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A NEW FAMILY OF PARTITION IDENTITIES

D. M. BRESSOUD

The partition function A(n; k) is the number of partitions
of n with minimal difference k. Our principal result is that
for all k=1, A(n; k) = B(n; k), where B(n; k) is the number
of partitions of 7 into distinct parts such that for 1<:1=<#F,
the smallest part = i (mod k) is >k X}z 7(5), where 7(5) is the
number of parts = j(mod k). This arises as a corollary to a
more general result.

The particular case A(n;2) = B(n;2) was recently proved by
Andrews and Askey [1]. It is known from the Rogers-Ramanujan
identities (e.g., Harby and Wright [2], p. 291) that A(n; 2) is equal to
the number of partition of » into parts = +1 (mod 5). Andrews and
Askey discovered a g¢-series identity due to Rogers which has the
partition theoretic interpretation: B(n; 2) is equal to the number of
partitions of » into parts = 1 (mod 5).

The general identity. Given k=1, let q(1), ¢(2), - - -, q(k) be any
complete residue system mod k. We define the following partition
functions:

A(n; k; q), -+ -, qk); (1), - -+, 7(k)) = number of partitions of =
with minimal difference % and such that for 1 <1 <k, there are
2(3) parts = q(¢) (mod k).

B(n; k; q1), ---, qlk); (1), - -+, v(k)) = number of partitions of 7
into distinet parts such that for 1 <17 <k, there are 7(¢) parts =
q(%) (mod k), and the smallest part = q(3) (mod k) is >k 3zt 7(4).

Cln; k; q(1), ---, q(k); (), « -+, (k)) = number of partitions of n»
such that for 1 <14 < k, there are r(¢) parts = q(¢) (mod k).

Given r(1), ---, r(k), we set S = 3%, (%) = number of parts in
the partition.

LEMMA 1.

A(n; k; q(L), - -+, q(k); v(1), - - -, r(k))
= C(n — ES(S — 1)/2; k; q(1), - -, q(k); (1), - -+, v(k)) .

Proof. Given a partition of » with minimal difference k& and
7(1) parts = ¢(4) (mod k), subtract ¥ from the second smallest part,
2k from the third smallest part, and, in general %(j — 1) from the
jth smallest part. This gives us a partition of n — ES(S — 1)/2
with 2(4) parts = q(¢) (mod k) for all 7,1 <1 < E.
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Similarly, given a partition of n — kS(S — 1)/2 with (%) parts =
q(7) (mod k), add k(5 — 1) to the jth smallest part. This yields a
partition of n with minimal difference & and 7(s) parts = q(4) (mod k).

LEMMA 2.

B(n; k; (1), +- -, q(k); (1), - -+, r(k))
= C(n — ES(S — 1)/2; k; q1), -+, q(k); (1), + -, 7(k)).

Proof. Given a partition of » into distinet parts such that
(%) parts are = q(¢) (mod k) and the smallest part = q(%) (mod k) is
>k iztr(l), we subtract & from the second smallest part =
g(1)(mod k), 2k from the third smallest part = ¢(1) (mod k), and so
on up to subtracting %(»(1) — 1) from the largest part = ¢(1) (mod k).
We then subtract k(1) from the smallest part = ¢(2) (mod k), k(»(1) + 1)
from the second smallest part = ¢(2) (mod %), and so on up to sub-
tracting k(r(1) + 7(2) — 1) from the largest part = ¢(2) (mod k).

We continue this process, in general subtracting k(7 —1+ 3zt (1))
from the jth smallest part=q(¢)(mod k). Recall that the jth smallest
part = ¢(¢) (mod k) is

=k(7 — 1) + (the smallest part = ¢(¢) (mod k)
Sk — 1) + k:z:m) .

Also note that:
k1) . i—1
E,HZ:‘{IG(J -1+ lgl’r(l)) = kS(S — 1)/2.

Thus, this gives us a partition of n — kS(S — 1)/2 with »(z) parts =
q(¢)(mod k) for all ¢, 1 <i =< k.

Similarly, given a partition of n — kS(S — 1)/2 with 7(¢) parts =
q(?) (mod k), add k(j — 1+ Dizir(l)) to the jth smallest part =
q(?) (mod k). This yields a partition of n into distinct parts such
that r(i) parts are = ¢(4) (mod k) and the smallest part = (%) (mod k)
is >k Szt r().

As an immediate consequence of Lemmas 1 and 2, we have:

THEOREM.

A(n; k; q(1), -« -, q(k); (1), - -+, 7(k))
= B(n; k; q(1), + -+, q(k); (1), - -+, (k) .

COROLLARY 1. A(n; k) = B(n; k).
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Proof. For all 3,1 <7<k, let ¢q(4) = 1. Then

Amsk)y = 3 Amikl, oo, I o(1), -+, (k) ,

7(1),000,7(k)=0
and
Bnik)= S Bkl eee, (L), -, 7)) .

7(1),007, (k) =0

COROLLARY 2. Let o be a permutation function on the integers
1 through k. Given a function r defined on these integers, let
R(t) = r(674)). Then:

B(n; k; o(1), + -+, o(k); R(1), ---, R(k))
= B(n; k; 1,2, «+-, k; (1), -, r(k)) .

Proof.
A(n; k; o(L), - -+, o(k); RB(1), -- -, R(k))
=Aln; k; 1,2, «-+, k5 r(L), - -+, (k) ,

since they count exactly the same partitions.

In particular, letting & = 2 in Corollary 2 gives us:

The number of partitions of % into distinet parts such that » of
them are odd and s are even and the smallest even part is >2r.

=The number of partitions of » into distinct parts such that »
of them are odd and s are even and the smallest odd part is >2s.

CONCLUSION. One corollary of Lemma 1 is of interest. Using
Lemma 1, we have that:

the number of partitions of »n into parts = +1 (mod 5)

= fl Cn;5;1,2,3,4,5;7,0,0,s, 0)

7r,8=0

= 3 A(n + 5(r + s)r + 5 — 1)/2;5;1,2,8,4,5;7,0,0, 5, 0) .
r,8=0

By the first Rogers-Ramanujan identity:

the number of partitions of n into parts = +1(mod 5)
= A(n; 2)

o

= > An; 2,1, 2% R, S) .

R,8=0
Thus:

o

>, An; 2,1, 2, R, S)

R,8=0

= 3 A +5(r+s)r+s—1)/25;1,2,3,4,57,0,0,s5,0) .

r,8=0

(1)
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The significance of equation (1) lies in the fact that if a purely
combinatorial proof can be found for it, this will give us a purely
combinatorial proof of the first Rogers-Ramanujan identity.
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