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ON SINGULAR INDICES OF ROTATION FREE
DENSITIES

HipeEo ImAl

The properties of singular indices of nonnegative rota-
tion free denmsities on 2()={2<|z|=<1}(2=0) will be studied.
The relation between the singular index a(P) of a nonnega-
tive rotation free density P on £2(1)(1>0) and the Martin
compactification 2(2)F of ©2(1) with respect to the elliptic
equation Ju=Pu will be established.

A nonnegative locally Holder continuous function P(|z|)(|z| = 7)
on 2(\) is called a nonnegative rotation free density on 2(\). The
singular indexr «(P) of a density P at » = A is the quantity given
by

a(P) = lim,_e,(r)/e,(r) ,

where e;(r)(J = 1, 2) is a unique bounded solution of the equation
2
P or) + L Lolr) — (Pr) + r9er) = 0 (5 = 0,1)
dr? r dr

on (A, 1] with ¢;(1) = 1 for A = 0, and furthermore with lim, e;(r)=
0 for » > 0. In particular, @(0) with P =0 on 20\ = 0) will be
referred to as the harmonic index at » = An. The elliptic dimension,
including the harmonic dimension with P =0, of a density P at
the ideal boundary |z| = N\, dim Z?(\) in notation, is the dimension
of the half module Z°(\) of the positive solutions w of du = Pu on
2Q0\) with =0 on |z| =1. The elliptic dimension is an ideal
boundary property (M. Heins [2], K. Hayashi [1], and M. Ozawa
[12], [13]). The Picard principle is said to be valid for a density
P at [z| =\ if dim .Z°(A\) =1 or equivalently a(P) =0 (M. Nakai
[8D.

In [8] M. Nakai had shown that the singular index a(P) at
A = 0 determines the Martin compactification in the following ways:

0 ~{aP)=lzl=1}, alP)=0or a(P)>0

in the sense of homeomorphism for any monnegative rotation free
density P on 2(0) and each ideal boundary point is minimal.

It will be shown that the singular indices are linearly ordered
in the semse that a(P) = a(P,) if P< P, on 2\)(» = 0). In parti-
cular, the harmonic index which is equal to (—2xlogh)(1 — M)
for v >0 minimizes the singular indices at r = among the
nonnegative rotation free densities on 2(\). As a counterpart of
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the result of M. Nakai listed above, we will have that
20 ~{aP)= 12| =1} (V> 0)

and each boundary point is minimal for any rotation free density
P=0 on 2(\). Thus, the Picard principle is not valid on a hyper-
bolic end M < |2] < 1(A > 0) for any rotation free density P(r)= 0
on £2(\).

From the other aspect, a net {£2(\)}s>,, may be viewed as a
regular exhaustion of a parabolic end £2(0) (precisely, 0 < |z| < 1).
Consider a density P(r) = 0 on 2(0). Then, a,P) at » =X >0 can
be defined regarding P(r) as a density on 2(\) in the same way as
a(P) at x =0. It will be shown that a;(P) is a decreasing func-
tion of N on [0,1) and that

a(P) = lim,_, a,(P) .

Also, the interrelation of generators of F°(\) and .Z°(0) will be
studied.

As for the Martin compactification with respect to the elliptic
operator, we can find the work of S. Ito [4] and L. Hunt—R.
Wheeden [3], among others. Neither the regularity of an elliptic
operator nor the continuity of the solutions are assumed at the
ideal boundary in the recent research on the Picard principle for
which we refer to M. Nakai [8], [10], and [11], among others.

Finally, the author wishes to express his indebtness to Professor
M. Nakai for his valued advice. Also, the discussion with the
author’s colleague Professor Shigeo Segawa is very helpful to the
author in the preparation of this note.

1. Let P(r) be any rotation free density on N\ < |z| < 1(x = 0)
and consider the elliptic differential equation

L,e(z) = Lp,.e(z) = de(z) — (P(|z]) + n*/|z[e(z) =0 (n =0, 1, ---)

on A < |z] £ p for any p fixed in (A, 1]. We will denote by f(r:0)
a function defined on )\ < |z| < p and by f(») the function f(r:1).
Let e, (r: p)(n = 0) be the rotation free solution of L.e(z) =0
on N < |z|=p(z] =r) with lim, ,e,(r:0) =0 and e,(0:0) =1 for
A > 0, and the unique bounded rotation free solution of IL,e(z) =0
with e,(0: 0) =1 for » = 0. The existence of such a solution can be
deduced by the solvability of the Dirichlet problem, Harnack prin-
ciple, and the maximum principle (cf [8]). However we note that
the applications of the maximum principle for the operator L, can
be made in quite different ways according as » > 0 and A = 0.
Consider another rotation free density P,() such that
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P(r) < Py(r)

on \ < |z| £1 and denote by &,(r: p) the corresponding solution to
the density P(r), i.e., the solution of L,e(z) = Lp .e(z) =0 with
the same properties as e,(r: 0). Then,

(1) (11 0) = e, (1)]e,(0) , &, (r:0) = &,(r)[e€,(0)

on \ < |z| £p. The maximum principle (cf. e.g., [7]) or equiva-
lently the comparison principle [9] yields that

(2) G 0)Z e 0)Z o Zerip) = - 20,
and
(3> 50(7"310)251("':10)2"'Zén(T:P)?—_"'ZO,

e (ri0) = e,(r:0) (n=0)
on A < |z] £ p. Setting
’U,,,,(’r: p) = en(7”3 p)/eo("': lo) (’ﬂ/ g 1) ’

we obtain from (1) and (2) that v,(r: 0) = (e, (r)/e,(1))/(e.(0)/es(0)) < 1
for any » and p with A <+ <p <1. Hence v,(r) is an increasing
function of » on (A, 1] and the same is true for v,(r: 0) on (), 0],
since v,(r: 0) = v,(r)/v,(0) on (N, p]. Thus we have

(4) 0= 0 (n=1)
dr

on (n, o] for any o in (\, 1].

2. Consider the function u,(r) (# = 0) on (\, 1] defined by
Un(1) = Ex(1)]en(7) «
Then, u,(r)(r = |z]|) satisfies the elliptic equation

M, u(z) = du(z) + 2V log e,(|z])-Fu(z) — (P(|z]) — P(|z])u(z) =0
(nz=0)

on A < |z| <1, where /u is the gradient vector field (ou/ox, ou/oy)
of u. Since (2,(r)/e.(0)) = (en(r)/e,(0)) =1 on (r, 0] by (1) and (3),
U (1) = u,(0) on (A, 1] for any » and o in (, 1] with » < p which
implies that

=0 (= 0)
dr

on (\, 1). Consequently, lim, u,(r) exists and 1> lim, u.(r)=0,
because the constant 1 is not a solution of M,u(z) = 0.
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We define the function h,(r: 0) by
ha(r: 0) = log (1/e,(7: 0)) .
Then, a direct computation yields that

M,h, () = —[V log e, (v)V log e, (r) + P(r) + (nfr)* + (P,(r)
— Pr)h,(m)] =0 (r = |z])

on )\ < |z] < 1. Hence the operator M, is parabolic for an end
N < |z] <1 (cf. [5] and [14]).
To assert that u,(r) = u,(») (n = 1) on (, 1], observe that

M, uy(r) = 2V log v,(#)-Vu,(r) =2 0 (v = [2])

on :» < |z] <1l. Then, M,(w,(r) — uy(r) + eh,(r)) <0 on N < |2| <1
for every ¢ > 0. Since lim,_;(u,(r) — u(r) + eh, (7)) = 0 and u,(r) —
u(r) + eh,(r) =0 at » =1, the maximum principle implies that
U, (1) — U(r) + eh,(r) =0 on A< |2] <1 for every ¢ > 0. Letting
¢ — 0, we deduce that

(5) U (1) Z ulr) (n=1)
on (x, 1].
3. We now define the quantity
a,(P) = lim,_w,(r)

for any nonnegative rotation free density P(r) on » < |[z] £ 1(W=0)
which will be referred to as the nth singular index of P atr = .
The quantity «,(P) is abbreviated as «(P) and simply called the
singular index of P at » =) ([18]). In particular «(0) with P =0
will be referred to as the harmonic index at » = .

First, in view of (8), we have e,(r)/e,(r) = e, (v)/e,(r) on (N, 1]
and hence «,(P,) = a,(P). It is needless to say that a,(P) (n = 1)
indicate the nth singular index of P, at + =A. For P =0 and
A > 0, observe that e r) = log (A/r)/logn and e(r) = (r — Nr ) (1 —
A)7 Then, by the L’Hospital theorem, we deduce that a(0) =
(—2xnlog M)A — A7 In the case of » = 0, beside P = 0 there are
many densities P(r) = 0 which satisfies a(P) = 0 ([8], also see (34)
in [6]). We summarize the result in:

THEOREM 1. Let P(r) and P,(r) be any rotation free densities
which satisfy the condition P(r) < P(r) on N < |z <1(v=0). Then,

0=sa,P)sa,P)<l mz1).
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In particular, the harmonic index a(0) at » = N\ which is equal
to (—2xlog M)A — A7 for N > 0 minimizes singular indices among
nonnegative rotation free densities on N < |z] £ 1.

The above theorem intuitively indicates that in the case A >0
we can make a(P) sufficiently close to 1, selecting a sufficiently
large density P. To see our inspection is certainly true, we first
observe that

L(r/o)™ — er: 0)) = (r"7*/o™)(m* — P(r)r)
on A < |z| £ p with » = |z|. Then, for an m > 0 satisfying
(6) m* — P(ryr* =0

on M < |z| £1, (/o)™ = e)(r: p) is valid on (A, o] by the maximum
principle and hence we deduce that d/dr(e,(r)/»™) = 0 on (\, 1] for
such an m > 0. Thus we can easily see that

Ly(e(r) '".7"030(7')) = — 2cr°‘1eo(r)£7 log (e(r)/r™) = 0

on (A, 1) for any ¢ fixed in (0, 1] and satisfying (6) with m = (1 —
c))/2¢. A fortiori, e,(r)/e,(r) = r* on (A, 1]. Thus we deduce:

PROPOSITION 1. Let P(r) be any rotation free density on £\ <
|z] < 10\ > 0) which satisfies the condition (6) with m = (1 — ¢*)/2¢,
¢ being fived in (0,1]. Then,

V2alP)<l

18 valid.

4, We observe that the function v,(r: 0)(» = |2|) in no. 1 is
a bounded solution of the elliptic equation

Lw(z) = 4v(2) + 2V log e,(|2[: 0)-Vv(z) — (m/r)v(z) =0 (n=1)
on \ < |z2] £p. A direct computation yields that
Lhy(r: 0) = —[P(r) + V log e,(r: 0)-V log e,(r: 0) + (n/r)h(r: 0)] < 0

on A < |z] < p. Hence each operator I, possesses an Evans super-
solution hy(r: p) on N < [2] < o (cf. e.g., [5], [14]).
To compare v,(r: 0) for n =1, 2, ---, we observe that, for m>0,

Livgr: 0" = m(m — Doz o>~ Loor: )

— (@ — m)[r* v (r: o) (r = |z])
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is valid on N < |z| < p. Taking m = n? L[v,(r:0)""]=0 on )\ <
|z]| < p for » > 1. Also, setting m = »,

d

Lo i) ~ e O |

L[v.(r: 0] = n(n — Ly r: 0]

on \ < |z]| < p. Considering L,(e,(r: 0) — (r/0)e,(r: p) + €log (r/0)) on
M < 2] < p with every e > 0 for » =0 and ¢ = 0 for » > 0. Then,
v,(r)/r = v(0)/p is valid for any » and o such that A <r = p 1.
This inequation shows that v,(r)/» is decreasing on (A, 1], and the
same is true for wv,(r:p0)/r on (\, o]. Hence, d/dr log (v,(r: p)/r) <0
on (A, o], and a fortiori d/d» v,(r: 0) — vi(r: 0)/r <0 on (\, p). Con-
sequently, L[v.(r:0)"] £0 on M < |2]| < p. From these estimates it
can be deduced that I,[v,(r:0) — v,(r: 0)" + chy(r: 0)] 0 (n = 2)
and L[v,(r: 0)" — v,(r:0) + €hy(r: 0)] =0 (=1) on A< |z] < p for
every ¢ > 0. Therefore, the maximum principle yields that

(7) v(r: P S w(r: 0) S vi(ri )" (n= 1)
on A< [z =p for any p in (A, 1]. Taking p =1 in the above
inequations, we can deduce:
LEMMA 1. For any rotation free density P(r) =0 on N < |2|Z
1v = 0),
aPy L a,P)<aP)y (nz1l).
5. Consider the Green’s function G(z, {) of du = Pu on A<[z|<

1(» = 0) with pole at L. For any z and { =re®” in A < |z| < 1 with
|z| # r, expand G(z, {) into Fourier series:

G(z, re™) = c)(2: 1)/2 + D1 (c.(2: 7) cOs no + s,(z: ) sin no) ,

where
e (z:r) = n—lS%G(z, re”) cos nodo  (n = 0), s.(z:7)
0
= ("6, re) sinnods (nz1).
[}

Since G(z,{) is dominated by the harmonic Green’s function
log (|1 — CZz|/|]z — €|) of the unit disk, the method of M. Nakai [8]
can be modified to the hyperbolic case. But for the sake of com-
pleteless, we draw the outline of the method in [8]. The e¢,(2:7)
(m = 0) and s,(z: 7)(n = 1) are bounded continuous functions of » on
(M, 1], and satisfy L,c,(z:7) =0 (=0) and L,s,(z:7)=0 (n=1)
for 7 # |z|. Therefore
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ca(2: 1)]el(2: 0) = e, (12 0) , 8.(2:7)[8,(2: 0) = e,(r: )
for every » and o with M <» =< p < |2], and
(8)  leu(z: 0)], [84(2: 0)| = c(2: ) = 2 min (log p7", log [2]7) .

Sinece sup,eu, V.7 0) = 0. <1 for any = such that ¢ < p, by the
Weierstrass double convergence theorem, the limit

L(z, 0: o) = lzima G(z, re™)/e(r: o)

exists for any p in (), 1] with o < |z| which is possitive function
of z on p < |z| <1, where

(9) L(z, 6: p) = c,(z: 0)/2 —l—g‘{ (c.(2: p) cos no
+ s,(2: p) sin nd)a,(P)v,(0)™

for any 2, o such that A < 0 < [2| <1, and any @ in T. Denoting
G(z, 0)/G(z,, £) by K(z, {) for some fixed 2, in A < [2] < 1, we obtain
from the relation K(z, re*)=(G(z, re®)/e,(r: p))/(G(z,, re*)/e,(r: p)) that
(10) lzimo K(z, re'*) = L(z, 0: 0)/L(z,, 6: o)

for every z in A < |2| =1 and any fin T = (— o, «)/mod 27, where
0 is any number in (A, |2]) N (\, |2,]). Since the left hand side of the
above equation is independent of o, we can define the function

(11) k(z, 0) = Lz, 0: 0)/L(z,, 0: p)

on A< |z| =<1 for any 4 in T and any 2, in M < |2| < 1.

In passing we note that the following result which had shown
for » =0 in [8] is also valid for ) > 0, since the proof in [8] is
not affected by the parabolicity of the origin.

LEMMA 2. The system c,(z:7r) (n=0) and s,(z:7) (n=1) s
linearly independent as functions of z in the following sense: Let
Swo @, and >3, b, be arbitrary absolutely convergent real series.
Suppose that

i}ancﬂ(z: r) + i bus.(z:7) =0
7= n=1

on a nonempty open subset of N\ < |z| <1\ > 0) for any fived r
wm (N 1. Then, ay =a, =b, =0n =1).

6. We denote < |z2]| <1 by 2(\) and consider the Martin
compactification 2(\); of an relatively closed annulus 20\)\ > 0)
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with respect to 4u = Pu toward the ideal boundary [z| = \. As
usual, the Martin topology can be given by the completion of 2(\)
with respeet to the metric d defined by

— < 1 !K(zm Cl) _ K(zm CZ)I
(12) W &) = 2 o T K &) = Kz )]

for any {, and ¢, in 2(\), where {z,}5-, is any dense subset of A <
[z] <1. A point * in I'p, = 20\)% — £20\) is called minimal if
K(z,(*) is minimal in the half module .Z’(\) of the positive solu-
tions u of 4u = Pu on 2(\) with u =0 on |2z| = 1. Since a(P) > 0,
we can deduce by the same arguments as in [8] that each k(z, 6) is
minimal, and that k(z, ,) and k(z, 6,) are nonproportional for each
pair 6, # 6, in T by virtue of Lemma 2. Then, the relation between
k(z, 0) and K(z, (*) are given by

k(z, 0) = K(z, arg (C*))

for any (* in ', with 6 = arg n({*), where = is the homeomor-
phism of £2(\) onto the closed annulus A < |z| £ 1. Denoting by
(r, 8) the polar coordinate of a point { in M < |z] £ 1, the mapping
7.7 defines a homeomorphism of 2(\); onto a(P) <|z| <1, where
t is given by t(r,6) = 1 — M)A — a(P))r + a(P) — r]e?’. Thus
we have the counterpart of Theorem 5 in M. Nakai [8].

THEOREM 2. The Martin compactification 2(\)% of 20 > 0)
with respect to any rotation free demsity P(r) = 0 on 2(\) is homeo-
morphic to the closed annulus a(P) <|z] =1 in such a way that
every boundary point s minimal.

As an immediate consequence of Theorems 1 and 2, we have
dim Z\) =¢ (AW>0),

¢ being the cardinal number of continuum. Thus, we conclude:

COROLLARY. The Picard principle does mot hold on a hyper-
bolic end 2(\) (L > 0) for any nonnegative rotation free density on
200).

In contrast to A >0, dim .Z”(0) =1 or ¢ for any nonnegative
rotation free density P on 0 < |z| =<1 ([8]). Thus the comparison
of the elliptic dimension is meaningful for » = 0. As a byproduct
of Theorem 1, and Theorem 5 in [8], we have the following pro-
position which was shown as a consequence of the b-test by M.
Nakai [9].
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PROPOSITION 2. Let P and P, be any monnegative rotation free
densities such that P(r) < P,(r) on 0 < |z| =r £1. Then,

dim Z(0) < dim Z#(0) ,
where dim Z7(0) is the elliptic dimension of P, at |z| = 0.

7. Consider a nonnegative rotation free density P on 0<|z| <
1 which will be fixed in the sequel. Then beside the wth singular
index a,(P) (n=1) of ‘P at r =0, we can define the nth singular
index a,,(P) of P at r =X for any X\ in (0, 1), regarding P as a
density on A < 2] < 1. We are concerned with an interrelation of
the a,(P) at » = 0 and the a,,(P) at » = A. To avoid the confusion
in notations, we will denote any function f,(r:p) by f.(r:p) for
A >0 and f.(r: 0) for » =0 which are defined for a density P on
0 < |z| =£1. Likewise, I,; stands for the operator I, in no. 4 con-
sidered on \ < [z]| < p.

We consider the function v,,(r: ) and v,,(r: p) for any A, 7, and
o with 0 < M=% <p <1 Since I,v(2)= dv(z) + 2F log e,,(|z|: 0)-
Vo(z) — (n/|z])*»(z) = 0 on (%, ), we have by a direct computation

Lyhey(r: 0) = —[P(r) + V log ey (r: 0)-V log ey (7: 0)
+ mfrYhea(r: 0)] =0

and
Lyv.u(r: 0) = 27 log (ey(7: 0)/eu(r: 0))-Fv,:(r: 0)

on 7 < |z| < p. Then, since 1 = e,(r: 0)/eu(r: 0) = (€u(r)/en(1))/(ex(0)/
ex(0)) on [7, o], the function ey (r)/e,(r) is increasing on (7, 1) and
the same 1is true for e, (r:p)/ex(r:0) on (n,0). Consequently
Lywu(r:0) =0 on 7 <[z| <0 and hence I, (ehe(r: 0) + Vuy(1: 0) —
Va(r:0) =0 on 7 < |z| < p for every € > 0. Therefore it follows
from the maximum principle that

Va1 0) S vp(r:0)  (mz=1)

on (0, p) for any \,7, and o such that 0 <A =<9 < p <1l. Since

Van(12 0) = Vpy(1)/00(0)y Vua()Vu2(0) " = @uy(P)v,5(0)™" and by the mono-
tone increasingness of v,;(r), we have

(13) (P )0,(0)7 = Qun(PIvay(0)™0 (m = 1)

for any A, 7, and p with 0 <M= <p =1L

Let #,(r:0) be the continuous function on [0,1] defined by
D11 0) = vaa(r: 0) on (A, o] and 7,,(r: 0) = @,(P)v,(0)~* on [0, N] for
any N in (0,1). Since {7,,(r: 0)} forms a decreasing net as »—0,
the limit 7,(r: p) = lim,,, 7,(7: o) exists. On the other hand, the
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convergence of e,,(r:p)— e, (r:0) as A — 0 is uniform on [k, p] for
any k£ in (A, o) by virtue of the Harnack principle. Thus {7,,(7: o)}
converges uniformly to v.(r:p0) on [k, o] and 7,(r:p0) = v.(r: ) on
[£, o] for any £ such that 0 <\ < £ < p. By the unique solvability
of the Cauchy problem for I, on 0 < |z| < p (cf. no. 4) we have
Tu(r: ) = v(r: 0) on [0, p], setting »,(0, p) = @, (P)v,(0)"*. Then
lim;_, Ta(r: 0) = v,(r: 0), where {v,,(r: p)} converges monotone decrea-
singly to the function wv,(r:p) on [0, 0], and lim,., 7,(r:p0) =
a, (P)v,(0)™* exists. Hence, by the Weierstrass double convergence
theorem, we deduce that, for any ) in (0, p),

@u(P)v,(0)" = au(Pva(0)™

(14) . _ -
lim; o, (P)va(0)™ = au(Pva(0)™ (nz1).

Taking 0 = 1 in the above discussion, we summarize the result in:

THEOREM 3. Let P be any monnegative rotation free density on
0<|2|=1. Then, for any » and 7 with 0 <A <9 <1,

ay(P) = a,y(P), lim;,a.,(P)=a(P) (nz1).

8. Consider a net {\ < |z| < 1}4s, Which may be regarded as
a regular exhaustion of a parabolic end 0 < |z| < 1. The Green’s
functions of 4u = Pu on M < |[2] £1 and 0 < |2]| <1 with pole at {
are denoted by Gi(z, ) and G(z, {), respectively. We maintain that
for each @ fixed in T a net of minimal functions {k,(z, 6)} converges
to a minimal function %(z, §) uniformly on each compact subset of
0 < |z] £1. We first note that in view of (8) the following inequa-
lities are valid on 7 =< [2] <1 for any 7 with p<%: For n =
1,2, .-,

c(2, 0, N) = |c,(2: ) cos nba, (Plv.(0)™" — ¢, (z: p) eos nba,(Pv,.(0)7*],

8,(2, 0, N) = |8,(2: 0) sin nOQ,,;,(P)v,:(0)™ — 8.(2: 0) sin nfa,(P)v,(0)™"]
= (2log o7 )(@u(P)v,u(0)™ — a,(P)v.(0)™)

+ {21716z, 00 — 602, 06910 Jan(PYo (o)

We have from (7) that a,,(P)v.(0)" =(au(P)vu(e)™)" and a.(P)v.(0)™
S (@Pv(0)™)" (n=1). Then by (8) and (9), |Liz, 6:p)| =
4 (log ™)1 —ayu(P)vu()™) ™ and | L(z, 6: p)| =4(log 77)(1 — a(P)v,(0) ™)™
on 7 < |z| =1 which shows that both functions Lz, 6: p) and L(z,
0: p) converge uniformly and absolutely on 7 < |z| <1. Thus the
function | Ly(z, 0: 0) — L(z, 6: p)| is dominated by
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leo(2: 0) — co(2: 0)]/2 + g (cu(z, 0, N) + 5,(2, 0, \))

on 7 < |z| £1. Consequently, we have from the above estimates
that

| Li(2, 6: ) — L(z, 6: 0) |
< {—%SZﬁIGZ(z, 0e”) — G(z, pe”)|d0 }(1 Bl
T Jo

+ (410g 07) 3, @a(P).s(0)™ — @u(P)0,(0))

on 7 =[z| =1. Setting B,(\) = @u(P)v.(0)7 — a(Pv.(0)™, (13)
and (14) yield that B,(\) is a nonnegative function of N on [0, 1)
which tends monotone decreasingly to 0 as A — 0. Also, >, B.(\)
exists for each N\ in [0,1), since >., B.(\) = 2a(P)v..(0)"/(1 —
a,,;(P)vn;(p)‘l). Thus we have lim,, >,7., B.(A) = 0. On the other
hand, S zle(z, 0e’?) — G(z, pe®®)|df tends to 0 uniformly on 7 < |2|<Z1
as 7&—»6. Since 7 is arbitrary in (o, 1), we conclude that as A—0
a net {L,(z, 6. p)} converges to the function L(z, §: p) on each compact
subset of p < |z| =1 for each @ fixed in T.

The functions L,(z, 6: o) and L(z, §: p) are positive and finite on
7 =|2] =1 for any 7 in (0, 1) (cf. no. 5). Taking z,in7 < |2]| =<1,
the inequation

Ikl(z’ 0) - k(z7 0)‘ é Ll(zor g: ‘0)—1iL1(Z, 6: 40) - L(Z, 0. (O)l
+ L2, 0: 0)L(2,, 0: 0)7'M | L2y, 0 0) — Lii(2o, 0- 0)]

is valid on 7 < |z| £ 1, where M = max, <, |L(z, 6: 0)|]. As x—0,
{ki(z, 6)} converges to Kk(z, §) uniformly on 7 < |z| < 1. Since both
functions k;(z, 0) and k(z, 6) can be defined independently of the
choice of o as far as o < min (|2,], |2])(cf. no. 5) and 7 is arbitrary
in (0,1), a net {ki(2, 0)} converges to the function k(z, ) uniformly
on each compact subset of 0 < |z| <1. Thus we have:

THEOREM 4. Let P be any nonnegative rotation free density on
0<|z|=<1. Then, for each 0 fired in T, a net {kiz, O)}uss con-
verges to k(z, 0) uniformly on each compact subset of 0 < |z] =<1 as
A — 0, where k)(z, 0) and k(z, ) are minimal functions with respect
to dAu = Pu on W< |z]| <1 and 0 < |z] =1, respectively.
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