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A RADON-NIKODYM THEOREM FOR *-ALGEBRAS

STANLEY P. GUDDER

A noncommutative Radon-Nikodym theorem is developed
in the context of *-algebras. Previous results in this direc-
tion have assumed a dominance condition which results in a
bounded ‘‘Radon-Nikodym derivative’’. The present result
achieves complete generality by only assuming absolute
continuity and in this case the ‘‘Radon-Nikodym derivative’’
may be unbounded. A Lebesgue decomposition theorem is
established in the Banach *-algebra case.

1. Definitions and Examples. Although there is a considerable
literature on noncommutative Radon-Nikodym theorems, all previous
results have needed a dominance, normality or other restriction
[1-4, 7, 8,12,15-18]. Moreover, most of these results are phrased
in a von Neumann algebra context. In this paper, we will obtain
a general theorem on a *-algebra with no additional assumptions.

Let &7 be a *-algebra with identity I. A *-representation of
.57 on a Hilbert space H is a map 7w from .» to a set of linear
operators defined on a common dense invariant domain D(n) & H
which satisfies:

(@) z) =1

(b) 7w(AB)x = n(A)n(B)x for all xe D(x) and A, Be .%7;

(e) w(aA + BB)x = an(A)x + pr(B)x for all ze D), a, peC
and A, Be .57

(d) wA*)cw(A)* for all Ae.

The induced topology on D(w) is the weakest topology for which all
the operations {7(A): A€ .57} are continuous [13]. A *-representation
7 is closed if D(r) is complete in the induced topology. A *-repre-
sentation 7 is strongly cyclic if there exists a vector z, such that
(2 )x, = {w(A)x,: Ae .57} is dense in D(r) in the induced topology
[13]. We then call x, a strongly cyclic vector. Denoting the set of
bounded linear operators on H by < (H), the commutant w(.7)
of & is

(7)) ={Te w(H): (Tr(A)x, y) = (Tx, t(A*)yyA e .o7 x, y € D(x)} .
Let v and w be positive linear functionals on .©% A sequence

A, e.o7 is called a (v, w) sequence if

lim v(AfA4,) = lim w[(4, — 4;)*(4, — 4;)] =0.

100 1,

We now generalize various forms and strengthened forms of the
classical concept of absolute continuity.
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(1) w is wv-dominated if there exists an M >0 such that
w(A*A) £ Mv(A*A) for all Ae .o/

(ii) w is strongly v-absolutely continuous if for any (v, w)
sequence A;c . we have lim,,, w(4fA4,) = 0.

(iil) w is wv-absolutely continuous if v(A*A) = 0 implies that
w(A*A) = 0.

It is clear that (i) = (ii) = (iii). The following examples show
that the reverse implications need not hold.

ExampLE 1. Let (2,23) be a measurable space and let .7 be
the C *-algebra of bounded measurable functions on (2, 3) with || f||.. =
sup{| f(w)|: we 2}. Let v, and w, be probability measures on (2, Y)

and define the states »(f) = gfdfu1 and w(f) = Sfclwl on & It is

easy to see that w is v-absolutely continuous if and only if w, < v,
(i.e., w, is absolutely continuous relative »,). Now let H = L*(2, 3, v,)
and let 7: .7 — < (H) be the *-representation with D(x) = H defined
by [z(fgl(w) = f(w)g(w). Clearly, 7 is closed and strongly cyclic
with strongly cyclic vector 1.

Now suppose that w is v-absolutely continuous and let W be the
positive self-adjoint operator on H with domain

_ . (dw, |
D(W) = {geH.(dv) geHi
and defined by Wg(w) = (dw,/dv,)"(w)g(w), g€ D(W). Notice that
7 € D(W) since (dw,/dv,) e L2, ¥, v,). Moreover,

(LD w(f) = | faw, = | L fav, = (Wa(H)1, WD

for all fe.oZ The expression w(f) = (Wzn(f)L, W1) is equivalent
to the Radon-Nikodym theorem. It is this expression which we shall
generalize to the noncommutative case. We now show that w is
strongly v-absolutely continuous. Suppose f; €. is a (v, w) sequence.
Then f; — 0 in H and from (1.1) we have

Tim | WF, — W = lim (WU, — £, W(F = )
' = Tim (Wzl(f, — £)*(F, — F)IL, W1

4,§—00

=%1}_I}30W[(fz _f])*(fz _fj)] =0.

Hence, Wf, converges and since W is closed, we conclude that Wf;,—0
in H. It follows from (1.1) that w(f#f.) — 0. We thus see that (ii)
and (iii) are equivalent in this case.

Finally, suppose w is v-dominated. Then there exists an M >0
such that
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|, Lo, = w,(4) = witin) < Moxiz = Mo (4) = | Mdo,
for every AeX. Hence dw,/dv, £ M almost everywhere. Since the
converse easily holds, we see that w is w-dominated if and only if
w, € v, and dw,/dv, is bounded. In this case we have Wen(.%7).
This shows that (ii) need not imply (i) and (iii) need not imply (i).
Our results in §§2 and 3 will generalize the above considerations.

ExaAmPLE 2. Let .97 be the C*-algebra of continuous functions
on the unit interval [0,1] with the supremum norm and let g be
Lebesque measure on [0, 1]. Let v and w be the states on .&7 defined

by v(f) = Sfd/z and w(f) = f(0). Clearly, w is v-absolutely continuous.

We now show that w is not strongly wv-absolutely continuous. Let
f. €57 Dbe the function f,(x) = 1 — nx for x € [0, 1/n] and f,(x) =0 for
x€[l/n,1]. Then

lim v(f£f,) = lim -2 = 0

ne0 n-e 3N
and w[(f, — f)*(f, — fu)] = 0. Hence, f, is a (v, w) sequence. But
w(frf,) =1, so lim w(f¥f,) # 0. Thus (iii) need not imply (ii).

2. A Radon-Nikodym Theorem. If v is a positive linear
functional on a *-algebra .o7 then the GNS construction [10, 13]
provides a unique (to within unitary equivalence) closed *-represen-
tation 7, of .7 on a Hilbert space H, with a strongly cyclic vector
x, € H, such that v(4) = (m,(A)x,, x,» for all Aec.oZ We now give
our main result.

THEOREM 1. If v and w are positive linear functionals on a
*-algebra .7, them there exists a positive self-adjoint operator W
on H, and a (v, w) sequence A, € .7 such that

w(A) = (Wr (A)x,, Wy + lim w(A}A)

for every Aec .7

(a) w s v-absolutely continuous if and only if v(A*A) =0
implies w(AFA*A) =0 for every 1 =1,2, «--.

(b) w is strongly v-absolutely continwous if and only if w(A) =
Wz, (A)x,, W,y and

@.1) | Wr,(A)x, Wy) = Wz, Wr (A*)y)

for every Ae .7 and x, y € w(.7)x,.
(¢) w 1s v-dominated if and only if w(4A) = (Wz,(A)x, Wx,)
for every Aec .7, and Wien(. 7).
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Proof. Let H=H, n ==, x, and K,, 7,, x, be the Hilbert spaces,
closed *-representations and strongly cyclic vectors of the GNS
constructions corresponding to the positive linear functionals » and
v + w on .97 respectively. Let J be the unique contractive linear
map from K, into H satisfying Jz,(4A)x, = n(A)x, for every Aec .o/
Let P be the projection from K, onto K = (ker J)!. Let T-H — H
be the positive self-adjoint operator defined by 7T = JJ*. Then
ker T = (range J)" = {0} and hence S = T exists as a positive self-
adjoint operator on H. Since J is contractive, J < I and hence S = I.
Let W = (S — I)"*. Then

D(W) =D(S") = TV*H = JK .

(The first and second equality follows by the spectral theorem and
the third equality follows by the polar decomposition theorem.) By
the polar decomposition theorem, (S2J)*S"2J = P and hence P — J*J =
(W)*(WJ). Therefore,

w(A) = {7, (A)x, 2,) — {T(A)x,y, o)
=L (A)x,, I — P)x,) + {z,(A)x,, Px,) — {Jr,(A)x,, Jx.)
= (m(A)x,, I — P)x,) + {(WJrn,(A)x,, WJx,)
= LAm(A)x, (I — P)x,) + {Wn(A)x,, Wx,) .

(2.2)

Since {7, (A)x,: Ae .o} is dense in K,, there exists a sequene 4, € .97
such that =,(A4,)x, — (I — P)x,. Hence,

w(A)x, = Jr(A)x,— JI — P)x, =0
and
v(AFA,;) = (m(A)xy, T(A)x,) — 0.
Since 7,(A,)x, is Cauchy in K, we have

wl(4; — A)*(A; — A)] = [|m(Adx, — m (A, ]

2.3
@3) — [|w(A)x, — w(A ), [P —0 .

Therefore, A, is a (v, w) sequence. Moreover, since |v(AFA)| <
V(AFA)*v(A*A)* we have lim v(AFA) = 0 for all Ae.»Z Hence,

w(A) = (Wr(A)x,, Wa,) + lim (z,(A)x,, 7,(A)x,)
= (Wr(A)x,, Wx,» + lim w(AFA) .

(a) For sufficiency, if v(4*A) = 0, then
lm(A)x,||? = v(A*A) = 0 and lim w(AfA*A) =0

and hence, w(A*A) = 0. For necessity, if w is v-absolutely continuous
and v(A*A4) = 0, then
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[W(AFA*A)| < w[(AA)*AA ] Pw(A*A)”? =0 .

(b) For sufficiency, let A;e.2” be a (v, w) sequence. Then
w(A,)z, — 0 and hence,
| Wr(A)z, — Wr(Aj)z,|[*

={(Wrn(A, — A)x,, Wr(4A, — A;)x,

= <W7t[(Ai — A)*(A; — Aplx,, W)

= w[(4; — 4)"(4; — A)]— 0.
Hence, Wr(4,)xz, is Cauchy and since W is closed, Wzn(4,)x, — 0. It
follows that

w(AFA) = A Wr(AFA)x, Wayy = ||Wr(A)w,|>— 0

and w is strongly wv-absolutely continuous.

For necessity, suppose w is strongly v-absolutely continuous. We
first show that J: K, — H is injective. Suppose xzc K, and Jx = 0.
Let A,c.97 be a sequence satisfying m,(4,)x, > x. Then

w(A)x, = Jr,(A)x, — Jx =0 .,
Hence, v(4}A,) = ||m(A)x,|* — 0. Since 7,(A,)x, is Cauchy as in (2.3)
we have w[(4; — A;)*(A, — A;)] = 0. Thus, A, is a (v, w) sequence
and w(A4FA,) — 0. Hence
|7 (A, |[* = w(AFA;) + v(AFA;) — 0
so that «,(4,)x, — 0 and x = 0. It follows that ker J = {0} and hence,
P = 1. Applying (2.2) we obtain w(A) = {Wrn(A4)x,, Wz,). To prove
(2.1), applying (2.2) we have
(Wrn(AB)x,, Wx,) = w(AB)

= (Ty(B)w,, T,(A")2,) — {7(B)xy, T(A*)2s)

= <(I - J*J)EL(B)'WU ﬂx(A*)x1>,

= <( WJ)*( WJ>7t1(B>xu ﬂl(A*)x1>

= (Wn(B)x,, Wr(A*)x, .

If « = n(B)x,, ¥y = 7(C)x, € m(.7)x, we obtain

(Wr(A)x, Wy) = (Wr(AB)x,, Wr(C)w,)
= A Wr(C*AB)x,, Wx,y = {Wa(B)x,, Wr(A*C)x,»
=Wz, Wn(A*)y) .

(¢) The following proves sufficiency

w(A*A) = {Wr(A*A)x,, W,y = {Wa(A)x, Wr(A)x,)
= [|[Wr(A)z, [P < [[WIPln(A), [P = [| WIfv(A*4) .
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For necessity, suppose w is v-dominated. Then w is strongly o-
absolutely continuous so (b) holds. Applying (2.1) thereisan M >0
such that

IWr(A), |[F = (Wr(A)w,, Wr(A)z,)
= (Wrn(A*A)x,, Wx,) = w(A*4A) < Mv(A*A)
= M| z(A)m |

for every Ae .o Hence, W is bounded on 7(.%)x, and since W is
self-adjoint, We < (H). It follows from (2.1) that

(2.4) Wn(A)x, yy = (W, n(A*)y)

for all Ae.v x,yen(¥)x,. Since D(x) is the completion of 7(.o7)x,
in the induced topology [10], if ¥ € D(x) there exists a net ¥, € ©(.¥)x,
such that y, — v in the induced topology. Hence,

Wa(A)e, y) = lim (Wa(A)z, yo)
= lim (W', m(A%)y.y = (W, (A*)y)

for every y e D(x), x e n(.)x,. Reasoning in a similar way for xz, we
conclude that (2.4) holds for all x, y € D(x). Hence, W*en(.7)'.

3. Banach *-algebras. In this section we apply the material
of §2 to obtain much stronger results on Banach *-algebras. When
we speak of a *-representation m of a Banach *-algebra on a Hilbert
space H we always mean a bounded representation; that is, 7: & —
Z(H). The commutant of 7(.%7) now satisfies

() ={Te LH): Tn(A) = n(A)T for all Ae.%}.

If v and w are positive linear functionals on a *-algebra .o/ we
say that w is v-semisingular if there exists a (v, w) sequence A, € .&7
such that w(A) = lim w(4}FA) for every Ac .o/ Notice that if A4;¢
&7 is a (v, w) sequence, then lim w(AFA) automatically exists for
every Ae .

COROLLARY 2. If v and w are positive limear fumctionals on
a Banach *-algebra &7 with identity them there exists a positive
self-adjoint operator W on H, which is affiliated with 7,(.%) and
a (v, w) sequence A, €. such that

w(A) =z (A) Wx,, Wa,) + lim w(AFA)

for every Ae
(a) w 1s v-absolutely continuous if and only if the positive
linear functional A lim w(AFA) is v-absolutely continuous.
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(b) w s strongly v-absolutely continuous if and only if w(4d) =
{m(A)Wax,, Wxy) for every Ae .

(e) w is v-dominated if and only if w(4) = {7, (4A) Wz, Wx,»
and W is bounded.

Proof. For the first statement of the theorem we need only
prove that W is affiliated with 7,(.%) and apply Theorem 1. From
the proof of Theorem 1, J intertwines the representations z, and «
and hence Ten(.). Since W = (T — I)~2, it follows that W is
affiliated with n(.%7)'. Parts (a), (b), and (c) are a straightforward
application of Theorem 1.

Corollary 2 (c¢) is a classical result [5, 9, 11]. We next prove a
noncommutative analogue of the Lebesque decomposition theorem.

COROLLARY 3. Let v and w be positive linear functionals on a
Banach *-algebra .7 with identity. Then w admits a decomposition
w = w, + w, where w, 1s strongly v-absolutely continuous and w,
18 v-semisingular. Moreover, w s v-absolutely continuous if and
only if w, is v-absolutely continuous.

Proof. Let w,(4) = {w,(A)Wx, Wx,) and w,(A) = lim w(A4}A) for
all Ae. as in Corollary 2. Then w, and w, are positive linear
functionals and w = w, + w,. It follows from Corollary 2 (b) that
w, is strongly v-absolutely continuous. We now show that w, is
v-semisingular. Since A,€ .97 is a (v, w) sequence and w,, w, = w,
we conclude that A, is both a (v, w,) and (v, w,) sequence. Since w,
is strongly wv-absolutely continuous we have

[w(AFA)| = w(AFA ) w,(A*A)/ —— 0
for all Ae.»” Hence

w,(AFA) = w(AFA) — w,(AFA) — w,(4)
for all Ae.o” so w, is v-semisingular.

We have not been able to prove uniqueness for the above decom-
position. However, if w = w, + w, where w, is strongly v-absolutely
continuous, w, is v-semisingular and w, has the same “support” as
w, (that is, w,(4) = lim w,(AFA) for all A€ .%), then w, = w,, w, = w,.

Indeed, then A, is a (v, w) sequence and hence, w,(4Ff4) — 0 for all
Ae .7 Therefore,

wy(A) = lim w,(AFA) = lim w(A}A) = w,(4)
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for all Ae. &% Thus, w,=w, and w, = w — W, = W — W, = W,.

The v-semisingular functional w,(A) = lim w(A}A) in Corollary 2
can be put in the form w,(A) = lim w(A}FAA,) which exhibits its
positivity directly. The reason for this is that z,(A): ker J — ker J
in the notation of Theorem 1. Indeed, suppose Jy = 0 and let B; ¢
& satisfy 7 (B,)x, —y. Then

n(B)x, = Jr(B)w,— Jy = 0.

Hence,

Jr,(A)y = lim Jr,(AB,)x, = lim n(AB,)x,
= w(A) lim #(B,)x, = 0 .

It follows that Px,(A) = 7,(A)P for all Ae.o% Applying (2.2) we have
wy(A) = (m(A)I — P)z, (I — P)x,) .

Hence,
wy(A) = lim {7 (A)r,(A)x,, T (A)r) = lim w(AFAA) .

Example 2 of §1 gives an illustration of Corollary 3. In this
example, w is v-absolutely continuous. Even though w is v-absolutely

continuous, w is quite singular relative to ». In fact, w(f) = S fdpy,

where p, is the probability measure concentrated at 0, and g, and
¢ are mutually singular measures. We showed in Example 2 that
fi: is a (v, w) sequence. Moreover, w(f) = lim w(f}f) for all fe .o~
Hence, in this case w = w, and w, = 0.
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