let EQD and let A/B be some section of G: we say that
<α, E) 'acts properly' on A/B if {a, E) normalizes A and B and
C<a}E>(A/B) is a proper subgroup of E (possibly 1). Thus E Φl and,
to begin, we know that (a, D) acts properly on Λf*.

Step 1. By Proposition A of § 5 (with X=M*, t=a and Y=E)
there exists 7*elnvikf* and S* eCompCί(7*) with S* - SL2(q) for
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some odd q, <7*> = Z(S*), and (a, D) acts properly on S*.
Choose Sx to be the full inverse image of S* in M and put

S2 = Sί

{0O). Choose τeInvZ*0S2) so that [7, a] = 1 and put S =
(ΛS2(7)(OO). By construction, ΎeCG((a, β}) and so 7 normalizes Zλ
Put A = ^(7) then, since [D, 7]£Z>nO(S) ^ A we see that {a, A>
acts properly on S/O(S).

Since S<KJC#(τ) therefore SeComp CG((β9 7». Let iΓ be the
normal closure of S in L(CG(7)). Then by L-balance either,

(a) #eCompCs(7) and Kβ = if, or
(b) if - J^iC, with X1? Z, 6CompCβ(7), JBΓf = if2 and K/O(K)~

SL2(q) x SL2(ff).
Furthermore, <α, A> acts properly on K/O(K) and, in case (b), on
each KJO(Ki). In case (a), since 7 6 if, K/O(K) is a nontrivial cover-
ing of K/Z*(K).

In the next two steps we will show that cases (a), (b) both lead
to the following configuration:

W - Z2 x Z2 is a subgroup of G with JVΊ, iV2eComp CG{W)
such that, if N = NtN2, then N/O(N) ~ SL2(q) x SL2(q) for
some odd #, TΓ£Z(iV), and <α, E) acts properly on each

for some # £ Z).

Step 2. In case (a) put J=(a, β, Dίf K) and J*=J/Z*(J). Then
J* e ^ and so J* e ^ C for some ΐ e {1, 2, 3, 4}. If /* 6 ̂ ^ then
Aschbacher's theorem (with X = G, L — K) contradicts our choice
of G. If J* G ̂ ^ then, since Held's group has no proper covering,
L(J*) 2=: L8(4) and the calculation in § 6 yields a contradiction. If
J* e ^ J the results in [12] contradict the choice of G. Hence J* e
^ C . In this case we may use Proposition B of § 5 (with X = J*,
t = a, s = β and L = KO(J)/O(J)). This gives configuration (*) in
KO(J)/O(J) and arguing as in the second paragraph of Step 1 we
see that (*) also occurs in G.

Step 3. In case (b), since 7 6 Z(K), we may choose p e Inv Z*(K)
with /> Φ 7 and so that p normalizes (a, A ) Hence [p, a] = 1 and
putting A = Cp̂ /o) we see, as in Step 1, that (a, A> acts properly
on each KJO(Kt). Then TF = <7, ̂ >> and iV = CK(W){0O) give the con-
figuration (*).

Step 4. We may assume (*). Put <^> = Nt Π W, so that W=
(δ19 δ2>, and put C = G^^). Then, by L-balance, we have NQL(C).
Hence WQL{G) and so δ2 normalizes each element of Comp C. Thus
if Hi is the normal closure of Nt in L(C), then JSiGComp C

Suppose [H19 δ2] £ 0(7?,). Then H, = 0{H^CHjβ^ and, since
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a), we have Hι = 0{H^)Nu By Aschbacher's theorem this
contradicts our choice of G. Thus [H19 δ2] c£ 0(1^) and, since d2 e H2

we must have H1 = iϊ2.
Put i ί = <fΓw α, #> and H* = H/Z*(H) and put δf, iV* for the

images of <52, ΛΓ, in H*. Then iV> G Comp C$(δf) and N? ~ L2(q)
while <<52*> eiV2* ~ SL2(q). By Aschbacher's theorem H*e^4 and
so Proposition G of § 5 applies (with X = if*, 12, = iV*, and r = §).
We have if* ~ 2?8(g) and, since (a, E) acts properly on each Nt*,
a contradiction.

Hence M* g ^ .

This last step, the reduction to the seven dimensional orthogo-
nal group B3(q), is at the heart of the argument. This point is
made in the closely related work of Walter [14].

5* Results on Chevalley-type groups* We now apply the
methods of [3] to prove Propositions A, B, C. Together with the
arguments in § 6, this will complete the proof that Λf * £ t ^C. At
several points the proofs of the propositions reduce to case by case
calculations. These are always straightforward applications of the
theory in [3] and are therefore omitted.

The notation of [3] is followed closely: thus G will now denote
a connected, simple algebraic group over an algebraically closed
field k. T is a maximal torus of G and X(T), Γ(T) are the associ-
ated lattices. Σ is the root system in X(T) and W = NG(T)/T the
Weyl group. We assume that rank G — r is ^ 2 and that the
characteristic of k is p, an odd prime. Since G is simple we may
take X(T) to be the adjoint lattice, i.e., spanned by Σ. Let Π =
{a19 •••,«,.} be a simple root system in Σ and {ηί9 •• ,^r} the dual
basis in Γ{T). Let a* = — ( m ^ + + mrar) be the low root in
Σ relative to 77 and ά^eΓ(T) its co-root.

To avoid confusion with the above notation, the involutions
a, β, 7, δ, occurring in §§ 1-4 are replaced by lower case latin
letters. Since the calculations of this section are completely inde-
pendent of the earlier sections this should not cause any trouble.
Note that if H is some connected reductive algebraic group then
E(H) is used to denote its maximal semi-simple subgroup and F(H)
to denote the largest central torus of H. Thus [E(H), F(H)\ = 1
and E(H)F(H) = H (see [3] § 2). Context should enable one to
avoid confusion with the corresponding symbols in finite group
theory.

In the following table we list (1) the simple Chevalley groups
and their extended Dynkin diagrams. Each simple root is numbered
and a* is denoted by *, (2) a representative in T for each class of
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involutions in the group. Here "r]τ" is short for ̂ ( - l ) e Γ , (3) the
(quasi) simple components of the centralizer of each involution.
Certain obvious conventions are used: Ao = Bo = Co = 1, A1 = Bί = C19

B2 = C2, A3 = Dz, and Dx is not simple and should be omitted while
D2 has two components, each of type A19

Similar results for the graph automorphisms are tabulated in
§ 4.3 of [3].

The methods of [3] are to a certain extent based on the earlier
work of Iwahori [10]. This useful paper contains several very
detailed computations of classes and centralizers of involutions.
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U Ar-t

1, Dr-i+l
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, ^

A,

D6

E7

A,

=long root. In Dr, ηi and 572 are (are not) conjugate if r is odd (even).

The finite groups corresponding to G are the fixed point sets
G(p) = {9 e G: pg = g} where p is a finite type endomorphism of G
(§ 5.1 in [3]). We may assume that p stabilizes T and hence p =
inσf where ing = ngn~ι with neNG(T), and σ is in standard form
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relative to T and 77, i.e.,

< r a ± « ( f ) = %±σa(ξ9a) a l l a e Π , ξ e k

where a~*σa is a permutation of Π and gα is a power of p. The
distinct pairs G, σ produce all possible finite Chevalley type groups
G(σ) (and G(σ) ~ G(p) when p = inσ).

By the lemma below, G of type G2 will not occur, and hence,
since r ^ 2 and p = odd, we have L(G(σ)) = O*'(G{σ)). Thus there
is a natural embedding L(G(σ)) £ G(σ) £ Aut L(G(σ)) with G(σ ) con-
sisting of all the inner and diagonal automorphisms. The usual
notation, e.g., A2(q), B9(q), 2Eβ(q), is used to denote the simple
groups L(G(σ)). In all cases which occur below, qa = q for all aeΠ.

If weW is the image of neNG(T) then p — inσ induces the
action p — wσ on Γ(T) (§ 2.3 in [3]). Since most calculations take
place in Γ(T) we usually describe p in this latter form.

Let l e ^ then we may find G, p satisfying L(X) = L(G(p)).

LEMMA. Let I e ^ , telnv X and Y = O(Cx(t)) Φ 1,
(a) <L(X), έ, Γ>£G(^)
(b) L(X) is not one of 3A(^), E8(q), F4(q), G2(q), 2G2(q)
(c) \Y\ divides q — 1 or q + 1 (in particular # =£ 3).

Proof. If £ induces a field or graph automorphism then O(Cx{t)) =
1 as follow from §§5.5. and 4.3 in [3]. Hence teG(p). Since [Y,
L(Cx(t))\ = 1 no element in Y can induce field automorphisms or (in
the case of D4) graph automorphisms and hence YQG(p). This
proves (a).

Using the classification in § 3 [3], with ψ = 1 (see the above
table), we may assume t = %( —1) for some 1 <; i <; r. If Cσ(ί)
is semi-simple then, since -3L(Γ) is adjoint, Z(CG(t)) turns out to be
a 2-group. This follows from inspection of the table (the only case
that needs further calculation is the involution %( — 1) in E9). Hence
F{CG{t)) Φ 1 (§ 2.1 in [3]) which implies that m< = 1 in the expan-
sion of α*. This is immediate from the description of the centralizer
subgroups as given in § 4 of [3], see also Proposition 8 of [10].
This eliminates groups of type E8, F,f G2. If L(G(p)) = 3A(<2θ then
p permutes cyclically the three involutions with mt = 1 and hence
no conjugates of them can lie in G(p). This proves (b).

Since t = ^ ( - 1 ) and m, = 1, F(CG(t)) = <^(ζ): ζefc*>, and so

F £ < ^ ( ζ ) : (|0 - l)^(ζ) = 1, ζefc*>. Since pη, = ± ? ^ , this proves

(c).

PROPOSITION A.
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then there exists u e Inv X such that S e Comp Cx(u) where S ^
SL2(q), (u) = Z{S), and (t, Y) acts properly on S.

Proof. By the lemma we may suppose X = G{p). We choose
u = α*(-l) and put S* = (Ua>, U_a<) (§2.1 [3]). Since α*(- l )eS*,
we have S* ~ SL?(k). By inspection of the extended Dynkin dia-
gram of G we see that S* is always a factor of E(CG(uj). Now
VlQχΛζ)Vi{Z~ι) - ^αXίζ"1) and hence <ί, Γ> acts properly on S*.
Thus it remains to show that p may always be chose to stabilize
S*, for then (t, Y) will act properly on S = S*(p).

Let v,e W be the unique element stabilizing the set {αw •••,«,.,
a*} and such that ^ α * = at. Let ^ 0 6 ΐ 7 be the unique element
such that wQΠ = —II, and let w[l) be the corresponding element for
the simple root system 77 — {αj. A simple argument yields vt =

Let tf be in standard form relative to T and 77. The methods
of § 5.3 in [3] Show directly that all possible pairs (X, t) occur
among (G(p), ^(—1)) where m* = 1 and p = σ or p = ̂ σ. When
p = σ it is clear that σ stabilizes S^ and we are done. However if
p = ̂ σ, then jOŜ  Φ S# In this case put p' = woσ. Let n[ί] eNG(T)
be any inverse image of w$\ By the definition of w{

o

i] we see, by
§ 4.2 in [3], that n{

o

ί} lies in the connected component of CG(t). Hence,
since w0 — wtf^Vi and G(ρf) a G(p), all pairs (X, t) occur (up to
isomorphism) among the pairs {G(p'), i}t(— 1)) with m̂  = 1 and ρf — σ
or pf = woσ. Since ^ 0^* = ~^*> i0' stabilizes S^ and we are done.

Let q1 be some power of q. In fact it will turn out that

, Q2}

PROPOSITION B. Let I e ^ and let L be a 2-fold covering of
L(X) and let t, seInv (Aut L) such that

( i ) r = 0(Cz(t))Φ l α^ώ [β, <ί, r>] = l,
(ii) tfcere exists Q e Comp C^(s) such that Q ~ SL^qJ, Z(Q)Q

Z(L) and <£, y> acts properly on Q.
Then there exists u e Inv L sucfc that Slf S2 e Comp Gt{u) where

Sβ2 ~ SL2{q) x SL2(g), ^(^Sa) = <u, Z(Q)> a^ί <ί, Γ> acέs properly
on both Si and S2.

Proof. As before, we may suppose L(X) = L(G(p)) for suitable
G, p. Let G denote the simply connected covering group of G and
lift the action of p to G, then LQG(p). Since \Z(G)\ must be even
G is not of type Ar (r = even) or 2£β.

Consider all v e Inv (Aut X) with Q e Comp C (̂v) such that Q a
Since r ^ 2, by § 5.5 in [3], v cannot be a field-type auto-
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morphism. If G is of type Ar (r ^ 5), Cr (r ^ 3), or E7 then the
methods of §4 in [3] show that v must be conjugate to <$*( —1).
Since S* = (Ua,, £/_«„> is the unique simple rank 1 factor in
CG(ά*( — l)) and S*(p) ^ SL2(q) we conclude that G must be of type
Br(r ^ 2) or jDr(r ^ 3). For these cases we have, up to conjugacy
in G, the following candidates for s:

Br(r ̂  2) O = — s = α*(-l) or %(-l)
1 2 3 r

iθ\
Dr(r ^ 3) >O O s = α*(-l) or )?r(-l)f

2(X 3 r

where ψ is the standard form graph automorphism interchanging
aγ and a2.

Put S r = <?7αr, C7_αr> then S r - SL2(k) is a factor of E(Cσ(a*(-ΐ))
and S rS* ^ SL2(k)*SL2(k) with (α^C-l)) = Z(SrS*). As in the proof
of Proposition A, we see that if t = ^ ( — 1) then <£, Γ> acts pro-
perly on both Sr and S^ except in one case, namely t = ^( — 1) (or
%(—1)) and G of type jDr. However we can show that this case
does not satisfy hypothesis (i) and (ii): Suppose s = ηr( — l)ψ, then
a complete set of representatives for the classes of involutions in
CG(s)° are η(-ϊ) and (η + 2? r)(-l) in i > (see §4.2 in [3]) where
Ve{Vi + V2, Vv •••» ^r-J- Using the algorithm in Appendix 2 of [3]
one shows that none of these involutions are conjugate in G to
either ft(-l) or % ( - l ) . For example Oft + % + ^r)(- l) ~ Oft +

% - ?r-i + ^ ) ( - l ) - (^ + V2 - ?,-» + ^,-i)(- l) (Vi + V2 -
% + %)( — !) ^ %( —1) in G Now classify the involutions in
Ckθft(-l)). Up to conjugacy in CG0ft( —1)) w e fin(i t b a t w e m a y
assume s = a*( — 1). Hence if /0?ft( —1) = 3ft( —1) and seG(p), p
must always stabilize both S r and £»*. Hence (SrS*)(p)dSL2(q)*SL2(q)
(if p flipped S r and S^ then (SrS*)(p) ^ L2(g2) x <s» and so hypo-
thesis (ii) is not satisfied.

Finally, note that we must have L = G(p) since hypothesis (ii)
is not satisfied for any intermediate covering when G is of type
Dr. Let Sr, S*eComp C$(y) where u = α * ( - l ) . Then S ^ -
SL2(fc) x SL2(&) and Z(SrS*) = <w, Z(Q)>. As in the final step of
the proof of Proposition A we can choose p to stabilize ?ft(--l) and
S r and S* and hence are done.

PROPOSITION C. Let l e ^ , r e l n v X , B19 R2 eCompCx(r) such
that R1 ̂  L2(?), J?2 ̂  SL2(q) and <r> = Z(222) then

(a) L(X) ^ ^(g) and
(b) έ&ere is ^0 έ e l n v X with YS=O(Cx(t)) Φ 1 such that <fc, Γ>
properly on both R1 and R2.
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Proof, (a) follows from inspection of the centralizers of all
elements in Inv (Aut X), (L(X) = L(G(p)), as before). For this, see
the above table and related facts in [3].

So G is of Type J?3. We make take r = ά*( — 1) and since [t,r] = l
can look for possible t's in CG(r). With Sj = (Ua., U_aj) we have
CG(δ)° = S&S* where S, cz L2(k) and S3S* ~ SL2(k)*SL2(k). Elements
in CG(r)/CG(r)° flip S3 and S* and so teCG(r)° (if it exists). There
are 5 classes of involutions in CG(r)° with representatives ^( — 1)
where η e {ηl9 %, ηx + %, ft + ft, % + ft}. Only rj(-l) with ?? e {ft-f
ft, % + ft} are conjugate in G to ft( — 1) (in B3 only m8 = 1). Since
α* = — (2αx + 2α2 + α3) and since F £ <?7(ζ): ζ e &*> we see that
<£, Γ> centralizes S3 and AŜ  if 27 = rj1 + % and Sx if ^ = % + %.
Hence there is no such t and (b) is proved.

6. The L6(4) case* In Step 2 of the proof in § 4 the case
L(J*) ~ L8(4) may be eliminated as follows:

The involutions inside L3(4) have solvable, core-free, centralizers
and hence both a, β induce outer automorphisms on L(J*). Put
J = J/O(J) then^ L(j) is quasi-simple. Put S = SO(J)/O(J) then
S ^ SL2(q) and S e Comp C?(β) (and g = 5 or 7). This implies, by a
direct calculation on L3(4), that L(J) is the full 2-fold covering of
Z,8(4) and CL(̂ ,(/S) - <^>*S where βeZ(J), (p2) - Z(S) and βa = β-\

Since Z{S) = (l) we may choose peCj(β), an inverse image
of /5, satisfying /?2 = 7. Then /? normalizes but does not centralize
M(see § 3). Put ML = <Λf, p) and M^ = MJZ*(Mύ and, for conveni-
ence, let a, p, Ί also denote the images of these elements in M*.

We may assume that a, 7 are chosen as in Proposition A of § 5.
Since p e Z{J) therefore p centralizes every element of CompCi¥*(7).
By the general structure of C^(7) (see §§4 and 5 in [3]) we must
have p e <α*(ζ): ζ efc*> and hence p and a — η^ — 1) commute. This
contradicts the fact that β is inverted by a.

The author wishes the thank M. Harris and R. Solomon for
helpful comments and is also indebted to the referee for numerous
useful suggestions.
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