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ON COMPACT SUBMANIFOLDS WITH NONDEGENERATE
PARALLEL NORMAL VECTOR FIELDS

V. I. OLIKER

In this paper we obtain characterizations of spherical
submanifolds in Euclidean space of codimension ^ 1 . Such
characterizations are given here in terms of certain rela-
tionships involving the elementary symmetric functions of
principal radii of curvature and the support function of a
submanifold.

1. Introduction* For hypersurfaces similar characterizations
are well known. For example, let M be a closed convex hyper sur-
face in Euclidean space, h the support function of M, and Si the
elementary symmetric function of order I of principal curvatures.
It has been proved by several authors (see Simon [8], and further
references given there) that if for some integer 1(1 <£ I <; dim M)
everywhere on M hιSι = const, then M is a hypersphere. Other
results of this type are also known [8], [9].

Our proofs are based on a differential analogue of the Min-
kowski-Hsiung formulas, relating the support function and elemen-
tary symmetric functions of various orders of the principal radii of
curvature. Those formulas are obtained for submanifolds which
possess a nondegenerate normal vector field parallel in the normal
bundle.

Finally, we note that characterizations of spherical submanifolds
in terms of the elementary symmetric functions of principal curva-
tures are obtained by Chen [2] and Chen and Yano [4] (see also Chen
[3], Chapter 6).

The author wishes to thank the referee for useful comments.

2* Preliminaries* In this section we shall present local formulas
relating the second fundamental form and the support function of a
submanifold in Euclidean space. We shall use the following conven-
tion on the ranges of indices:

1 ^ i, j9 k, I, r <i m , 1 ^ a ^ n ,

and as usual, it is agreed that repeated lower and upper indices are
summed over the respective ranges. We denote by E the Euclidean
space of dimension m + n, and we fix the origin at some point 0.
Consider a smooth, orientable submanifold M of dimension
immersed in E, and represented by the position vector field
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X = X(u\ - - - , u m ) ,

where {u1} are the local coordinates on M. Let a; be a point of M.
We denote by TJJd) a n ( i NJM) the restrictions of the tangent
bundle T(M) and normal bundle N(M) at x.

Put

x, = d,x, 3, = d/du*.

The metric I, or the first fundamental form induced on M from
E via X, is Gti = (Xif Xj), where <,> denotes the inner product in
E. Let ζ be an arbitrary unit normal vector field defined in a
neighborhood U of xeM. The second fundamental form at x with
respect to £ is II(ξ) = buffidufdu3', where δ<y(£) = — <X*, £y>. Let ^ be
a unit normal vector field in U not necessarily different from £.
The mixed third fundamental form is ΠI(ξ, TJ) = gtj(ξ, ifidvfdu*, where
βaiξf V) = <&, 7i> We write ///(£) = ///(ί, f), and Λ j(f) = Λy(ff f).
Evidently, ^ 3 (f, 7̂) = ^(17, £), but, in general, no other symmetries
exist. For a unit normal vector field ζ e N(M), h(ξ) denotes the sup-
port function of M with respect to ξ, that is, h(ξ)=—(X, £>.

Recall that a nondegenerate normal vector field on M is a unit
normal vector field ξ such that άet(btj(ξ)) Φ 0 everywhere on M (see
[2], and also [3], p. 59).

Vectors {X%) form a basis in TX(M), xeM, and we denote by
{N{a)} a field of orthonormal frames in N(M). Put

Xti = d^-X", 3<y = d'/du'd^ .

At first we note that &4i(£) = (Xίj9 ξ>, and 64i(f) = bjt(ξ) for a
unit normal vector field ξ. Also, fty(f) = — <f*y, f > = £#(£). Suppose
that ί is parallel in N(M), that is, &e Γ(Λf), ΐ = 1, •••, m, every-
where on ikf, and let η be an arbitrary unit normal vector field on
M. Then giS(ξ9 η) = - <fiy, )?> - gJt(ξ, η).

In the frame Xu •••, XTO, i\Γ(l), •••, N(ri) we have for an arbit-
rary unit vector field ζeN(M):

( 1 ) & = - W(£)X, + Σ <&, N(a))N(a) ,

where 6{(f) = bu(ξ)Glύ, and GIy being the inverse of G z i. From here,
for two unit normal vector fields £ and η, we find

(2 ) fty(£, 17) - bmKAV) + Σ <£„ NWyfyj, N(a)) .

If £ or Ύ] is parallel, then

(3) Λ i (£, 7) - 6ί(£)δri(7) .

Note that when ilί, £ and η are such that //(£) and II(rj) are positive
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definite then so is III(ζ, rj). However, the form IΠ{ξ) is nonnegative
definite for an arbitrary II(ζ). If ξ is nondegenerate everywhere on
M, then IΠ(ξ) induces a Riemannian metric on M. We denote by
dθ(ξ) the corresponding volume-element. From formula (1) it fol-
lows that if ξ is nondegenerate and parallel, then vectors {fj form a
basis in TX(M), xeM, and according to the Gauss equation we have:

(4 ) ξti = n (ί)f* - Σ Λi(& N(a))N(a) ,
a

where Γϊs(ξ) denote the Cristoffel symbols of the second kind with
respect to III(ζ).

When ξ is nondegenerate, then translating it parallel to itself
in E to the origin 0 we can define an immersion yξ:M->Σ, where
Σ is a unit hyper sphere in E centered at 0. In codimension one Ύζ

is the standard Gauss map.

PROPOSITION 2.1. Let M be a submanifold of E and ξ a non-
degenerate parallel normal vector field on M. Then yξ is an iso-
metric immersion of M with the metric III{ξ) into Σ.

Proof. Let the symbol ^ denote an immersion, and —> a pull-
back of the mertic from the ambient space. Then the following
diagram is commutative in ^ and ->.

where σ is the standard imbedding of Σ in E, and g is the metric
induced on Σ from E. The Proposition is proved.

For convenience we write h(a) = h(N(a)). The position vector
field X of a submanifold M can be decomposed into two parts:

(5) X=XT + XN,

where Xτ e T(M), XN e N(M). In the frame Σlf X2, , Xm9 JV(1), ,
N(n) we have
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If ξ is nondegenerate and parallel, then from (1) we see that

(7) X r = - *

where gi3\ζ) are the elements of (g(j(ξ))~\ and /&,(£) = dth(i)-
Put

hti(ξ) =

Under the above assumptions on ξ we obtain with the use of (4)

(8) b(i(ξ) = Fτjh(ξ) + Σ gti(ξ, N(a))h(a) .
a

3* The elementary symmetric functions of principal radii of
curvature and the associated differential equations* Let ξ be a
unit normal vector at a point xeM. The principal radii of curva-
ture associated with ξ are denoted by Rξl, -—,Rξm and defined as
the roots of the determinantal equation

det(6<y(ί) - Rgi5{ξ)) = 0 .

If ζ is a restriction to x of a nondegenerate vector field, then III(ξ)
is positive definite, and in this case the RH are well defined. More-
over, in this case they do not vanish. Let g(ξ) = det(fjr<y(f)). The
elementary symmetric function of order k in RH (nonnormed)

= Σ

and it is the coefficient at { — R)m~k of the polynomial

( 9 ) detfojte) -Rgi3{ξ)) = ^ R ) m + Sξί(Rχ-R)»-i + ... + Sξm(R) .
(ξ)

Set atj(ξ) = δij Cf) — ̂ gij(ξ), where λ is real. Consider a poly-
nomial in λ defined by the equation

(10)

where α̂ X J) is the cofactor of the element <%(£).

PROPOSITION 3.1. Lei M be a submanifold of E and ξ is a paral-
lel unit normal vector field defined in a neighborhood of xeM and
such that II(ξ)>0 at x. Then the quadratic forms SYkvtvjf k=2, , m,
are positive definite at x. Here vu

 # ,vm are arbitrary real para-
meters, v2 = v\ + v\+ +i4 Φ 0. If M is compact, ξ is defined on
M, parallel, and II(ζ) Φ 0 everywhere on M, then those quadratic
forms are definite everywhere and by selecting a proper orientation
of M and E, they can be made positive definite. When k — 1 this
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assertion is true under the only assumption that ξ is parallel and
nondegenerate.

The proof of this Proposition is standard and we omit it here.

Suppose now that £ is a nondegenerate parallel vector field.
Then in view of (8), (9), and (10) we put

Qn = 4 τ Σ S*igt&, N(a))h(a) ,

(11) Mξk{h) = Pξk(h) + Q ί fc .

It is not difficult to see that

(12) Mξk(h) = kSξk(R) .

PROPOSITION 3.2. Let M be a submanifold of E and ξ a non-
degenerate parallel normal vector field defined in a neighborhood of
xeM. Then

(13) Qn = (m-k + l)Sξk^(RMξ) + (Hξk, X) , (Sξ0 = 1) ,

where Hξk is a uniquely defined vector in N'X(M) = NX(M) Q ς in-
dependent on the choice of basis in NXM). If k — 1, then —Hξl is
the m times mean curvature vector of the submanifold Ίξ{M)c:Σ.

Proof. Since ξeNx(M), we can select an orthonormal basis in
NX(M) so that 5 is one of the vectors in this basis. Let us preserve
the old notation for the new basis, and let ζ = N(l). Then

Q;-k = ψrg^ζMζ) + Σ -ψ-gi3iζ, N(a))h(a)

= (m - fc + l)S,URMζ) - ( Σ -%Λi(£ N(a))N(a), X
\ ^ g(ξ)

The form —(Sii/giξ^g^ζ, η), where ηeNx(M), is linear in η. There-
fore, there exists a unique element Hζk in NX(M) such that

flr(ί)

for any ηeNx(M). (Strictly speaking, the inner product in the last
formula should be taken in NX(M). But it is induced in NX(M)
from E, and, therefore, it is the same in either sense.) Thus, we
conclude that
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- ( Σ -^-Λifo N(a))N(a), x) = <Hζk, X) .

The rest of the Proposition follows from Proposition 2.1 and
the fact that

This completes the proof.

COROLLARY 3.1. Let M be a submanifold of E and ξ a non-
degenerate parallel vector field on M. Then (13) holds everywhere
on M and

Mξk = Pξk{h) + (m - ft + l)Sn^(EMS) + (Hζk, X)
(14)

for all x e M .

REMARK 1. The functions (Hζkf X) are similar to the functions
Fk(ξ) constructed in [4]. However, the latter are related to principal
curvatures and depend on the first and the second fundamental
forms, while (Hξk, X) depend on the second and the third funda-
mental forms in the direction ξ. It is not difficult to point out
situations where Hξk or {Hξk, X) vanish. For example, if dim E—
dim M = 1, then Hζk = 0 for all k. Another example is when the
normal component of X has the direction ξ. Then h(a) = — (X, N(a)) Ξ= 0
for a = 2, •••, m. In these examples the functions Fk(ξ) introduced
in [4] also vanish. One more example is given by the case where
ΠI(ζ, N(a)) ΞE 0 for a = 2, . . . , m, (N(ΐ) - ς).

REMARK 2. Let ikί be a submanifold of E and ξ a nondegenerate
parallel normal field on M. Let / and / ' be two smooth functions
defined on M, Put

f, N(a)KX, N(a)) .
a

Similarly to (9), (10), construct S?k(f) and consider

, f) = -j-r StMFvf + { m - k + 1] MζkM, f)Γ
g(ξ) fc -1

for k>l,

Mζι{f, f) = g«{ξ)ΓtJf' + mf + (Hu{f), X) , for k - 1 .

These differential operators proved to be useful in the study of
uniqueness Theorems for convex hypersurfaces in Euclidean space
[7]. (In this case they are elliptic, and the last term in the right-
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hand side vanishes.) It is plausible that they have applications in
establishing uniqueness Theorems for submanifolds of E in codi-
mension > 1 . We hope that we come back to it again elsewhere.

4* Applications* We begin with a slight generalization of the
formula (14), which leads to an integral formula relating the ele-
mentary symmetric functions of arbitrary order. This formula is
of Minkowski-Hsiung type, and in the form involving two consecu-
tive elementary symmetric functions of principal curvatures it was
derived and studied by many authors (see Chen and Yano [4], and
also [3], Chapter 6; in both sources further references can be found).
However, the methods of those authors do not seem to generalize
so as to obtain the following formulas (16) and (17).

In what follows, unless stated otherwise, it is assumed that M
is a compact submanifold without boundary.

The following Lemma is a version of E. Hopf's Lemma on
Laplace-Beltrami operator.

LEMMA. Suppose that M is a submanifold of E, ξ is a non-
degenerate parallel normal vector field on M, and hf is a smooth
function on M. Put

•Lζk\h ) Ξ —•—&ξkFijh ,

where the coefficients SH are the same as in (11). Then

(15) Pα(fc') =

If k — 1 and, in addition, we assume that Pςk(hf) does not change
its sign on M, then hf is a constant function on M. The same is
true when k>l provided there exists at least one point on M where
Π(ξ) Φ 0.

Proof. It is easy to see, with the use of formula (4), that biS(ξ)
is a Codazzi tensor with respect to Γ •>(£). Therefore, Pξk(h') can be
written in the divergence form (15) (see [5, 7]). When k > 1 and
II(ξ) Φ 0 at some point of M then II(ξ) Φ 0 everywhere on M because
ξ is nondegenerate. By Proposition 3.1 the operator Pζk(h') is uni-
formly elliptic. Now the rest of the proof runs similarly to the
standard proof of E. Hopf 's Lemma on the Laplace-Beltrami operator
on a compact Riemannian submanifold ([6], p. 338). The Lemma is
proved.

THEOREM 4.1. Let M be a submanifold of E and ζ a nonde-
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generate parallel normal vector field on M. Then for arbitrary ft
and s, ft = 1, , m, s = 1, %,--,k,

(16) kSξk(R) = g (m -fc + 0! ( f c - l - l ) ! [ p ( f c ) + <H

ι=o (m — k)\ (ft — 1)!

, (m- k + s)\ (k
"Γ ;(m — ft)! (ft — 1)!

ft( Sξh(B)dO(ξ)

l:S7\ <
! (ft — 1)! J^

)! J^

(m — ft)! (ft —

where h = h(ξ) is the support function of M with respect to ξ.

Proof. Formula (16) follows from the formulas (12) and (14);
and (17) is obtained from (16) by integrating, applying Green's
formula, and the preceding Lemma.

COROLLARY 4.1. // in Theorem 4.1 s = ft, then

(18) k\ Sξk(R)dO(ξ) = (m - ft + 1) ί Sn^(B)h(ξ)dO(ξ)

+ \ (Hm X}dO(ξ) .
JM

This formula is an analogue of an integral formula due to Chen
and Yano [4].

We recall that if a submanifold M (not necessarily compact) of
E is contained in a hypersphere of E centered at the origin, then
it is called a spherical submanifold (see [2]).

In the following we often make use of a Theorem due to Chen
[2].

THEOREM A. Let M be a submanifold {not necessarily compact)
of E. If there exists a nondegenerate parallel normal vector field
ζ such that h(ξ) = const everywhere on M, then M is a spherical
submanifold of Έ.

From now on always when ft > 1 it is assumed that there
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exists a point on M where II(ζ) Φ 0, and the orientation is such
that II(ξ) > 0.

Examples of submanifolds with this property can be constructed
as follows. Let Mx and M2 be two strictly convex hyper surf aces.
Then the natural imbedding of Mί x M2 in Euclidean space of di-
mension = dim Mx + dim M2 + 2 gives such example.

The next Theorem is an immediate consequence of formulas (12),
(14), the Lemma, and Theorem A.

THEOREM 4.2. Let M be a submanίfold in E and ξ is a non-
degenerate parallel normal vector field on M. Assume further that
for some k, k = 1,2, , m, at every point of M

(19) cSξ1c(R) = SnΛRMξ) (Sξ0 = 1) ,

where c is a constant such that the expression

[k-c(m-k + l)]Sn(R) - (HζkfX)

is either nonnegative or nonpositive. Then M is a spherical sub-
manifold.

Proof. In the formula (16) set 8 = 1. Then by (19)

[fc - c(m - fc + ΐ)]SM - (Hζk, X) = Pn(h) ,

and the Theorem follows from the Lemma and Theorem A.
In case i = l a result similar to this Theorem has been given

by Wegner [9], Satz 2. His result can be also obtained by our
method, and furthermore, it can be generalized for k > 1.

Let M = Sm, where Sm is a standard m-sphere lying in
m + 1-dimensional Euclidean space Em+1aE. Then, evidently, Hζk^0
for all k, and ξ is the unit normal vector field on Sm in Em+1. With
this fact in mind we state the following

COROLLARY 4.2. Let M be a submanifold of E and ξ a non-
degenerate parallel normal vector field on M. If for some
k, k = 2, , m, at every point of M

(Hζk, X) - 0 ,

and

cSξk(R) = S

where c is a constant Φΰ, then M is a spherical submanifold. Fur-
thermore, in this case it is necessary that c = kf(m — k + 1). The
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assertion is also true when k = 1, provided II(ζ) Φ 0 at some point
of M.

Proof. We show at first that the function Sξk(R) does not
change its sign on ikf. Let A be a point on ikf where II(ξ) is definite.
Then the principal radii of curvature Rξi9 i = 1, •••, n, must all be
of the same sign at A. Since ξ is nondegenerate Rζί will all have
the same sign everywhere on ikf. Hence, the function Sξk(R) can
not change its sign on ikf, and moreover it does not vanish on ikf.

Now it is clear that the expression

[k - c{m - k + ΐ)]Sξk(R)

is either nonnegative or nonpositive and therefore by Theorem 4.2.
M is a spherical submanifold. On the other hand,

ί Sξk{R)dO(ξ) Φ 0

hence, the formula (18) implies that c = k/(m — k + 1). The Corol-
lary is proved.

A Theorem similar to Theorem 4.2 can be stated with the use
of Theorem 4.1.

We point out only a particular case of it.

THEOREM 4.3. Let M be a submanifold in E and ζ a nonde-
generate parallel normal vector field on M. Suppose that for some
k and s, k — 1, , m, s = 1, , k, the following conditions are
satisfied'.

(a) kSίk(R) 2> (TO ~ k + f} {k f)!f;7 f S
(m — k)\ (k — 1)!

(b) ( <£Γ«_lf X}hι(ξ)dO(ξ) ^ 0 for I = 0, - , s - 1

(c) h(ξ) > 0 .

Then M is a spherical submanifold.

Proof. The conditions (a), (b), (c) and Proposition 3.1 imply that
all integrals in formula (17) must vanish. Hence h(ζ) = const, that
is, ikf is a spherical submanifold.

THEOREM 4.4. Let M be a submanifold in E and ξ a nonde-
generate parallel normal vector field on M. Suppose that for some
k and s, k = 1, , m, s — 1, •••,&, the following conditions are
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satisfied:
(a) cSζk(R) = Sζk__s(R)hs(ζ) everywhere on M, where c is a con-

stant Φ 0;
(b) (Ha_lf X) - 0 for I = 0, ., s - 1;
(c) h(ζ)>0.

In case ft = 1 assume also that Π(ξ) Φ 0 at some point of M.
Then M is a spherical submanίfold and c = (m—fc)!fc!/(m—fc + β)!

(ft - s ) ! .

Proof. At first we show that c can have only the value indicat-
ed in the assertion. In showing that we follow Blaschke [1], p. 233.
Let A be a point on M where h(ζ) ( = h) attains its maximum. Then
at A,

V^h ^ 0 .

By Proposition 3.1 the forms Sγkvtvif k = 1, •••, m, are definite, and
therefore at the point A the expressions

± ftjh I = 0, 1, . , k - 1 ,

are all of the same sign, and namely nonpositive. On the other
hand, by Theorem 4.1 (formula (16)) in view of the conditions (a)
and (b), we obtain

Γ * -
(m - ft)! (ft - 1)!

— v" ( m ~~ ̂  + I)! (k — I — 1)1
ι=o (m — ft)! (ft — 1)!

The right-hand side is nonpositive at A, and similar to the proof
of Corollary 4.2 one shows that Sζk(R) > 0 everywhere on M.
Therefore,

('/yy* _ L I Λ ^ t / Jj» Λ N I

(m -ft) ! (ft - 1 ) ! ~

Considering the point where h attains its minimum we arrive at
the opposite inequality. Thus, c = (m — ft)! ft!/(m — ft + s)\ (ft — s)!.

Now, making use of the second part of Theorem 4.1 (formula
17)) and the conditions (a), (b), (c) with constant c taken as above,
we obtain

(m — ft)! (ft — 1)!
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From here, it follows that h = const. Hence, M i s a spherical sub-
manifold. The Theorem is proved.

COROLLARY 4.3. Let M be a closed strictly convex hyper surf ace
in Euclidean space E and ξ is the unit normal vector field on M.
Suppose that for some k and s, k = 1, , m, s = 1, •••,&,

cSk(R) = Sk_s(R)hs(ξ)

everywhere on M, where c is a constantΦθ. Then M is a hyper-
sphere, and c is as in Theorem 4.4. (In the last equality the sub-
script ξ is omitted for the obvious reason.)

Proof. For a hypersurface in E, ξ is always parallel, and since
M is strictly convex, ξ is nondegenerate. Also Hζι ΞΞ 0 for
I = 1, , k. The support function h(ζ) can always be made strictly
positive by placing the origin of the coordinate system in E inside
M. Now the Corollary follows from Theorem 4.4.

REMARK 1. As was mentioned in the introduction, this Corol-
lary is known. In particular, the condition quoted earlier can be ex-
pressed in terms of the elementary symmetric functions of principal
radii of curvature as follows:

cSm(R) - Sm_s(R)hs(ξ) .

If in Corollary 4.3 we take k — m, then we obtain the above result.
It is due to Suss; see [8], Korollar 6.3, and other references there.

REMARK 2. Theorem 4.4 does not contain Corollary 4.2, since
in the latter it is not required that h(ξ) > 0.
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