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A REMARK ABOUT GROUPS OF CHARACTERISTIC
2-TYPE AND ̂ -TYPE

ROBERT L. GRIESS, JR.

In the work of Klinger and Mason on groups of charact-
eristic 2-type and p-type, a configuration for p = 5 emerges
as a possibility in the conclusion to one of their theorems.
In this note, we eliminate this possibility. Thus, the evidence
that the only simple groups of characteristic 2-type and p-
type are (?2(3), PSp(4,3) and Z74(3) is strengthened.

Introduction* We consider the following recent theorem of
Klinger and Mason [2]:

THEOREM D. Let G be a finite group, p an odd prime, P e Sylj, (G).
Assume M(P; 2) = {1}, all 2-locals are ^-constrained with trivial core
and all p-locals are p-constrained. Let A be an elementary abelian
p-subgroup of G of maximal rank subject to H(A; 2) Φ {1}. Assume
m(A) ^ 2. Then m(A) = 2 and one of the following holds.

(a) A contains every element of order p in GG(A).
(b) p = 3 and we can choose A and T 6 H*(A; 2) so that T is

the central product of A-invariant quaternion subgroups Qi, 9Qw,

w = 2, 3, 4.

( c ) p = 5 and for every TeM*(A;2), T is the central product
of five copies of Q8 and five copies of D8.

It has been suspected that (c) never occurs. In fact, a conjec-
ture of Gorenstein asserts that if G is a simple group, simultane-
ously of characteristic 2-type and p-type for some odd p (see [2]
for definitions of these terms), then p = 3 and G = G2(3), P Sp(4, 3)
or 1/4(3). It is the purpose of this paper to eliminate (c).

For terminology and notation used in this paper, see [2]. The
reader is referred to [1] or [5] for basic material about groups or
Lie type. See [3] for further results on groups of characteristic
2-type and 3-type.

In this paper, we consider the following hypothesis.

Hypothesis (KM). (1) G is a finite simple group, all of whose
2-local subgroups are 2-constrained.

(2) A is a noncyclic elementary abelian 5-group of maximal
rank lying in a 2-local subgroup.

(3) A = ZδxZδ.
(4) TeM*(A;2) and T is an extraspecial 2-group of order 2:
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type -, i.e., T is the central product of 5 quaternion groups and 5
dihedral groups. Also, T = O2(CG(Z(T))) and NG(T) is corefree and
2-cons trained.

(5) Let Aif 0 <; i ^ 5, be all the subgroups of order 5 in A.
Set Tt = CT(A%) for 0 ^ i ^ 5. Then To = (z) = Z(T) and T, = D8o Q8,
for 1 ̂  i ^ 5. Also, Cβ(At) is 5-constrained, 0 <; i ^ 5.

( 6 ) M(i2; 2) = {1} for R e Syl5 (G).
(7) A is contained in an elementary abelian subgroup of order

53 in G.
( 8 ) \Ob,(CG(A%))\ is odd for 0 ̂  ί ^ 5.
We observe that this hypothesis holds whenever the hypotheses

and conclusion (c) but not conclusion (a) of Theorem D holds. This
is clear, except possibly for (5), for which we refer to the proof of
Lemma 3.8 of [2].

We now state our main result, which eliminates conclusion (c)
of Theorem D.

THEOREM. NO finite group exists satisfying hypothesis (KM).

The proof proceeds by contradiction. Let G be a counter-
example to our theorem. First some notation.

Notation. C= CG(Ax)f N = Nσ(Ai)f # = N/0Λ,(N), P a Sylow 5-
group of Oδ,i5(N) normalized by 2\.

For simplicity, we have singled out Ax and Tx. It will be obvious
that the following results apply to Ai9 Tif Cβ(At), etc. for 1 ̂  i ^ 5.

(1) For every x e Tf, Cp(x) has rank at most 2.

Proof. (KM.2)

( 2) z inverts P/A, and P/A, Φ 1.

Proof. Gc(z) contains A. Let R = Cp(z) and assume R > Aγ.
Then there is U^ PAQ\U\ = p\A£ U, A, ̂  Z{U) and [U,z] = 1.
By (KMΛ), T= Oz{CG(z)) and U acts faithfully on T. Since A<\U
and Ao is the unique At with Cτ(Ai) = (z), we get A^Z(U) and
so U is abelian. Since U acts faithfully on T and leaves invariant
each Tif U is elementary of rank 3, against (KM.2). Therefore
R = Aίf which proves that z inverts P\Aγ. If P = At, then 2\ <: 06,(C).
A Frattini argument and (KM.7) then contradicts (JOf.2).

(3) P is extraspecial of order 51+4m, some m ̂  1.
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Proof. Let R be a characteristic elementary abelian subgroup
of P and suppose |jβ| > 5. Since z inverts R/A19 Tx acts faithfully
on R/Alf whence \RIAX\ = 5m, m = 0 (mod 4). But then, if xeTJf

\x\ = 2, \CR(x)\ ^ 53, against (lθf.2). So, |Λ| = 5. Thus P is of
symplectic type, P = P0Pi, Po cyclic, Px trivial or extraspecial. Since
Po = Z(P), z normalizes Po. Since # centralizes Ax, (2) implies that
Po = Λ Since P > Alf P = Px is extraspecial as required. Since 2\
operates faithfully on P, |P| = 51+2A: where fc is even, because
T,^D8o Q8.

(4) |PI = 55, exp(P) = 5.

Proo/. By (3) and the fact that z inverts P/Alf exp (P) = 5.
Let \P\ = 51+4W, m an integer. By (KM.5), m^l. Suppose m ̂  2.
Let tfeT - O ) , |α?| = 2. Then |Cp(a?)| = 51+2w and C?(») is ex-
traspecial.

Since Cp{x) has exponent 5, Cp(x) contains an elementary group
of rank m + 1 ̂  3, against (KM.2). Thus m = 1.

(5) P is an indecomposable module for Ao. Thus P is the
unique group of its isomorphism type in PA0. Also, Scn3(PA0) has
one member.

Proof. The first statement follows from the fact that TXAO acts
faithfully on P. The second follows from A, = Z(PAQ) and the fact
that P\Aγ is the unique maximal abelian subgroup of PA^\Aγ. The
third statement is obvious.

( 6) Let B > Ax satisfy B/A = CP/Al(A0). Then BA0 is abelian
of rank 3 and \[BAQf z]\ = 5.

Proof. Suppose BA0 were nonabelian. A Lie ring analysis of
the action of z on BA0 gives a contradiction. Thus, BA0 is abelian
and, furthermore, must be elementary because of the way z acts.

(7) Let p be an odd prime and let S = Sp(4, p). Let L <̂  S
and R e Sγlp (L). Assume |jβ| *> p2. Let M be the standard 4-dimen-
sional module for FPS. Then one of the following holds: (i) L
contains a transvection on ikf; (ii) \R\ = p2 and every element of iϋ*
has quadratic minimal polynomial on M.

Proof Let {α, b} be a set of fundamental roots for a root, system
Σ of type C2 with a short, 6 long (see [1] or [5] for the basic
machinery about groups of Lie type). For reΣ, let Xr be the usual
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one-parameter subgroup. On the standard 4-dimensional module M,
elements of Xr, for r long, act as transvections.

We assume that L contains no transvection, then obtain (ii).
Let JReSylp(L) and embed R in U, the standard Sylow p-group,
U = (Xr\reΣ, r positive). Let s = 2α + b be the root of maximal
height and let K = NG(X8) be the parabolic subgroup associated
with the set {a} of fundamental roots. Then OP(K) is extraspecial
of order p\ exponent p, and K'/OP(K) = SL(2, p). Now, R, = R Π
OP(K) Φ 1, as \R\ ̂  p\ so that R1f]Xs = 1, I/2J = p and \R\ = p\
Since K is transitive on the nonidentity elements of 0p(K)/X8 =
Zp x Zp, we may assume Rx — Xa+b> (α + 6 is a short root). Then
Ns(Rj) = (XbXa+bX2a+b)H, where H is the standard Cartan subgroup,
so that RS Ux = XbXa+bX2a+h. But, Uγ = O^Kύ, where K, is the
parabolic subgroup of S which stabilizes a maximal totally isotropic
subspace, say JV (i.e., Kγ is associated with the set {6} of fundament-
al roots). Since Kl/U, = SL(2, p) is faithful on N and on M/N, U,
stabilizes the chain: M > N > 0. Thus, (ii) holds, as required.

( 8 ) |6r|5 = 56, PAQ 6 Syl5 (G), A, is G-conjugate to Ax and lies in
the center of a Sylow 5-group, 1 ^ i ^ 5.

Proof. By (JOf.5) and (3), At is a Sylow 5-center. Since all
of the preceeding analysis could be applied to NG(Ai), 1 <; i ^ 5, we
are done once we show |iN/]5 = 56, i.e., |JV/P|6 = 5. Firstly, \N/C\
divides 4 and C/P is isomorphic to a subgroup of Sp(4,5). If
\C/P\6 = 5, we have |JV|6 = 56, as required. So, we may assume
\C/P\b ^ 52. Let C* = C/O6,,s(C). Suppose first that C* contains a
trans vection in its action on M = P/Ax. Let L be the subgroup of
C* generated by elements inducing transvections on M. Then T*
normalizes L and the structure of S = Sp (4, 5) implies that L is
not a 5-group. Therefore, L = SL(2, 5) or Sp(4, 5), by [4] and the
structure of S. If L = SL(2, 5), the fact that (TA)* normalizes L
forces [T*f L] = 1, which is absurd since 2? is irreducible on M.
So, L = Sp(4, 5). Therefore, CC(Z) contains Tx as a nonnormal sub-
group, whereas T, ^ O2(CG{Z)) = Γ, by (JOf.4) and (ZΛf.5), con-
tradiction.

We have that C* contains no transvections. Therefore, (7) tells
us that a Sylow 5-group of C* consists of elements operating trivial-
ly or quadratically on M. This contradicts (5), Since Ao has minimal
polynomial of degree 4. Therefore, we have \N\5 = 56, as reguired.

(9) Let W= BAQ, as in (6). Then WeSyl5(CG(W)). For each
i = l, , 5, AQ( W) contains a transvection tt centralizing At. Also,
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1 Φ [A, t,] <; B but A, S [A t j . If V is a conjugate of W for which
\NPΛo(V)\ ^ 55, then V ^ P. Moreover, if F < | P, then {7} =
Scn3 {PA,).

Proof. Choose geff so that F = W9 ^ PA0. If F ̂  P, then
[ K P J ^ A , and F = C P ^ ( F ) by (5). Say \VnP\ = 5\ Then Fo =
F n P is centralized by 6ePA 0 - P. By (5), Vx = CP(V0) has index
5 in P and V = CPAQ(V).

Recall that an extremal conjugate of a subgroup Sλ of a p-
Sylow group S of G is a G-conjugate S? of St for which Ns(S2)e
Sylp (NG(S2)). If we now take F to be an extremal conjugate of W
in PA0, we see from the previous paragraph that V = CPAQ(V),

whence WeSylδ(CG(W)). The existence of tt follows from embedding
IT in a Sylow 5-group of CG{A^. The further properties 1 Φ
[Alf tJi ̂  B and Aλ S [A t,] are forced if we take t^NPAo{W). The
final statement follows from V = CPAo(V) and (5).

(10) Let X be the subgroup of AG{W) generated by transvec-
tions. Then one of the following holds

( i ) X is a 5-group and \X\ ̂  52.
(11) X/Oδ(X) = SL(2, 5).
(iii) X=SL(3, 5).

Proof. This follows from the classification of groups in odd
characteristic generated by transvections [4]. To get \X\ ̂  52 in
Case (i), use (9).

(11) X is not isomorphic to SL(2, 5).

Proof. Suppose false. Then X<\ AG(W) implies that AG(W) is
isomorphic to a subgroup of Z4 x GL (2, 5) and that W is extremal
in PA0. Write W=W0@W1 where Wo = CW(X), W,^[W,X}.
Now, A Π Wi Φ 1. Suppose At ^ Wt for some i. Then, for a Sylow
5-group i2 of Nβ(W), A, = [W, K\. If i Φ 0, this contradicts (9) and
the action of NP(W) on TF. Therefore, [W9 R] = AnW, = Ao and
every group of order 5 in Wγ is fused in NG(W) to Ao. The orbits
of X on the 25 subgroups of order 5 in W which meet W± trivially
have lengths 1 and 24. By (8), they lie in the G-conjugacy class of
Ax. On the other hand, the action of P on B implies that every
group of order 5 in ΰ distinct from Aι is fused to the one in
B Π Wj = ZB. Therefore all subgroups of order 5 in W are fused in
G to Ai. Now embed R in a Sylow 5-group of CG(A0). Since Rf = Ao,
the proof of (9) shows that W ̂  O5,tδ(CG(A0)). Since P is extraspecial,
we get \NG(W)\5 ^ 55, a contradiction to our first remark.
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(12) \X\δ — 53 and the unique extremal conjugate V of W in PA0

lies in P.

Proof. By (11), \X\6 ̂  52, so by (9) any extremal conjugate V
of W in PA0 lies in P. Suppose \X\δ ̂  52. Then (lO.i) holds and we
have \X\δ = 52. Thus W is not extremal in PA0. The action of P
on V and ̂  on W show that |X[5 = 53, a contradiction.

(13) X is not a 5-group and CW(X) = 1. Thus X ^ SL(3, 5)
or X stabilizes a unique hyperplane Wγ of ΫF, in which case X/O6(X) =
SL (2, 5) acts faithfully on W1#

Proof. By embedding ϊΓ in a Sylow 5-group of NG(D), where
D ^ Wf D~GAlf we see that some Sylow 5-group of X centralizes
D. Since \CW(R)\ = 5 for i2 e Syl5 (NG( W)), we take JD = Aif

i — 1, 2, 3, 4, 5 to get the first statement. The second statement
now follows, using (10) and (12).

(14) A — Wγ in case X £ SL (3, 5). Thus each group of order
5 in A is central in some Sylow 5-group of NG(W).

Proof. Suppose X normalizes the hyperplane Wx. Then W1

contains the center of every Sylow 5-group of Nβ(W). Therefore,
using (9), Wx ̂  A,A2 = A, as required.

(15) X ^ S L ( 3 , 5).

Proof. Suppose not. By (14), W is normal in a Sylow 5-group
of C, so we may assume W ̂  P. However, again by (14), W ^
Ao ^ P, contradiction.

(16) X £ S L ( 3 , 5).

Proof. Suppose X = SL (3, 5). The action of z on W has deter-
minant — 1 (see (6)). So, there is ueNG(W) inducing —1 on W. In
fact \u\ = 2, by (JOf.6). Thus, N = O5,,5(iV) CN(u), by the Frattini
argument. It follows that V is complemented in PAQ by CPAo(u'),
for an appropriate involution vf. But then there are two Jordan
blocks of degree 2 for the action of an element of order 5 in CPAo(u)—P
on P\Aλ. This contradicts (5).

Since evidently (15) and (16) are in conflict, the proof of our
theorem is complete.
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