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ADDENDUM TO “‘FIXED POINTS OF AUTOMORPHISMS
OF COMPACT LIE GROUPS”

ROBERT F. BROWN

THEOREM. Let G be a compact, connected Lie group
and let 2 be an endomorphism of G. Then the rank of the
Lie group @(h) is equal to the dimension of the graded
vector space O(Ph*).

The statement of the main result (Theorem 1.1) of [1] is un-
necessarily restrictive. The result is stated only for automorphisms,
but the theorem is in fact true for all endomorphisms.

The proof is the same as in [1] except for the following, which
replaces the argument on pages 82-83. Let » = dh: & —> & be the
differential of h, where ® is the Lie algebra of G. Then % induces
Qn.: QH.(®) - QH.(®) on the indecomposables in the homology of
®. By de Rham’s theorem (see [2]) and Proposition 3.10 of [3], it
is sufficient to prove

(*) rank @) = dim ®(Q7,,) .

For the same reasons, we already know that (*) is true if © is
abelian (Propositions 2.2 and 2.3 of [1]) or if ® is semisimple and 7
is an automorphism (Lemma 3.1). Write & = 3@ &<2® where 3 is
the center of & and <2® is semisimple. Then write 3= 3.D 8,
where 3, = 77(8). Let 7,: 8, — ® be the restriction of » to 3..
For p: @ — 3, the projection, p», is an endomorphism of an abelian
Lie algebra. So (*) is true for p», - and therefore for 7,. Since
3, N 78, =0, we conclude that dim @(Q7,,) =0. Let 279: 26 —
@ be the restriction of 7. We can write G = A, P --- P AU, BB
where the restriction 7, of <77 to each ¥, is an automorphism and
the behavior of &7 on the fixed points is determined by the 7,.
Since (*) is true for each 7,, it holds for &7 as well. Finally,

rank @(n) = rank @(7,) + rank &(27)

which completes the proof.
I thank the referee for correcting an error in an earlier version
of this paper.
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