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QUADRATIC FORMS WITH PRESCRIBED
STIEFEL-WHITNEY INVARIANTS

R O N BROWN

Milnor's construction of Stiefel-Whitney invariants for
quadratic forms gives a map w from the Witt-Grothendieck
ring of a field to a group arising in the K -theory of the
field. Analogous maps are introduced here on the Witt ring and
reduced Witt ring of the field. The images of these maps are
studied. A central role is played by the degree of stability, in
the sense of Elman and Lam, present in the Witt ring of the field.

In §1, we review Milnor's construction of w [13; also see 6] and show
how it can be modified so as to give a well-defined map w on the Witt
ring of a field. This construction systematizes and generalizes the way in
which the determinant and Hasse symbol are modified to give the
discriminant and Witt symbol. The problems of computing the images
of w and w are equivalent. In §2, we show that w maps into an easily
described subgroup fcreg of the target group of w. Those fields with
Im w = fcreg are shown in §3 to be precisely those with 3-stable Witt ring
[8]. This is a special case of a fact about m -stability in the Witt ring for
arbitrary m. Similar facts are established for w and for a map, wred,
which w induces on the reduced Witt ring. The exponent of the
"cokernel" fcreg/Imvv is studied in §4. If the Witt ring is n-stable, then
the exponent is shown to be at most 2f where / = n - 1 + [ - log2 n]. (2f

equals the exponent for formally real algebraic function fields in n
variables over the real numbers.) A similar estimate is given for fields of
finite level. The exponent of the cokernel of wred is computed
explicitly. In §5 we provide examples of stability in Witt rings and
reduced Witt rings. Particular attention is paid to certain familiar
classes of algebraic function fields and Henselian valued fields. Finally,
§6 is devoted to computing Im w for superpythagorean fields. We hope
this computation will be relevant to the computation of Im wred for all
fields [4J.

Throughout this paper F will denote a field not of characteristic
two. Our notation closely follows that of Lam and Milnor [12; 14]. (It
will, however, be convenient for us to write "w" in place of Milnor's
"w".) Thus we denote the semigroup of equivalence (i.e., isometry)
classes of nonsingular quadratic forms by M(F), the Witt-Grothendieck
ring by W(F), the Witt ring by W(F), the torsion subgroup of W(F) by
Wt(F), the reduced Witt ring by Wτtd(F), and the augmentation ideals of
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W(F) and W(F) by / = Ϊ(F) and / = /(F), respectively. Elements of
W(F) will often be denoted by their representatives in W(F). Thus the
Pfister form ({au , αn)) = Πf^α,-, 1) will be interpreted as a member of
W(F) or W(F) depending on the context.

We let Z, Q, 1? and C denote the sets of integers, rationals, reals,
and complexes, respectively. S' denotes the group of multiplicative
units of a unitary ring S (so Z* = {1, - 1}). \A | denotes the number of
elements in the set A if A is finite, and oo otherwise. Im/ denotes the
image of the function /.

1. Stiefel—Whitney invariants. We recall Milnor's con-
struction of Stiefel-Whitney invariants for quadratic forms. Let k * =
fc*(F) denote the commutative unitary ring generated by the symbols
l(a),aEF\ subject to the relations 1 + 1 = 0, l(ab)= l(a)+ l(b) and
/(c)/(l - c) = 0 for all a,b,cE. F # with cέ 1. For each n ^ 0 let kn =
kn(F) be the additive subgroup of fc* generated by the n-fold products
l(ax) /(αn), ax E F\ Let kπ = K(F) be the associated ring of formal
series a = a0 + aλ + α2 + (a> E fc, for all i ^ 0). Then there is a
unique homomorphism w: W(F)-*k'v with vv«α))= 1 +/(α) for all
a EF\ For g E W(F), Milnor calls w(q) the Stiefel-Whitney invariant
of q. (See [13, especially §3] for details.)

The Stiefel-Whitney invariant is an invariant of the isometry class of
a quadratic form, but not of its Witt (i.e., similarity) class. We now
introduce Stiefel-Whitney invariants for Witt classes. Give Z # x k*n the
multiplication

where fc = — 1 if f and / both equal - 1 and k = 0 otherwise. (Thus,
k = (1 - /)(/ - l)/4.) Then Z" x k 'v is simply the group extension of k \
by Z # associated with the factor set

( ; , ; > ( i + /(-i))*, k = ( i - i ) 0 - i ) / 4

PROPOSITION AND DEFINITION 1.1. There is a unique homomor-
phism w:W(F)^Z'xk'π with w«α>) = (-1,1 + l(a)) for all
α £ F \ For any g E M(F), say of dimension n, we have

(1)

Here, "[ ] " denotes the greatest integer function.

Proof. The second sentence follows from the first (and the defini-
tion of multiplication in Z ' x k ^), which we now prove. For a,b,cE F*
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with a + bjέ 0 straightforward computation shows that

and

( - l , l + /(α))(-1,1

= (-1,1 +l(a + b))(-1,1 +l(ab(a + b))).

(The last formula also follows from [12, p. 46] and [13, Lemma
3.1].) Thus the elements ( - 1,1 + l{a)) of Z ' x fc; satisfy all the rela-
tions that the corresponding generators (a) of W(F) satisfy [14, p. 85], so
there is an additive homomorphism carrying (a) to (— 1,1 + I (a)) for all
α E F\

REMARK 1.2. Suppose q E W(F) and H'(q) = (i,l + α1

where anEkn for n = l,2, . We now relate i5αi, and α2 to the
"classical invariants" of q. First, i maps to the dimension-index of q
under the canonical isomorphism Z*—»Z/2Z. Next, c*! maps to the
discriminant of q under the canonical isomorphism kx-*F'IF'2 (namely,
/(α)—»αF'2). Finally, a2 maps to the Witt symbol of -q under the
canonical homomorphism g: k2^B(F) ([7, p. 209]; B(F) denotes the
Brauer group of F and g carries each l(a)l(b) to the quaternion algebra
(α, b/F)). Thus the construction of w from w might be thought of as a
generalization of the familiar process by which the classical invariants for
isometry classes of quadratic forms (dimension, determinant, and Hasse-
symbol) are modified to give the classical invariants for Witt classes of
quadratic forms (dimension-index, discriminant, and Witt symbol).

Proof. Write q = (au , αrt), α, E F\ By inspection i and ax cor-
respond to the dimension-index and discriminant of q. (Note that if
n >0, then [nil] and n(n -1)/2 are congruent modulo 2.) Let
c: WXF)-»B(F) be the Witt symbol. We show c ( - q ) = g(α2) by
induction on n. Write qf = (αi, , αn_i) and w(q') =
(i',l + α | + α£+ ). Let p : Z ' x k'π-^k2 be the projection. Then

n - l )/(- 1)2 + (n - l )/(- l)/(αn) + a[l(an)
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which by our induction hypothesis equals

c ( - q ')c « - an »(disc( - 4 % ( - 1)* disc( - an

(disc = discriminant), which equals c ( - g ) [12, formula 3.13, p. 121].

Incidentally, it is not hard to use the above remark to read off ("on
the spot") a formula for c(q) as a product of quaternion algebras (cf. [12,
p. 121, line - 1]).

This paper is mainly concerned with computing the images of vv and
w. The next proposition records the fact that the problems of comput-
ing these two images are equivalent.

PROPOSITION 1.3. Imw = Z ' x Im vv. That is, for any a E fc^ the
following are equivalent: (i) a E Im vv, (ii) (1, a) E Im w, (iii) ( - 1, a) E
Imw.

That (ii) implies (iii) follows from the identity: w(l)(l, a) =
( - l , α ) . Formula (1) above shows (iii) implies (i) (note that
vv ( ( - 1>) = 1 + / ( - 1)). That (i) implies (ii) follows from the fact that for
any q E W(F) we have

(2) w(q-(dimq)-l) = (l,w(q)).

To prove (2) note that we can write q - (dimq) l = g ' - n ( l , - l ) where
q'E. M(F) and In - dimq'. But then both sides of (2) equal

PROPOSITION 1.4. vv is injectiυe if and only if I3 is torsion-free. In
general, kerw C/3Π Wt(F).

Proof ker vv consists precisely of those elements of W(F) which
can be represented by elements of / Π ker vv. The proposition therefore
reduces to a theorem of Elman and Lam [8, Theorem 2.15 (and proof)].

2. Regular elements of k „. We now refine slightly [13,
Remark 3.4], which gives a condition satisfied by elements of
vv(M(F)). (Compare with [15, Corollary 2.2.2].) For any a E K and
n S 0, we denote the projection of a into kn by an and call it the term of a
of degree n. We say a has degree n when an^0 but am = 0 for all
m > n.

DEFINITION 2.1. Let a Ek^. We call a regular when
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(A) if n > 0 , then an = α2

m«n-2m where m = [log2n], and
(B) there exist positive integers N, M such that if fc ^ N, then

The set of regular elements of k *π will be denoted by fcreg = fcreg(F).

PROPOSITION 2.2. A// elements of Im vv are regular.

Imvv is precisely the subgroup of k'π generated by 1 + kx. Hence
the above proposition follows from the next lemma (take r = 0, so

LEMMA 2.3. Lei r έ O and Lr = {a E fcreg: α, = 0 whenever
0 < i < 2 r}. TTien Lr w the subgroup of fcreg generated by the set Gr =
{1 + /(αj) l(ar): s^r and at G F' for all i ^ 2 s }. Further, each ele-
ment of Lr can be written in the form

(3) (l + / ( - l ) ή

where t^ r,s ^ r, and δ E kπ.

Proof. We begin by showing that if δ, γ E fc ̂  satisfy condition (A)
of 2.1, then β = δγ also satisfies (A). So suppose m = [log2n] (as in
(A)); we show βn = β2™βn-2™. We may suppose that γ and δ each have
degree less than 2m+1 (nothing essential is lost by deleting all terms of
degree ^ 2m+1). Note that for any 5 S 0 and η, v E fc2* we have
(1 + η)(l + v) = (14- η + ι^)(l + ηi^). If we apply this identity repeatedly
to the right-hand side of

we see we can write β = TlTJo(l + βr) (note that β has degree less than
2m+2). That βn = β2-βn-2- is now clear.

We next show that if α = β(l + / ( - l))~π where n g 0 and β E k'n
has finite degree, then a satisfies (B) of 2.1. There exists M > 0 with
2 M ^ n ; we may as well assume 2M = n (replace β by
j3(l + / ( - I))2"""). Let N = n + degree(jS). Then

Σ A/(-
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Hence for all k^N,

/(-iΓ«*= Σ A/(-iΓ0+1)

ί+2 M ;=k

= Σ m-iyMi=ak+2U,
i+2Mj = k+2M

as required. (The sums above are only over i ^ 0, / ^ 0.)
Now suppose a is in the subgroup of kn generated by the set

Gr. For any δ 6 l + k2» we have δ 1 = (δ + / ( - 1)2")(1 + / ( - I))"2".
Hence a can be written as a product of a finite number of elements of
1 + Un^o kr and a power of (1 + / ( - I))"1. It follows from the previous
two paragraphs that a E LΓ. (All elements of 1 + Unaofc2" and
(1 + / ( - I))"1 = 1 + / ( - 1) + / ( - I)2 + are clearly regular.) Conversely,
suppose a E Lr. Let M,N be as in (B) of 2.1. We may suppose
N = 2M - 1 > 2r (increasing if necessary the values of M and N). Let
δ = ΣfLoα,, p = ΣfLoα.+N+i, and j3 - p + δ(l + / ( - 1))N+1. Then by (B) of
2.1,

a = δ + p(l + / ( - 1)N + 1+ / ( - l ) 2 N + 2 + / ( - l) 3 N + 3 + •)

which equals /3(1 + / ( - 1))"2M. The first paragraph thus shows β is
regular. Since β has finite degree, β = Π =0(l + β2>) for s sufficiently
large. Since a E Ln we have /32' = 0 for 0 ̂  i < r. This shows α is in
the group generated by 1 + U ngΓfe2

M and a can be written in the form
(3). It remains to show that each element 1 + p of 14- U n*rk2» is in the
group generated by Gn We can write p = ΣUi δ« where s ^ 1 and each δ,
is a product of 2n elements of kλ (for fixed n^r). If s = 1, then
1 + p E Gr by definition. If 5 > 1, we can write

£

Our result now follows by induction on s.

COROLLARY 2.4. The factor group fereg/Im w is a 2-primary group.

The corollary follows from Lemma 2.3 and [13, Lemma 3.2]. In §4
we study the exponent of fereg/Im vv.

REMARK 2.5. Elman and Lam have computed w(M(F)) for all
fields with fc4=fci/(-l)3 and such that for all β E K there exists
q E M(F) with dim q ^ 3 and with βx and β2 the first two Stiefel-Whitney
invariants of q [8, Proposition 2.23]. (These conditions are fairly



QUADRATIC FORMS 65

restrictive, e.g. they imply Wred(F) is 1-stable.) Their result shows
Im w = fcreg for these fields.

EXAMPLE 2.6. The structure of w(M(F)) is probably a good bit
more subtle than that of Im w. For example, for any α, b E F" we have

(4) 1 + l(a)l(b) = w(«α>- 1)(1 - (b)))E Im vv.

However, if F = R((x))((y)) (a field with Im w = fcreg, incidentally) and
x = a and y = by then 1 + l(a)l(b)£ w(M(F)).

Proof. Just suppose 1 + l(a)l(b) = w(q) for some g E M(F). We
can write g = Σ/C(c) where the i'c are nonnegative integers and c ranges
over the set {1, - 1, α, - a, b, - b, ab, - ab}. (This set maps bijectively
to FΛIF'2.) Clearly icj£ 0 for some c£ {1, - 1}. There exists an order-
ing P of F which excludes c but includes either a or b (F is
superpythagorean). Clearly H>((g -(c))(g)Fp) has finite degree (it is in
w(M(Fp)); Fp is the real closure of F at P). On the other hand

w((q - (c))®Fp) = (1 + /(α)/(6)Xl + /(c))"1

= (l + / ( - l ) Γ (in fc.(Fp))

which surely does not have finite degree [13, p. 320]. This contradiction
completes the proof.

3. When does I m w = k r e g? We show in this section that
Im vv = fcreg if and only if W(F) is 3-stable, i.e. Γ = 2/3 [8, Definition
3.8]. We begin with a general fact about m-stability. Note that
w(Im) CLm_i for all m > 0 (see Lemma 2.3 for notation, and [13, Lemma
3.2] and Proposition 2.2 for the reason). For all a1 , - ,am €ί F' we have

(in W{F)\ so that

(5) w«(α1, ,αm))) = (l, l + Z(-α1) / ( - α m ) / ( - l Γ - 1 - ) - 1

([13, Lemmas 3.1 and 3.2] and formula (1)). This shows w(/m)C

THEOREM 3.1. Let m ^ 3 and t = 2m~\ The following statements

are equivalent:
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(i) Γ = 2'"mJm,
(ii) w(J m ) = {l}xLm_1?

(iii) w ( ί m ) = L m _ 1 .

Proo/. (i) Φ (ϋ). Consider any generator a = 1 + /(αθ l(ar)
of Lm-i (cf. Lemma 2.3; s ^ m - 1 and fl,£F# for each i). Our
hypothesis implies ps =22'mIm. Hence there exist bu -,bm with
«-fli, , - f l r » = 22^m«&!,-••,&,„» [8, Theorem 2.1]. Hence

/(fli) Kar) - / ( " &i) / ( " fc.)'(- lf"m

[7, Theorem 3.2]. Formula (5) therefore shows

(ii) Φ (iii). Let α E Lm^i By hypothesis there exists q E /m with
) = ( l , α ) . Then *(ήf) = α, by (2) (in §1).
(iii) Φ (i). For each generator «α 1 ? , α r » of J t (α( E F ) there

exists qEΪm with vv(g) = 1 + / ( - ax) / ( - at). Thus

/ ( - aλ) /(— Or)e Im w, = Im w,5m = l(-l)-mkm

(see [13, proof of Theorem 4.1] for the two equalities above and the
definitions of the maps sm: km -»Im/Im + 1 and wt: Im/Γ+1-+kt). Hence
((au- - , f l f ) > E Γ m / m [8, Theorem 2.1], which completes the proof.

Note that in the proof "(ίii) Φ (i)" above we only need the fact that
Lm-ιCw(Im)Lm. If W(F) is m-stable, then 3.1 (i) holds.

COROLLARY 3.2. fcreg = Im w if and only if W(F) is 3-stable.

Proof By Proposition 2.2, fcreg D Im w. If W(F) is 3-stable, then
the reverse inclusion follows from Lemma 2.3, Theorem 3.1 and formula
(4) (in §2). Now suppose that fereg^Imw. If α G L 2 , theϊe exists
q€.W(F) with w(q) = a. We may suppose q EI (replace q by
q - (dimq) 1). Since the first two Stiefel-Whitney invariants of q are
trivial, q E P (use the injectivity of the maps u>,: /7/ i+1-> K i = 1 or 2, as
in the proof of [8, Theorem 2.15]). Hence vv(/3) = L2. Theorem 3.1
now shows that W(F) is 3-stable.

COROLLARY 3.3. I m w = Z ' x k r e g if and only if W(F) is 3-
stable. w maps W(F) isomorphically onto Z* x fcreg // and only if P is
torsion-free and Wτed(F) is 3-stable.
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Proof. The first sentence follows from Corollary 3.2 and Proposi-
tion 1.3. The second follows from the first and Proposition 1.4 (see
Remark 5.1 E below).

Elman and Lam have shown that any field F of transcendence
degree at most two over R has I3 torsion-free and W(F) 3-stable [8,
Example 2.17 (4), and Example 2 on p. 1177].

We now develop results for Wτtd(F) analogous to those above. Let
T denote the torsion subgroup of fcreg and let T = { l } x T be the
corresponding subgroup of Z' x kreg.

THEOREM 3.4. w induces an injective homomorphism

wr

Moreover, for all m S 3 the following are equivalent:
(i) WItd(F) is m-stable,
(ϋ)
(iii)

Proof The nil radical of W(F) is IΠWt(F) [12, Theorem 6.1, p.
248], which equals w~\Tr) (Proposition 1.4). Hence wred is well-defined
and injective.

(i) φ (ϋ). Let a = 1+ l(aλ) I(a2°) be a generator of Lm-X (so
s ^ m -1 and each ax is in F\ cf. Lemma 2.3). By hypothesis I2' =
22'-mIm(mod Wt(F)). Hence there exists q E Im and r ^ O with
2 Γ « - αi, , - α2-» = 2r+2'-mq. We may suppose 4 = ((bu- , 6W» for
some b EF* [8, Theorem 2.1]. Then, as in the proof of 3.1, we have
w(-2-m+1qf = ( l , α f , so (1, α ) Γ G w r e d(/w).

(ii)Φ(iii). Let aEL^. There exists g E / m with ( l , α ) Γ ' =
wred(q) = (1, w(q))Γ (cf. (2) of §1). Hence a E Γ Im vv.

(iii) Φ (i) Let ί = 2m"1. It suffices to show Γ = T~mIm (modulo
Wt(F)). Let α b •• ,atEF'. There exists by hypothesis q E / and
r ^ 0 with

(cf. (2) of §1). By (5) we have

= w(2t-m+rq).
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Since wred is injective, we therefore have 2"((au , at)) = 2"2'~m(- g) for
some n ^ r . We may suppose - q E Im [8, Theorem 2.1]. Hence
«fl! , , αf» G 2'"mJm + Wf(F). Finished.

The above proof shows that the three conditions of Theorem 3.4 are
equivalent to: (ii') Im wτedD ({1} x Lm-X)TΊT\ and (iii') Tw{Γ) = ΎLm.x.

COROLLARY 3.5. wred /s an isomorphism if and only if Wred(F) is

3-stable.

The corollary follows from Theorem 3.4 (together with Lemma 2.3
and formula (4)).

4. The exponent of k r e g/Im n\ Recall that /creg/Iπvw is a
2-primary abelian group (Corollary 2.4). Let e = e(F) denote the
infimum of the set of integers n ^ 0 such that all elements of fcreg/Ini w
have order dividing 2". (Thus 2e is the exponent of fcreg/Imvv if this
group has finite exponent and e = °° otherwise.) Theorem 3.1 says that
e = 0 if and only if W(F) is 3-stable.

It is convenient for us to write [ - log2m] = 1 if m = 0 or °°.

THEOREM 4.1. Suppose m SO, and W(F) is m-stable. Then e ^
m - l + [-log2m].

Proof We may suppose m S 3 (Corollary 3.2). Let g =
m - 1 + [ — log2m]. By Lemma 2.3 it suffices to show (1 + a)2* E Im w
where a = l{a,) /(α2*), s ^ 1, fl,6F . Let t = 25 - 1 and r =
max {0, m - s - 1}. Then (1 -f α)2Γ E Lm_! Clm >v (Proposition 3.1) and

(1 + af"s = 1 + /(αO l(ar)l(- If'2' E Im w

[13, Lemma 3.2]. Hence it suffices to show g^min{r, t - s} for all
5 ^ 1 . But just suppose g < min{r, t - s) for some s g 1. Then

(6) 2s - s > m + [ - log2m ] and - [ - log2m ] > 5.

The second inequality shows log2m > s. Using this and the first inequal-
ity of (6) we obtain

1 + m +[-log2m]g m -log2m > 2 5 - s > m +[-log 2m]

which is impossible. The theorem is proven.

REMARK 4.2. In Theorem 4.1 it would have been sufficient to
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assume that Γ = 2'~mIm, where t = 2m~1 (and not that W(F) was actually
m-stable). For example if F = Q((XJ)((JC2))((JC3)), then J8 = 24/4, but
W(F) is not 4-stable. (See Example 5.4 D.)

Note that krcg/lm w and Z ' x /creg/Im w are isomorphic, and hence
have the same exponent. (The isomorphism carries a Im vv to
(1, α)Im w, cf. Proposition 1.3.) The cokernel of wred (cf. Theorem 3.4)
is a factor group of Z ' x fcreg/Im w, so its exponent is bounded by that of
fcreg/Imw. We now compute the exponent of cokerwred. Let sred(F)
denote the infimum of the set of integers m ^ 0 with Wred(F) m -
stable. (Inf0 = °°.) It is usually easy to compute sred(F) (see §5,
especially Lemma 5.3).

THEOREM 4.3. Let m = sτed(F) and let 2f be the exponent of
cokerwred (so f = °o if cokerwTed does not have finite exponent). Then
/ = m + [ - log2m ] - 1. In particular, f<oo if and only if m < ».

Proof Cokerw r e d may be identified with fcreg/(Im w)T. With this
identification, the proof of Theorem 4.1 adapts (using 3.4 in place of 3.1)
to show that if m < <», then / ^ m + [ — log2m ] - 1. It would therefore
suffice to show that if / < °o, then Wτed(F) is (n - l)-stable for any n έ l
with n + [ - log2n] - 1 > /. For such n we have n ^ 4. For any
ax , , an E F' we have by (5),

which equals (setting b = - [- log2n], so 2b ^ n)

Since by hypothesis n - b - 1 > /, there exists q E W(F) with

(modΓ')

Thus «α1, ,α n »e2W(F)+W r

f (F) (Proposition 1.4), so WU*7) is
(n-l)-stable [1, Satz 3.17].

COROLLARY 4.4. Let m S 0. // W(F) is m -stable and 5red(F) = m,
ί/ien e = m - 1 + [ - log2m].

This corollary follows immediately from 4.1 and 4.3. It applies, for
example, to any formally real algebraic function field i n m § l variables
over R (see Example 5.4 B below, or else [1, Satz 4.8], [8, Example 2, p.
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1177]). This shows that Theorem 4.1 cannot in general be
improved. However, if F is a field whose level is small relative to the
values of m for which W(F) is m -stable, then Theorem 4.1 gives a poor
estimate of e. For example, the next theorem shows that if F is an
algebraic function field in n ^ 1 variables over C, then e ^ 1. However
such a field is n-stable but not (n - l)-stable (see Example 5.4 B below).

THEOREM 4.5. Suppose F has level 2r < <». Then e ^
,r + l + [-log2(r

Proof. We adapt the proof of Theorem 4.1. Let g =
max {1, r + 1 + [ - Iog2(r + 2)]}. We must show (1 + a)28 E Im vv for all
a = l(a1)' l(a2 ),s^l. Our hypothesis implies / ( - l ) 2 Γ = 0 [13, p.
320]. If r < 5, then clearly (1 + a)2 = 1, so (1 + a)2' E Im vv. Suppose
r g s. Then (1 + a)2"s+1 = 1 + al( - If"'2' = 1 E Im vv. But also
(1 + af" E Im vv where t = 2s - 1 [13, Lemma 3.2]. Thus it suffices to
show g S min {r — s + 1, ί — s} for all s with 1 ̂  s ^ r. This can be done
by the argument in the proof of Theorem 4.1, replacing m by r + 2.

5. Stability in W(F) and Wrcd(F). Before considering
more concrete examples we collect, and somewhat refine, some known
results on n-stability in W(F) and Wred(F). (See especially [1], [8].) It
will be useful to have in mind the facts in the following remark.

REMARK 5.1. (A) W(F) is n-stable if and only if kn+1 =
/ ( - l)/cn. More generally, for any n ^ m ^ 0, Γ = 2n~mIm if and only if
kn = / ( - l)n"mfcm. (This follows easily from [8, Theorem 2.1].)

(B) W(F) is n-stable if F is a direct limit of fields K with W(K)
n-stable.

(C) If K is a field extension of F with K'=F'K'2 and W(F) is
n-stable, then W(K) is n-stable. (After all, the canonical map
W(F)-+ W(K) is surjective and carries I(F) onto I(K).)

(D) If W(F) is n-stable, then it is (n + l)-stable.
(E) If /n+1 is torsion-free and Wred(F) is n-stable, then W(F) is

n-stable.
We leave to the interested reader the (easy) task of modifying each

of the above criteria for n-stability of W(F) so as to give an analogous
criterion for n-stability of Wτed(F).

LEMMA 5.2 (see [8, Example 4, p. 1178]). Suppose r is a place on F
with τ~\l) CF'2 and τ(2)^ 0. Let K be the residue class field of r and let
A be the square factor group of the value group of r. Suppose | Λ | = 2m <
oo. Then W(F) is (n + m)-stable if and only if W(K) is n-stable.
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Proof. Let U = τ'\K'). There exist additive homomorphisms
ψ: W(K)-+ W(F) and φ: W(F)-* W(K) such that ψ«τ(α)» = (a) and
φ« f l )) = (τ(α)) for all α G {7, and φ«fc» = 0 for all b£ U F' 2 . (It is
easy to see that any relation in W(K) satisfied by the generators
(τ(α)), a E U, is satisfied by the corresponding elements (a) in W(F) [14,
Lemma 1.1, p. 84]. This establishes the existence of ψ. The existence
of φ can be established similarly, or one can obtain φ by composing one
of the usual ring homomorphisms from W(F) to the group ring W(K)(A)
[10], [16, Satz 3.1] with the appropriate projection W(K)(A)
—> W(K).) Now let B = {bu- , bm} be a subset of F' mapping bijec-
tively onto a basis of Λ. Note that k *(F) is generated b y { l ( c ) : c E 5 U

u}.
Now suppose W(K) is n -stable. kn+m+1(F) is generated by elements

of the form β = l(c1) - l(cn+m+1) where cf E B U ί/ for all i. After
re-indexing we may assume c b , cn + ί E £/. There exist dx, -,dnE U
with

[8, Theorem 2.1]. Applying the map ψ gives

Hence /(d) /(cB+1)e / ( - l)kn(F) [7, Theorem 3.2]. Thus β E
/(-l)/cπ+m(F). Remark 5.1 A now shows that W(F) is (n + m)-
stable. Conversely, suppose W(F) is (n -f m)-stable. Let au- , an+1 E
t/. Then there exists q E W(F) with ((au- , αn+1, feb , 6m>> =
2q. Applying the map φ shows

(since ((bι , , fem)) is a sum of 2m one-dimensional forms whose deter-
minants represent the 2m elements of Λ). Thus ((τ(α!), , τ(αn+1)))E
2/(X)n [8, Theorem 2.1]. Hence W(K) is n-stable.-

Note. The proof of 5.2 shows that for any s ^ r ^ O ,
2s"7(X)r if and only if I(F)5+m = 2 s '7(F) r + m. (F, X, m are as in
Lemma 5.2.)

Our second lemma is a consequence of Brδcker's computation of
5red(F) (cf. §4) [1, 3.18 and 3.19]. Let M(F) denote the set of places from
F into R, and for each σ,τ E M(F) let Λ^ denote the square factor group
of the value group of the valuation ring cr'^JR) T^CR) [3 ;4].
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LEMMA 5.3 (see [5, Theorem 4.3]). Wτed(F) is n-stable if and only
if for all σ,τ E Jί(F) (not necessarily distinct),

(7) 2"*\Aσr\\{σ,r}\.

Proof Following the notation of [1], let us write s(F) for
sred(F). We may suppose F is formally real (otherwise the lemma is
trivially true) and n ^ l . (Wτed(F) is 0-stable if and only if F has at most
one ordering [1, 3.14], i.e., F has at most one place σ into R and
|Aao.| = l [2].) Now suppose Wτed(F) is n -stable. Let σ,τEί
M(F). We suppose Λ^^ 1 (otherwise (7) holds trivially). Let K, with
residue class field E, denote the Henselization of F at
σ\R) τ~\R). Note 2S ( £ )^ \{σ9 τ}\ (if σ/ r, then E has at least two
orderings, so s(E)^O). Hence [1, 3.18 and 3.19]

2n ^ 2.(F) g, 2 , W = 2 ,(B) | Λ<yτ I g> I fa τ } I I Λ σ τ |β

Conversely, suppose (7) holds. There exists a place p on F with
s(F) = s(E) + dimΛ where JB is the formally real residue class field of p
and Λ is the square factor group of the value group of p (e.g., take
E = F). Suppose such p is chosen with | Λ | maximal. Then | Λ | ^ 2n

(apply (7) to any σ = r E Λί(F) factoring through p). The square factor
group of the value group of every place from E into a formally real field
is trivial (otherwise |Λ| would not be maximal [1, 3.18 and
3.19]). Hence s(E)^l. If s(£) = 0, then s(F) = dimΛ^n, so
Wτed(F) is n-stable. If s(E)= 1, then £ admits at least two distinct
places into R, say σ and r [2]. Then

so again Wred(F) is n-stable.

We now apply the above results to some familiar classes of
fields. We wish to calculate sred(F) and

s(F) = inf {n ^ 0: W(F) is n-stable}.

(Warning: this is not the notation used in [1] or in the proof of Lemma
5.3.) Of course W(F) is n-stable if and only if n ^ s(F) (Remark 5.1
D). In the following examples most of the values of sred(F) are
well-known (see especially [1]) and easily computed from Lemma
5.3. We leave these computations to the interested reader. Our
remarks here about s(F) substantially overlap [8, §5] and in many cases
consist of showing that Elman and Lam's upper bounds for s(F) actually
equal s(F).
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EXAMPLES 5.4. (A) Suppose F is a finite algebraic extension of
R ((*i))'"' ((*»)) (iterated Laurent series). Then s(F) = n, and sred(F) is
n if F is formally real and is 0 otherwise.

Proof. F is isomorphic to F0((JCI)) ((*„)) where Fo is JR or C [11,
Theorem 6]. Note s(F0) = 0. Hence s ( F ) ^ n (Lemma 5.2). If
s(F) < n, then F0((xi)) would be 0-stable (Lemma 5.2). But this is false
since 1 + Od) is in I(F0((xi))) but not in 2W(F0((x1))) [12, Springer's
Theorem, p. 145].

(B) Let F be an algebraic function field in n variables over
R. Then s(F)=n, and sred(F) is n if F is formally real and is 0
otherwise.

Proof. Elman and Lam show s(F)^n [8, Example 2, p.
1177]. There exists a place p on F whose residue class field is R or C
and whose value group has 2n square classes. Let E be a maximal
immediate extension of F at p. Then £ is isomorphic to a finite
algebraic extension of i?((xi)) ((*„)) [11, Theorem 6]. Thus by
Example A above and Remark 5.1 C, n = s(E)^s(F)^ n.

(C) Suppose F is an algebraic number field. Then s(F) = 2; in-
deed, P = 41. sred(F) is 1 if F has more than one ordering and 0
otherwise.

Proof Since P is torsion-free [14, p. 81] and Wτed(F) is 1-stable, we
have P = 4I (this requires a trivial extension of Remark 5.1 E). If we
had P = 2/, then every element of P would have trivial Hasse-Witt
invariant, contradicting [14, Lemma 4.4, p. 97]. Hence s(F) = 2.

(D) Let F be a finite algebraic extension of Q((xi)) ((*„)). Then
s(F) = n + 2. Moreover, if n = 3, then /8 = 24/4. sred(F) is 0, n, or n + 1
according as the residue class field Fo of the canonical place from F into
an algebraic number field has zero, one, or more than one ordering.

Proof F is isomorphic to F0((JCI)) ((*„)) (Kaplansky's
theorem). Lemma 5.2 and Example C show s(F)= n -1-2. That /8 =
24/4 when n = 3 follows from Example C and formula (7n) of [13] (argue
as in the proof of [8, Example 4, p. 1178]).

(E) Let Fo be an algebraic number field. Then s(F0(x)) = 3. If F
is an algebraic function field in n variables over Fo, then s(F)^
n+2. 5red(F) is 0 or n + 1 depending on whether F has finite level or
not.

Proof. Example C and [13, Lemma 5.7] show s(F 0(x))^3. That
s(F0(x))^3 follows by Remark 5.1 C and Example D:
s(F0((jt))) = 3. The same argument shows s(F)^ n +2.
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Some final remarks. We can use Remark 5.1 B to get an upper
bound on s(F) for arbitrary algebraic extensions of the fields considered
in Examples A, B, C, and D. The condition kn+ϊ = / ( - ϊ)kn is discussed
in [7, §5]; in particular, Elman and Lam show k4 = / ( - l)fc3 (so W(F) is
3-stabIe, cf. Remark 5.1 A) when | k3 | ^ 8 [7, Corollary 5.9]. They also
show that if the quaternion algebras over F form a subgroup of B(F),
then W(F) is 3-stable [9].

6. Superpythagorean fields. Suppose F is a super-
pythagorean field, i.e., a formally real field in which every subgroup of F'
of index two excluding - 1 is an ordering of F [8, Definition 4.4]. Such
fields play a special role (as "local objects") in a general theory of
formally real fields [4]. In this section we compute Im w.

NOTATION 6.1. Suppose A is a finite subset of F' whose cosets in
F'IZ' F'2 are linearly independent. The elements

(8)
flGB

form a basis for a subspace k(A) of fc* [8, Theorem 5.13 (2)]. (The
empty product equals 1.) Hence for each C CA there is a unique map
φc: fc(A)-»{0,1} (where 0,1 E Z) which preserves addition modulo two
(i.e., induces a homomorphism intoZ/2Z) and carries each basis element
(8) to 1 if CD B and to 0 otherwise. Finally, set V(C) = {B: B CA
and I C Π B I is even } for all CCA.

Now let a E kreg. We give a computational procedure for determin-
ing whether a E Im w. Because a is regular, there exists a set A
satisfying the hypotheses of (6.1) such that every term of a is in k (A) (cf.
Lemma 2.3). Fix such a set A.

Note. If F'/F'2 is finite, we can take for A any subset of F
representing a basis of F'/Z# F'2.

THEOREM 6.2. Let n = j A |. α E Im vv //and on/y ///or a// C C A ,

(9) Σ Σ 2 k φ β ( a 2 0 Ξ 0 (mod2*+1)
Jt = l BGV(C)

where m=n-2ifC = 0 and m = n - 3 otherwise.

Before sketching the proof of (6.2) we give some examples.
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EXAMPLES 6.3. (1) If F has 16 or fewer square classes, then W(F)
is 3-stable. It is easy to check directly that (9) holds for all C C A . If F
has 32 square classes, then (9) can be shown to hold for all C/0. (It
suffices to show IBGV(c)<M/(a)f(&)) is even for all a,b E Λ U { - 1}. But
{B E V(C): B D{a,b}Γ)A} has an even number of elements.) Thus in
this case, a E Im vv if and only if

BCA
ΦB (α2) + 2φB (α4) s 0 (mod 4).

(2) Let F = R ((JCI))((JC2))((JC3))((JC4))((JC5)). Let A = {xu JC2, x3, x4, *5}

(see the Note preceeding 6.2). Then a = 1 + /(*i)/(x2)+ /(JC3)/(X4) and
β = 1 + /(JC1)/(JC2)/(JC3)/(JC4) are not in Im vv (in both cases, (9) fails with
C = 0). However aβ E Im vv. Also, a + l(x5f £ Im w (the congru-
ence (9) holds with C = 0 but not with C = {x5})

We now sketch the proof of Theorem 6.2. Arguing as in the proof
of Lemma 2.3, we can write a in the form (ΠfJi21 + α2 )(Π/3 1 + β) where
each β is one of the basis elements (8) for fc(A) with degree at least
2n~\ Since each factor 1 + β is in Im vv [13, Lemma 3.2], we may assume
without loss of generality that α2* = 0 if i = 0 or i S n - 1. Let 0 denote
the space of orderings of F [12]. For each P Eθ> set f(P) =
ΣΓJi22i+1ψΛ\P(α2'). Then / is continuous. Consider the diagram

W(F)

-J
where for each P E.O,FP denotes the real closure of F at P. (t and t' are
induced by the inclusions F-*FP, and wr is the product of the
"Stiefel-Whitney maps" W(FP)-^ Z' x K(FJ of Proposition 1.1.) We
identify each W(FP) with Z (by the signature map) and check that
w ' ( - / ) = ί'((l, α)). Since ί' and w' are injective ([8, Theorem 5.13 (6) ]
and Corollary 3.3), we have / E Im ί if and only if a E Im vv (Proposition
1.3). Thus a E Im vv if and only if for all b E F\

(10) ί f(P)dPEμ(V(b))Z
JV(b)

(see [3, Theorem 15 (3)] for notation and the proof). If C C A and
^ = Πα e cα, then the left hand side of (10) equals
21-HΣBeviC)Σ7:ϊ2iφB(a2*). Also, μ(V(b)) is 1 if C = 0 and 1/2
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otherwise. The necessity of (9) follows immediately. Its sufficiency is
an easy consequence.
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