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POTENTIAL OPERATORS AND EQUIMEASURABILITY

A. N. AL-HUSSAINI

W. Rudin proved the following.

THEOREM 1.1. Assume 0 < p < oo, p φ 2,4, 6, . Let n
be a positive integer. If fiβLpiμ), gieLp(v) for lfgirgw
and

( II + *i/i + + Znf«\*dμ = t |1
JX JF

+ ZιQx + + Znΰ

for all (zlf ---,zn)eCn, then (/Ί, •••,/„) and (&, •••,£») are
equimeasurable. Here as usual LP(JU) and Lp{v) stand for
pth power integrable functions defined on finite measure
spaces {X, X, μ) and {Y, Y9v) respectively. ^ is the field
of complex numbers.

The purpose of this paper is to provide a new setting
for Rudin's result by recasting it and its extension to real
valued functions into the framework of the theory of potential
operators as formulated by K. Yosida.

We begin by outlining the theory of potential operators ([8], [9]).
K-I. Sato's 1970 paper [6] contains extensive material on the subject.

Let Tt be a strongly continuous semigroup of linear operators
on a Banach space X, satisfying supJITJI < +°o, with infinitesimal
generator A = s limt_0 (Ttf — f)/t where as usual s denotes the strong
limit, and resolvent Jλ = (λ — A)"1, λ > 0. K. Yosida defined the
potential operator V as follows:

Vf=8limJ2f,

if the strong limit exists for a dense set in X. This is one way to
unify the potential operator concept for a large class of Markov
processes, which includes Brownian motion, stable processes and of
course transient Markov processes.

Motivated by an application to equimeasurability in Section (3),
we specialize to potential operators induced by Markov processes.
Thus let S be a locally compact, noncompact, Hausdorff space with
countable basis. By C0(S), Ck(S) we denote the spaces of real valued
functions which vanish at infinity, and those with compact support
respectively. Let Tt be a strongly continuous semigroup of positive
linear operators on C0(S) with \\Tt\\ ^ 1. To this semigroup there
corresponds a right continuous Markov process {Xt} on S with transi-
tion Pt(x, A), such that:

Ttf(x) = \pt(x, dy)f(y) .
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We will not distinguish between Tt and its corresponding Markov
process.

S +oo

Pt(x, K)dt < + oo for all xeS, all compact sets K, we
0 j +oo

call the Markov process transient. If \ Pt(x, έ?)dt = + ©o for all
Jo

xeS, and all open sets &, we call the Markov process recurrent.
It will be called null recurrent if it is recurrent and l i m ^ Pt(x, K) — 0
for all xeS, all compact sets K. V the potential operator introduced
earlier in this section exists for transient and null recurrent Markov
processes. (Theorem 3.1, Theorem 3.2 [6].) We will make use of
the following theorem, whose proof is included in Theorem 2.3 of [6].

THEOREM 1.2. If a semigroup Tt admits a potential operator
V, then &r(V) = &(A), ^P(V) = &(A), and V = -A~\ Here 3f
and & stand for domain and range respectively.

2. More about Markov processes. Concepts treated in this
section are mainly those necessitated by the section to follow. Let
{Xt} be a Markov process on S (as in § 1), with transition Pt(x, A)
which as assumed to exist. As is well known,

JJ - ^e-^TJdt, where TJ = Jpt(s, dy)f(y) .

Set Pt,x(%9 A) = e~~λtPt(x, A). Then there is a Markov process
{Xt)λ}, a sub-Markov process of {Xt}, corresponding Pt,λ(x, A). Thus

S +oo

Tt Jdt where Tt x is
0

the semigroup associated with {Xtfλ}. Also we may note that the
infinitesimal generator Aλ of Ttίλ is given by Aλ — A — λ, (see [2]).
By Theorem 1.2, there is a φe^(V) for every fe£&(A), such that
f=Vφ or alternatively, by making use of {Xt,λ}, λ > 0, a sub-
Markov process of {Xt}; AJ~ —(~Aλf) we obtain / = Vx( — Aλf),
using ([2], pp. 24) where Vχ is the potential operator of {Xt,)}
Taking limit as λ -> 0, / = V(-Af) = Vψ.

Some known examples of V are [1], [3], [4], [6].

EXAMPLE (1). One-dimensional Brownian motion:

- y\f(y)dy.

EXAMPLE (2). One-dimensional stable process of order 0 < a < 1,

a < 2. Here Vf == A\ x - y \a~ιf{y)dy.

EXAMPLE ( 3 ). ^-dimensional stable process.
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Vf(x) = c j | a ? - y\a~nf(y)dy , 0 < a < 2 , 0 < a < n

The constants c are not the same from line to line. Example
(1) could be included in Example (2) if we allow a = 2. Example
(3), with additional probabilistic arguments will be used (§ 3) to give
an alternative proof to Theorem (1) of [5] concerning equimeasur-
ability of Gn valued random functions. W. Rudin proves his theo-
rem by transforms and techniques based on complex variable theory.

By utilizing Examples (1) and (2), we will give an &n version
of the theorem cited above.

The reader may observe that Vf's in the preceding examples
are none other than Riesz potentials. Within general theory of

Markov processes Vf is just \\Pt(x, y)f(y)dtdy the Green's potential,

if the Markov process is transient (pt(x, y) is the transition density).
However if the Markov process is null recurrent and transition
density pt(x, y) exists then Vf is the limit of potentials of some
sub-Markov processes. More precisely Vf = lim^0 Vχf, where Vλ,
λ > 0 is the Green potential corresponding to e~λtpt(x, y).

One-dimensional stable process 0 < a < 2, require special atten-
tion. V (the set of all functions in Ck(S) having null integrals) is
dense in C0(S) ([4], [6]). Another important matter is the core of
V. A set M is called core for V [6] if Md^r(V) and if the
smallest closed extension of V\M coincides with V. If M is a core
for V, then M is dense in 2f{y\ and V\M determines the semi-
group. Also V(M) is dense in ^?(F) . In [6], see also [4], it is
shown that Ck(S) Π &(V) = Mo is a core for V.

To extend this to Ci°°(RN), the set of all infinitely differentiate
functions on RN, (Theorem 2.3), we borrow (for convenience) some
results from [7].

We say a function φ is a order homogeneous on RN, outside a
compact set, if there is a 6 > 0 such that

Φ(Xx) = Xaφ(x) for I x I ̂  6 , λ ^ 1 .

Define φ(x) = (\x\/b)aφ(bx/\x\) and note φ(x) = φ{x) for \x\^b.

THEOREM 2.1. // Xt is a transient process with stationary in-
dependent increment, with right continuous paths and E\Xt\

a< +00

for a real number a > 0. Let φif 1 <I i ^ I, be an arbitrary number
of continuous functions on RN such that φt is at order homogeneous
outside a compact set, 0 <a^a and such that the set { :̂ 1 ^ i ^ 1}
is linearly independent. Given real numbers ai9 1 5j i ^ I, let
be the set of function feCί^iR1*) such that
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f(x)dx = 0, ( f{{x)φlx)dx = at, l ^ i ^ l .

Then ^ is a core of the potential V.

Proof. See Theorem 5.1 [7].

For the next theorem, we assume for some t the distribution
of Xt has a nontrivial absolutely continuous part, and that Xt is
recurrent stationary independent process with right continuous paths,
in which case N = 1 or 2.

THEOREM 2.2. If E\Xt\ < <*>, then the set feCΐ(RN) satisfying

f{x)dx = ( f(x)x4x = 0 /or 1 ̂  i ^ iSΓ

is a core of the potential operator V.

Proof. See Theorem 6.1 [7].

For the next theorem N = 1 or 2 only.

THEOREM 2.3. For a stable process Xt with index 0 < a < 2,
{a Φ 1, N = 1); Cΐ Π &(V) is a core of the potential operator V.

Here and elsewhere, it is understood that we are dealing with
right continuous path versions.

Proof. We divide the proof into 2 cases:

Transient Case. (0 < a < 1, N = 1) or (0 < a < 2, i\Γ = 2). Let
ε > 0 be such that a - ε > 0 and take #(&) = X^-'x, x e RN. The
proof is completed by Theorem 2.1. It may be remarked that the
introduction of the ε above was to insure E\X\a~£< + °°, by moment
properties of stable processes.

Recurrent Case. (l<a<2, N=ΐ). Here again E\Xt\< +oo by
moment properties of stable processes, since 1 < a. The rest follows
from Theorem 2.2.

We did not consider a = 1, N = 1. Instead we follow Example
(1), a detour.

3. Equimeasurability* Let (Ωl9 J*£, PJ and (Ωi9 <S$ζ9 Pa) be two
probability spaces. For Rn or Cn valued measurable functions F, G
defined on Ω19 Ω2 respectively, set:
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v{B) =
BeRn

BeRn

or Cn

or C»

so that μ and v are the distribution functions of F and G under Pj
and P2 respectively. Changes in w, R, C, F or G, result perhaps in
different μ and v\ but to simplify our notation we will continue
using the same symbols μ and v in all cates. If

1 + Σ a,ifi dP, = dP2,

0<p< +00, p ^ e v e n integer, for all complex numbers α l f α2, , αΛ,
then [5], F = (/„ /2, •••,/») and G = (glf g2, •••, flrj have the same
distribution, that is μ = v.

In Theorem 3.2 of this section, we give a probabilistic proof of
this result. (Real versions will be given in Theorem 3.1. In § 4 we
comment on further results.) The proof here is, more or less,
Markov-potential theoretic.

THEOREM 3.1. Let F = (f19 / 2 , , / J , G = (glf g2, , gn) be two

Rn valued measurable functions defined on Ωlf Ω2 respectively. If

dP t = dP2,

, p Φ even integer, for all reals alf a2, , an. Then

Proof. Let n = 1. Passing from Pίf P2 to μ, v respectively,

+ ay\*dμ(y) = j | l + ay\pdv(y) ,

α^is real which implies \\x — y\pdμ(y) —\\x — y\pdv(y) for x real.

Depending on p we have the following cases:
(a) 0 < p < 1: So we may take p = a ~ 1, l < α < 2 . Thus

for / = F^ in Section 2 and Example (2),

\f(v)dμ(y) = C ^\x - y\a-ί

x - y\a-χφ{x)dv{y)dx
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for every fe £^(A), proving μ — v by denseness of
(b) p — 1: Here we use Example (1), and follow the procedure

of the case just preceded.
(c) 1 < p < 2: So that p = a + 1, 0 < a < 1. For / e C?(S)

Vf(y)dμ(y) = JJ|a? - »\«~ιf{x)dxdμ(y) , 0 < α < 1 ,

by Example (2). Integrating twice by parts relative to x, the right

hand side is now equal to \\\x — y\a+1f"(x)dxdμ(y). Repeating the

same operations for v, 1 Vf(y)dμ(y) = I Vf(y)dv(y), implying μ — v.

(d) 2<p<+ooy p^even integer: Here we take an even
number of derivatives or use integration by parts and reduce this
case to one of the preceding cases.

Finally, if n > 1 and

1 + Σ atxt dμ(x) =

then it is obvious that I 1 + a 1 + a dv which

by n — 1 case implies that Σ?=i aifi and Σ?-i a%Qi have the same
distribution for all reals aίf a2, , an. Thus F and G have the
distribution; that is μ = v.

G &β C valued measurable functionsTHEOREM 3.2.

on Ωu Ω2 respectively. If

•-ίl 1 + Σ c* dP2,

0<p< + c>o

— v.
pφeven integer, for all complex numbers c19 c2f , c Λ .

Proof. We identify C with i22, and start as before with n — 1.

Thus \ I a? - y\pdμ(x) = \\x - y\pdv(y) w i th # = α?x + ia?2, y = yλ + iy2.

Recalling [1] that the Markov process at hand has Green's potential,
we have for / e C

~ y\pf(x)dxdμ(y) = \\\v - y\pf(x)dxdv(x) ,

using the hypothesis. There is no problem of integrability, since
the hypothesis implies continuity in x. Integrate by parts twice
relative to xlf repeat the same for x29 and add up. Performing this
operation an appropriate number of times
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k - V\p~2kg(x)dxdμ(y) = Jί |# - y\^2kg(x)dxdv(y)

and in such a way that — 2 < p — 2fc < 0 or

α - 2 = p - 2& and 0 < a < 2 .

Example (3) completes the proof for n = 1. If w > 1 the proof is
similar to that of n > 1 in Theorem 3 1.

4* Remarks* (1) Theorems 3.1 and 3.2 may be extended to
— °° < p < 0 in the sense of analytic continuation of a, a procedure
well known in Riesz potential theory.

(2) As an application of Theorem 3.1 one may prove a real
version of Theorem 2 of [5].

(3) The case p = 1 of Theorem 3.1 can be proved in an ele-
mentary fashion. Consider for an arbitrary positive x,

yx + ay\dμ{y) = \\x + ay\dv(y) .

Differentiate relative to a at a = 0, obtain by Lebesgue's domi-

nated convergence theorem \ydμ(y) = \ydv(y). Combine this with

the hypothesis \(z — y)+dμ(y) = \(z — y)+dv(y). Integrate both sides

then differentiate relative to z, and obtain μ — v.
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