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STABILITY CONDITIONS FOR NONLINEAR
PRODUCTS AND SEMIGROUPS

ERIC SCHECHTER

Let D be a subset of a Banach space. Suppose R(t):
Zλ->Z)(£ 0̂) is an "almost-semigroup," in the sense that
R(t)R(s) is close to R(t+$). If R also satisfies certain
stability conditions, then R(t/n)n converges to some semi-
group S(t) as n—>oo. The stability conditions are motivated
by several examples involving nonlinear partial differential
equations.

1* Introduction* Let D be a subset of a Banach space. By
a transformation on D we shall mean a one-parameter family of
mappings

S(t):D >D it ^ 0)

(not necessarily linear or continuous), such that

S(0)f = f for all feD.

S is a semigroup if in addition

S(t + s)f = S(t)S(s)f ( ί , 8 ^ 0 ; / e ΰ ) .

(This notation is essentially that of [4]. Numerous variants exist.
For instance, in [3], such an S is referred to as a "semiflow";
the term "semigroup" is reserved for the linear case in that paper.)

In this paper and in [9], we shall consider the following problem:
Let S± and S2 be semigroups on D. Give sufficient conditions for
the existence of a semigroup S on D such that

(1.1) S(t)f = lim [SMrήSMri)]*/ (t ^ 0, fe D) .
ίl—>oo

Equation (1.1) is commonly known as the Trotter product formula,
because of Trotter's results for linear semigroups in [12].

The product problem generalizes as follows: Investigate the
conditions under which a transformation R and a semigroup S
satisfy

(1.2) S(t)f = lim R(t/n)nf it ^ 0, fe D) .

The Lax Equivalence Theorem of numerical analysis takes the form
(1.2) with R and S linear; see [5]. The Crandall-Liggett exponen-
tial formula for nonlinear semigroups is of the form (1.2) with R(t)
equal to (I + tA)~\ the resolvent of an operator; see [4]. Equation
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(1.2) was investigated in greater generality by Chernoίf in [2].
In most applications of (1.1), the semigroups Slf S2 and S are

generated (in some sense) by some operators — Al9 — A2, and — Aι

— A2, respectively. Then the initial value problems for the differen-
tial equations

(1.3)

(1.4)

(1.5)

have

(1.6)

solutions

u(t) = S,(ίW0) ,

n\t)

v\t) -

w'(t)

, v(t)

+ AMt) = 0

4- Atv(t) = 0

+ (A + A2)w(t) = 0

- SJt)v(0) , w(t) = S(t)w(0)

Many equations arising in physical applications are of the form (1.5)
where Ax + A2 is the sum of two simpler operators, e.g., a linear
operator and a continuous operator. Therefore it is desirable to
reduce some questions about (1.5), e.g., existence and regularity of
solutions, to questions about the simpler equations (1.3) and (1.4).
This can often be accomplished using (1.1).

In [6] and in Theorem 5.3 of [3], the following result (roughly)
is shown: Let R(t):D—>D be a transformation satisfying certain
stability conditions. Suppose that

(1.7) -β'(O) = —A (in an appropriate sense), and

(1.8) R is an almost-semigroup, i.e., R(t + s) is close to R(t)R(s).

Then there exists a semigroup S such that S'(0) = — A and R(t/ri)n->
S(f). In the present paper, we shall show that hypothesis (1.7) can
be dropped, and (1.8) can be weakened slightly.

For practical purposes it is preferable to drop (1.8) and assume
some variant of (1.7). In [6] it is shown that if S^t) and S2(f) are
sufficiently smooth semigroups satisfying

(1.7') 5/(0) + S2'(0) = - A ,

then R(t) = S^S^t) satisfies (1.7) and (1.8), and hence (1.2). In
[9] we shall weaken the smoothness hypothesis on Sx and S2.

This is the first of several papers dealing with the above pro-
blems and several closely related problems in one abstract frame-
work. In the present paper, we shall deal with the simplest part
of the theory, i.e., that part which does not involve generators.

In §§ 2-4 below, we give some examples to motivate our stability
conditions. In § 5 we state the main results of this paper; the
abstract framework [given there will also be used in [9] and [10].
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Proofs are given in § 6.
In [9] we shall introduce generators, and prove a version of

(1.1) which can be used to show existence and regularity of solutions
to (1.5). Also in [9], we shall give some additional historical back-
ground and applications.

The framework developed here has other uses as well. In [10]
we shall investigate the relation between autonomous equations such
as (1.3) — (1.6) and time-dependent equations such as

x\t) + A(t, x(t)) = 0 .

In [11], similar techniques are used to prove local existence and
regularity results and the optimality of some convergence rates.

Much of the recent research in nonlinear semigroups in Banach
spaces has been done in the framework established by Crandall and
Liggett in [4]. We shall not follow that framework. Our departure
from it is discussed in §2, below, and in [9] and [10].

Part of this research was conducted as part of a Ph. D. thesis
at the University of Chicago. Also, part of the research was
performed while the author was affiliated with the Applied Mathe-
matics Divisions at Brookhaven and Argonne National Laboratories,
supported by the U. S. Department of Energy. The results in this
paper and in [9], [10], and [11] benefited greatly from conversations
with Jerry Bona, Michael Crandall, Simeon Reich, and others.

2* Error stability and nested Banach spaces* The term "sta-
bility" has several different meanings in the literature of differential
equations. We shall say that an initial value problem or the corre-
sponding semigroup is error-stable, or has continuous dependence on
the data, if a Small error in the initial data results in only a small
error in the solution. Most useful semigroups must be error-stable
in some sense, since no physical measurement is exact.

A transformation S( ) on a subset D of a Banach space (X, | |)
is quasicontr'active if there is some constant ω such that

(2.1) \S(t)f-S{t)g\£e«\f-g\ {tϊ>O,f,geD).

This condition implies error-stability: if / and g are close and t is
bounded, then S(t)f and S(t)g are close. Every semigroup in the
Crandall-Liggett framework is quasicontractive ([4]; see also [10]).

Some semigroups of physical interest are not quasicontractive,
however. For instance, the semigroup S( ) corresponding to the
Korteweg-deVries equation

ut + uux + uxxx = 0
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is not quasicontractive for any obvious choice of the Banach space
{X, I I), as is shown later in this section. Still, it is easy to show
that this semigroup S does satisfy the following weaker condition:
For any t ^ 0 and /, g e H\R),

(2.2) \\S{t)f~S{t)g\\LHR) ^ exp[t.β(t,f, g)]\\f - g\\Lz{Λ)

where

β(t, f, g) = 4 " S U P m a x {\\S{β)f\\HHR)9 \\S(8)g \\Π2{R)} .

It is shown in [1] that

(2.3) /3(ί,/, g) is bounded when t, \\f\\H*iR), ||fir||jH-2(Λ> are bounded.

Hence S is error stable, in a certain weak sense.
The Crandall-Liggett school of semigroups works entirely in one

Banach space. However, many semigroups have useful properties
which are best described using more than one space. One such
property is given above. A more important property is given in
[9]: by using two spaces we can often treat a discontinuous operator
(e.g., the generator of a semigroup) as if it were continuous. (This
is a variant of techniques using five, four, and three spaces in [6],
[8], and [3], respectively.)

We now abstract the situation described in (2.2) and (2.3). The
situation we shall work with is roughly as follows: (X, | |) and
(D, || ||) are two fixed Banach spaces, with DaX. (Later we shall
need a slightly more general choice of (D, || ||).) We consider
transformations i?( ) on D such that

if f,geD are | [-close and || | [-bounded and t is

(2.4) bounded, then R(t)f and R{t)g are | [-close and || ||-

bounded.

We close this section with an example showing that a one-space
approach is not adequate for the KdV equation:

2.5. EXAMPLE. The semigroup S( ) corresponding to the Korte-
weg-deVries equation is not quasicontractive in L9(R), 1 <̂  p <̂  ©o.
In fact, for any t > 0, S(t) is not Lipschitz in LV{R).

Proof. Among the solutions u(t, x) of the KdV equation are the
solitons or solitary waves.

VT t, x) = 3α2 sech2 \—a(x - α2ί)Ί ,
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for constant α. The wave ua maintains a constant shape and veloc-
ity. These solutions were known to Korteweg and deVries; see [1]
for references.

Let f\x) = ua(0, x) = 3α2sech2(α#/2). Then ua(t, •) = S(t)fa( ) in
semigroup notation. It suffices to show that

(2.6)
\\u\t, •) - u\t, )IIWII/β ~
a, b > oo and b/a 11 .

is unbounded as

Fix any t > 0 and pe[l, ©o). (We omit the case of p = ©o, which
is similar.)

We shall make several uses of the inequalities

(2.7) j l e X P ( l ί l )

From (2.7) we obtain

(2.8) 3α2exp [-a \x - a2t |] ^ |%β(a?f ί ) | ^ 12α2exp [~α |α? - α2ί |

\θ\ ^

α;, ί) | ^ 12α2exp [

Let 0 < α < 6. The waves %α and ub travel at different veloc-
ities; hence their overlap becomes small and their difference becomes
large. Using (2.8) we can estimate

^ \\ua(ff 0\W(t, •) - U\t,

The initial values fa and / 6 are close together if a and 5 are
close. To get a precise estimate, note that

exp [ —6ί(62 - a2)] .

= 6α cosh-3(— αx )Γ cosh (— ax ) - (—
dx \2

hence, using (2.7),

dfa(x)

sinh — ax X\

dx
< 6a cosh"2^—

2(l-X1 + — ax

— |
Δ

^ 24αexp(-—

Therefore, for 0 < a < 6,

\fa(x) - f\x) i ̂  24j% exp (~r \x\)dr

^ 24(6 - α ) 6 e x p ( - — a\x\)
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and so

(2.10) \\fa - f\\LV ^ 24(6 - α ) M — <"* \~1/p

Combine (2.9) and (2.10), and substitute a = ε"1, b = a + 1
α(l + ε). This yields

which tends to c>o as ε j 0. This proves (2.6).

3* Product stability* Let R be a transformation on D (as
defined in Section 1, above). We would like the products R(t/n)n to
be error-stable, uniformly in n. Such a condition seems to be an
essential ingredient of any proof of (1.2). For instance, Theorem
2.5.3 in [2], Theorem I in [4], and the Equivalence Theorem in [5]
each assume a condition of the following type:

for each t, the operators R(t/n)n (n = 1, 2, •)

are uniformly | [-Lipschitz.

Condition (3.1) can be replaced by stronger, but simpler and
more convenient assumptions. For instance, (3.1) holds if R is
quasicontractive (defined in (2.1)). Moreover, R(t) = S^SJf) is
quasicontractive if both Sx and S2 are, as was assumed by Trotter
in [12].

Let us now replace quasicontractiveness with the more general
type of condition indicated in (2.2)-(2.4). Specifically, assume that

(3.2) \R(t)f - R(t)g\ £ | / - g\exp[t β(t, ||/||V||flr||)]

for all t ^ 0 and f, g eD, where β: R\ —> R+ is some function which
is increasing, hence bounded on bounded sets. It follows that

(3.3) \R{tlnYf - R(t/n)%a\ ̂  1/ - ΰI exp {t β[t, l(t,

uniformly in n, if 7: R\ —> JB+ is some increasing function satisfying

(3.4) sup

Condition (3.3) and (3.4) together imply that the products R(t/n)n

satisfy a version of (2.4), uniformly in n. Hypothesis (3.2) is easy
to verify in many applications. In the remainder of this section
and in § 4, below, we shall concentrate on the a priori bounds (3.4),
which are harder to verify. We would like to replace (3.4) with a
hypothesis which is simpler but not too much stronger.
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As a first guess, assume

(3.5)

for some constant ψ ^ 0. Then (3.4) holds trivially with y(t, h) =
eψth. But (3.5) is not appropriate for nonlinear semigroups. For
instance, the initial value problem for the differential equation

u\t) + au(f) + b = 0

has solution u(t) = R(t)u(0), where R is a semigroup defined by

(3.6) R{t)f = e~atf - [e-^bds (t ^ 0, fe R) .
Jo

This semigroup does not satisfy (3.5) if / = 0, 6 Φ 0, and t > 0.
For a second guess, replace the linear semigroup h —> e*h with

a nonlinear semigroup h —> σ(t)h. That is, assume

(3.7) \\R(t)f\\^σ(ft) 11/11,

where ψ is some nonnegative constant and σ(t): R+-+R+(t^0) is
an increasing semigroup on R+, not necessarily linear. That is, σ
satisfies

(3.8)

'σ(O)h = h

σ{t + t')h = σ{t)σ{t')h

σ(t)h ^ σ{tr)h' if

Then (3.4) holds trivially with τ(ί, fe) = σ(ψt)h. Note that J2(ί) =
satisfies (3.7) if

(3.9) ||S,(O/!I ^ ^ i « ) 11/11 (* ^ 0; feD; j = 1, 2)

and we take ψ — ψi -\- ψ2. Condition (3.7) generalizes (3.5), since
σ(f)h = eιh satisfies (3.8). Condition (3.7) is sufficiently general for
the nonlinear semigroup given in (3.6), since we can take

σ(t)h = e*h + e* - 1 , ψ = | a \ V | b \ .

Condition (3.7) is still not sufficiently general for many applica-
tions. Following is a simple example of a semigroup R which
cannot satisfy (3.7). The semigroup R given in (3.11) is trivial, but
in some respects it is typical of a class of nontrivial semigroups
connected with partial differential equations, as we shall see in
Section 4.

EXAMPLE 3.10. Define a semigroup R(t): R2 -^ R2 by
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(3.11) B(f) r
Then there do not exist a norm
group σ on R+ such that

|| on R2 and an increasing semi-

(3.12) \\R(t)f\\^σ(t)\\f\\ ( ί ^ O ; / e i ? 2 ) .

Proof. Suppose that such || || and σ do exist. Let

φ(s) =

Then φ is convex, and φ(s) —> oo as s
positive constants r and c such that

. Hence there exist some
> 0 and

^ φ(r) + (s — r)c if s ^ r .

Let b = c/φ(r)2. We claim that

(3.13) σ{t)h ^ h + tbh2 (t, h ^ 0) .

Indeed, leta? = hfψ(r). Then

σ(t)h =

which proves (3.13).
Now letw(8) = tf(

obtain

Λl B(t)
xr

(r) + xtc] = λ

). From (3.13) with h = u(s) we

u(s) u(s + t) 1 +

Take 8 = fc/w and t = 1/n. Since w is increasing, we obtain

1 1 ^ b/n ^ b/n

u A
W

for integers 0 ^ k ^ ^. Summing over k,

1 1 ^ 6
u(X)

Now take limits as n—> oo, and recall that tc(O) = 6"1. This yields
— l/u(ϊ) ^ 0, contradicting the fact that u(ΐ) ^ u(0) > 0. Hence
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(3.12) cannot be satisfied.
The semigroup given in (3.11) only grows linearly for large

time. But if we try to estimate its size with a semigroup on R+,
that semigroup must grow at least quadratically, as in (3.13). We
need to measure how "big" a vector is with something more sophis-
ticated than just an element of R+.

Hypotheses 3.14. £ίf is a partially ordered set. If hlf h2 are
any two elements of ^f', then their least upper bound hx V h2 exists
in JJT.

σ(t): Sίf -* £έf(f, |Ξ> 0) is an increasing semigroup on Jg^; i.e., σ
satisfies (3.8) for all h,h' e<%f and ί, V ^ 0.

(X, I I) is a Banach space. D is a subset of X || ||: D-+ £έf
is some mapping.

A set BczD is || {{-bounded if {||δ||:δejB} is bounded above in
£ίf\ With this terminology, (2.4) still makes sense. The existence
of least upper bounds in έ%f implies that the union of any two
|| ||-bounded sets is || | [-bounded.

Where appropriate, we interpret " <£ " to be the partial order-
ing of £ίf. Note that if (3.7) holds, then the product stability
condition (3.4) holds with τ(ί, h) = σ(ψt)h. Also note that if (3.9)
holds, then R(t) = Sx(ί)S2(ί) satisfies (3.7) with ψ = ψ1 + ψ2.

The semigroup condition σ(t + t')h = σ(t)σ(t')h in (3.8) can be
replaced with the weaker condition σ(t + t')h ^ σ(t)σ(t')h. However,
in applications σ is generally constructed as the solution of an
autonomous ordinary differential equation, and so σ satisfies the
semigroup condition.

In the examples in this paper, we shall take έ%f to be a Eucli-
dean space, Rk, or its positive cone, R+, partially ordered by

(3 15) ^ X*' ' ^ " ^Vu V2' ' Vk)

if a n d o n l y i f xx ^ y 1 , x2 ^ y 2 , - ,xkl^yk.

However, in § 5 of [9] we shall use a quite different choice of £ίf,
taking advantage of the greater generality of Hypotheses 3.14.

For the semigroup R given in (3.11), take X = D = R2 and
= R\. Define || ||: D -> ̂ f by

X-

X2J

and let σ be the restriction of R to JB+. Then (3.12) follows trivially.
In the next section we give some less trivial examples.

4* Examples from partial differential equations* In both of
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the following examples, semigroups are related to initial value
problems as in (1.6). Our interest in the £P(lί )-norm is motivated
in part by the discussion in § 2, above.

EXAMPLE 4.1. Let Sλ and S2 be the semigroups corresponding
to the initial value problems for

(4.2)

(4.3)

Mt — Uxx = 0

vt + vz = 0 ,

(heat equation) ,

respectively. Then \\[Sι{tln)S2{tjn)\nf\\H2m is bounded uniformly for
bounded \\f\\HHR) and t and all positive integers n.

Proof. We shall take 3ff = JB3

+, partially ordered as in (3.15).
Define || ||: H\R) -> R\ by

11/11 = (II/IIΛ II/.IU II/..IL0.

Then a set in D — H\R) is || | Abounded if and only if it is || \\H2{R)-
bounded. It suffices to exhibit an increasing semigroup σ on R\
satisfying (3.9). Let

(4.4) σ(t)
x1

The reader can easily verify that σ satisfies (3.8) for all £,£'*>()
and h, h' e R%. (Note the similarity of this semigroup σ to the
semigroup R given in (3.11).) Condition (3.9) holds for j = 1 with
ψ1 = 0, by some well-known properties of the heat equation. We
assert that (3.9) holds for j = 2 with ψ2 = 1; i,e., that any solution
v of (4.3) satisfies

(4.5)

l«(ί)|lz

.11«..(«) ll*

We shall only show the third inequality in (4.5) in detail; the
first two inequalities follow by simpler versions of the same argu-
ment. Differentiate (4.3) twice to obtain

v..t + + 3v2vxx = 0 .

At any t where ||vββ(ί)||χ,2 > 0, we can integrate by parts and inter-
polate as follows:
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d M I. Id\v»\\L-^-\\vmat 2 dt
\Vχ*\\h = —γxxtvxx

^ IK 111-
Divide both ends of the above inequality by I [ vβ» | [̂ a, and integrate
over time. Thus we obtain the third inequality in (4.5).

In the above argument, we used estimates on ||v»(ί)||z2 to help
obtain estimates on \\vxx(t)\\L2. This is an example of "bootstrapp-
ing of energy estimates." Note also that the above argument
reduces certain questions about the partial differential equations
(4.2) and (4.3), and ultimately also the equation

to questions about the ordinary differential equation

d
dt

Mt) _

0

0

which corresponds to the semigroup in (4.4). In the next example
we shall use a more complicated ordinary differential equation, and
a more complicated choice of || ||. This greater complexity appar-
ently is unavoidable, as is shown in an example in [9].

EXAMPLE 4.6. Let Sλ and S2 be the semigroups corresponding
to the initial value problems for

(4

(4

•7)

.8)

ut —

+

nxx

vvx +

0

wXXX - 0

(heat

(KdV

equation) ,

equation) ,

respectively. Then \\[S1(t/n)S2(t/n)]nf\\H2{R) is bounded uniformly for
bounded | |/||JΓ2(Λ, and t and all positive integers n.

Proof. Let Sίf = J?3, partially ordered as in (3.15). For any
feD = H\R), let

Uf) =
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and define || \\:D~^^f by taking | | / | | = (Uf), Uf), /3(/)). It
sufiices to show that

a subset of D is || | [-bounded if and only if it is || \\HHRΓ
(4.9)

bounded,

and also exhibit an increasing semigroup σ on £ίf satisfying (3.9).
Using standard interpolation results, we have

Il/Hioo <; | |/ | |L 2 HΛIIL2 ^ A 1 | / | | | 2 + λ \\fz\\\2,
Δ Δ

ll/.lli. ^ Uf) + | S I/I 3 ̂  /,(/) + | S I / I 3 ,

I/I 3 ^ II/III. II/IL- ̂  I 11/111* + | Il/Hi- .

Add the above three lines. This leads to

( 4 . i o ) H/i i ico + | | / j | i 2 + S I / I 3 ̂  l l / l l l * + l l / l l l * + 2 J 2 ( / ) .

(Note: the computations in this proof are chosen for simplicity, not
for sharpness.) Inequality (4.10), together with a few straight-
forward interpolations, yields (4.9).

The numbers Iu I2, Iz are among the well-known invariants of
the Korteweg-deVries equation; see [7]. Thus, if v is any solution
of (4.8), ||ι;(ί)ll does not depend on t. Therefore (3.9) holds for
j = 2 with ψ2 = 0, if σ is any increasing semigroup on R3. It
suffices to choose σ to satisfy (3.9) for j — 1.

For any real number r, let r+ = max {r, 0}. Note that r+ is a
nonnegative, continuous, increasing function of r.

Define an operator A: R3 -* R\ by

i] Γ 0

w2 = a(Wj)w2 +

J [c(wu w2)wi + d(wlf w2),

where a, b, c, d are nonnegative, continuous, increasing functions
which will be specified later. Then for any x e R3, the initial value
problem

(4.11) w'(t) = Aw(t) , κ>(0) = x

has a unique solution defined for all t ^ 0. (The function w^ί) is
defined and continuous for all t ^ 0; hence so is w2(t); hence so is
wz(t).) Since the system (4.11) is autonomous, σ(t)x — w(t) defines a
semigroup on R3. The function σ(t)x is increasing in t and in xf
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since α, 6,c, d are nonnegative and increasing. Thus (3.8) holds. We
shall verify (3.9) for j — 1 with ψx — 1. It suffices to choose α, δ,
c, d so that any solution u of (4.2) satisfies

(4.12) -A- \\u(t)\\£ ^ \Mt)\\
dt

It is well-known that any solution u of the heat equation
satisfies

—[u* < 0 ,
it 3 ~dt

the first component of the vector inequality (4.12).
From (P - Q)4 + 3(P2 - Q2)2 ^ 0 we obtain

(4.13) PQ3 £ P3Q + PQ3 ^ P 4 + Q4

for all nonnegative P and Q. For the second component of (4.12)
we use integration by parts, interpolation, (4.13), and (4.10) in the
following computation:

d
dt

^-2\\uxx\\\, Λ-

Uu)+ + 2[I1(u)5/3

Note that I^nY — I^u), since I^u) ^ 0. Hence the second component
of (4.12) is satisfied with

a(r) = 2(r+)2/3 ,

6(r) = 2[(r+)5/3 + (r+)8/3] .

These functions are nonnegative, continuous and increasing.
Define a nonnegative, continuous, increasing function e by

e(r, β) = [r+ + (r+)2 + 2s+]1/2 .

Then it follows from (4.10) that

m a x { | | / | U | | /J | L 2 } £ e(Uf),

hence
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Hence, for the third component of (4.12),

Therefore we can take c(r, s) = 10e(r, s)/3, d(r, s) = 10e(r, s)4.

5* Statement of main results* We assume the hypotheses of
Section 3.14. In addition we assume the mapping || \\:D-
satisfies the following condition:

Suppose / e l , hej%^, and {fn} is a sequence in D. Suppose

/•->/ in X, and | | /J |^Λ for all n. Then feD, and ||/||^A.

Condition (5.1) says that D is "closed" in a certain sense. This
condition will contribute greatly to the simplicity of our results.
It is assumed only as a convenience of notation, for it can always
be satisfied by modifying D, β^f and || || slightly (i.e., by replac-
ing D by its "closure"). This is discussed in detail in § 5 of [9],
For motivation, note that (5.1) follows by a weak compactness
argument if έ%f = R+ and (D, || ||) is a reflexive Banach space
continuously included in (X, | |).

NOTATION 5.2.

(a) All topological considerations, e.g., convergences and conti-
nuity, will be in the topology of {X, | |).

(b) Let β be a function of several arguments, each of which
has domain R+ or Sίf. Assume β has range in R+, and β is increas-
ing in each argument. Then we shall call β a bounding function,
since β is bounded on bounded sets.

(c) Let S be a transformation on D (as defined in § 1). Let
ψ 6 R+, and let ω: έ%f —> R+ be a bounding function. The triple
(S, ψ, ω) is a restrained transformation (with respect to <%*, σ, X,
I I, D, || | |) i f
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\S(t)f - S(t)g\^\f - g\exv{t-ω[σ(M)(\\f\\V\\g\\)]}

for all t ^ 0 and /, g e D. (S, φ, ω) is a restrained semigroup if in
addition

S(t + s)f = S{t)S{s)f (ί, s ^ O / e ΰ ) .

In [9] we shall use the above definitions, plus a few more
definitions involving generators, to prove results about equations
(1.3)-(1.5). However, the above framework is already adequate for
an interesting result about (1.2).

Theorem 5.3, below, is similar to the results in [6] and in
Theorem 5.3 of [3]. The proofs are also related. The results below
are simpler in that (i) generators are not mentioned, in the hy-
potheses or the conclusions, and (ii) only the two spaces DaX are
used, rather than three or five spaces as in [3] or [6].

The result below also differs in the "almost-semigroup" condi-
tion (5.4). The analogous hypothesis in [3] or [6] (translated to the
notation of the present paper) is

(5.40 \R(f)R(s)f - R{t + s)f\ £ ts Ύdt + β, 11/11) .

This is similar to (5.4) for λ = 1, but is stronger. Some justifica-
tion of the above condition is given in [6] for products of C2-
semigroups. The weaker condition (5.4) seems to be more natural;
it is satisfied by a class of (^-semigroups considered in [9].

It is mostly because of this weakened hypothesis that the proof
in Section 6 is so long and complicated. Inequality (5.4) is not very
strong except when t and s are of nearly the same order —e.g.,
when 1/2 < t/s < 2 and hence (t + s)2 = έ?(ts). This restriction is
violated if we take s = t/n, and so the simple, direct proof of (5.5)
in [3] and [6] fails if we replace (5.4') with the weaker (5.4).

THEOREM 5.3. Let (R, ψ, ω) be a restrained transformation.
Suppose R is an "almost-semigroup" in the sense that there exists
a constant λ > 0 and a bounding function 7: R+ x 3ίf —> R+ such
that

(5.4) \R(t)R(s)f - R(t + s)f\^(t + 8ΓM< + 8

for all feD and t, s ^ 0.

Then there exists S such that (S, ψ, ώ) is a restrained semigroup
and

(5.5) R{t/n)nf >S(t)f as n > 00 ,
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uniformly for bounded \\f\\ and t. In fact, we have the following
rate of convergence: Define a bounding function β: R+ x £ίf —> R+

by

(5.6) /3(Γ, h) = Γexp {T-ω[σ(jrT)h]}-7[T, σ(ψT)h] .

Then

(5.7) \R(t/n)*f~ S(t)f\ £ (1 - 2 T ( « / » m i , ii/il) .

More generally, let s1 + s2 + + sw = ί. TΛew

(5.8) RisJRiSz) - • 22(βJ/ > £(£)/ as max^ s, > 0 ,

uniformly for bounded t and | | / | | . TFβ /tαt β ί/iis convergence rate:

I Λ^ΛW Λ(O/ - S(ί)/1
^ ( l 2 - r

THEOREM 5.10. In addition to the above hypotheses, assume R
is strongly continuous at 0; i.e., for each fβD,

#(*)/ > / as 110 .

Then S is strongly continuous; i.e., for each feD,

t > S{t)f is continuous from R+ into X .

Theorem 5.3 is sharp. We shall give two simple examples
showing that it cannot be improved in certain directions. Neither
of these examples is pathological. In fact, in both cases we shall
take R(t)(t ^ 0) to be a family of rotations of the complex plane.
That is, take D = X = C and

(5.11) R{t)f = /exp [iθ(t)] (/ e C, t ^ 0)

for some function θ: R+-+ R satisfying 0(0) = 0. In both cases we
shall take θ continuous on [0, +°°) and smooth on (0, +©o).

EXAMPLE 5.12. Hypothesis (5.4) cannot be weakened much.
There exists a restrained transformation satisfying the weakened
"almost-semigroup" condition

(5.13) \R(t)R(s)f - R(t + s)f\^ t + * y(t + 8, | |/ | | )
log—ί—

t + 8

for small t + s, but such that the sequence {R(t/n)nf} does not con-
verge.
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EXAMPLE 5.14. The convergence rate έ?(n~λ) given in (5.7) is
best possible. For any λ > 0, there exists a transformation R
satisfying the hypotheses of the theorem and such that nλ[R(t/n)nf—
S(t)f] converges to a nonzero limit.

6* Proofs of main results •

Proof of Theorem 5.3. Fix any T > 0, and consider all parti-
tions

(6.1) π: 0 = ί0 < t, < - < tn = T

of the interval [0, T]. For each partition π, let M(π) — max* (tt —
ί4_i), and let

Piπ) = R(tn - t^Rit^ - ^_2) 'R{tλ - t0) .

Most of the proof will be directed toward showing that | P(π)f —
P(πf)f\ is small if M(π), M{π') are small, and hence that {P{π)f} is
a Cauchy net in (X, | |).

For simplicity of notation let

(6.2) Uκ(tif Q = R(tό - t^Rit^ - ί^) . >R(ttί+1 - U)

if 0 ̂  i ^ j ^ n. In particular, Uπ(T9 0) = P(π-) and Uπ(tif Q is the
identity map on D.

By abuse of notation let π also represent the set {t0, tu , £J.
Then partition π' is a refinement of partition π if and only if the
set π' includes the set π.

Let π be as in (6.1) and let πf be some refinement of π. Then
π' is a first-order refinement of TΓ if each open interval ( ί^ , ̂ )
contains at most one element of the set π'. In this case we can
estimate \P(π)f - P(π')f\ as follows:

For 1 ̂  ί <: ̂  we have ?/*(*<, i^J = i2(ίi — t^. Let

/ = [i: (tt_u tt) contains some s4 e π'} .

Then

Let Λ = UAUf 0)/(0 ^ i ^ w), with /0 = / and / , - P(π')f. The
ft'8 are well-defined by (6.2) since π' z) TΓ. With these notations we
can write a telescoping sum:

P(7Γ)/ - P(7Γ')/ =
(6.3)

UΛTQ
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Note that for any g, gf e D,

T,tάg- Uπ{T,t%)g>\

^ exp {T.ω[σ(ψ(T - tMWΰWV\\g'\\)]}

by repeated use of (3.8) and the inequalities in 5.2(c). Substitute
this inequality into (6.3), with g — Uπ(tif ί<_i)/i_i and gr = Uπ>(ttf

ίi-J/ί-i. Also using the triangle inequality, (5.4), and (5.6), we
obtain

g exp {T-ω[σ(ψT) ||/||]} Σ ITO, U-dfi-i- Uπ,(tif t^Ά-il

( 6 ' 4 ) ^ exp {T ω[σ(fT)

^ M{πYβ(T, 11/11) .

A partition π' is a Λth-orcίβr refinement of TΓ if there exist
refinements

π — 7Γ0 c TΓi c c πk = TΓ'

such that each 7Γi+1 is a first-order refinement of πd. Then it follows
from (6.4) and the triangle inequality that

(6.5) \P(π)f - P{π')f\ £ Σ Λ W / 9 ( Γ , | | / | | ) .
i=o

Since M(π) = M(ττ0) ^ ^(^0 ̂  ^ M(πk), we obtain the crude esti-
mate

(6.6) \P(π)f - P ( τ r ' ) / | ^ kM(πYβ(T, \\f\\) ,

which is useful for small integers k.
If in addition M(πj+1) — M(π3)j2 for each j, we shall call πf a

dyadic refinement of TΓ. In this case we obtain from (6.5)

\P(π)f - P(π')f\ <; Σ

( 6 7 ) gΣ

- ( 1 - 2 T W W , 11/11).

Note that the right side does not depend on k.
For any partition π as in (6.1), let m(π) = minέ (^ — t ^ ) . We

now make several observations about refinements:

Any partition π has a first-order refinement %f with m(π') =

m(7r)/2 and ikΓ(τr;) =
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{Proof: bisect each subinterval of re.)

Suppose π is a partition with M(π) ^ 2m(π). Then π has

(6.9) a first-order refinement πf with m(ττ') = m(π) and M(πf) =

ikf(ττ)/2.

(Proof: bisect every subinterval of π having length at least
2m(π).)

Suppose π is a partition and 0 < p ^ m(ττ). Then π has

(6.10) a dyadic refinement π' satisfying 1 <S m(πf)/p < 2 and 1 <;

M(π')/m(π') < 2.

(Proof: apply (6.9) several times, until 1 ̂  M(π')jm(π') < 2 is
satisfied. Then apply (6.8) several times, until 1 ̂  m(π')/p < 2 is
also satisfied.)

Let π[ and π2 be partitions, with 2km(π[) ^ Λf(7rί) for some

(6.11) nonnegative integer k. Then π' = π[{Jπ2 is a refinement of

π2 of order at most k + 1.

(Proof: each open subinterval ( ί^, ί j of 7Γ2 contains at most
2k points of π[j hence certainly not more than 2k+1 — 1 of them. We
can add one point to (t^l9 tt) by taking a first-order refinement of
π'2; then two more points by refining again; then four more; etc.)

We are now ready to estimate | P (π^f — P(ττ2)f \ for arbitrary
partitions πx and π2. Fix some small p, with 0 < p <; min {m(π^)f

m(π2)}. Choose dyadic refinements π[, π2 as in (6.10). Then

(6.12) M(π[) < 2m(π[) < 4p ^ 4m(π[) ̂  4M(π[) .

By (6.11), π' — π[{jπ2 is a refinement of π2 of order at most 3. Simi-
larly, πr is a refinement of π[ of order at most 3. Now use (6.6),
(6.7), and the triangle inequality to obtain

IP^f ~ P(π2)f\

£ (1 - 2-χri[M(πiY + M(π2y]β(T, 11/11)

+ 3[M(7rίy + M(τr^]/3(Γ, 11/11).

By (6.12), M(π2) < 4p. Similarly, Λf(ττO < 4p. Let p -> 0; t h u s

(6.13) ^

Hence the net {P{π}f} is Cauchy in the Banach space (X, | |).
Denote the limit by S(T)f. Hold π, fixed in (6.13) and let M(π2)->0
to obtain (5.9) and hence (5.7).

It follows easily from (3.8) and (5.1) that S(T)f is in D and
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that (S, ψ, ω) is a restrained transformation.
To show that S is a semigroup, fix any s, t ^ 0 and feD. Let

g = S(ί)/. Then R(t/n)nf -> g and Λ(β/w) -> S(β)βr, by (5.5). Also,
the set {R(t/n)*f: n = l,2, •} U {#} is || | (-bounded, and the operators
RiβjnY (n = 1, 2, •••) are uniformly | |-Lipschitz on || |[-bounded
sets. It follows that R(s/n)nR(t/n)nf-^S(s)S(t)f. On the other hand,
R(s/n)nR(tln)nf-> S(s + t)f by (5.8). Hence S(s)S(t) = S(s + t).

Proof of Theorem 5.10. For each fixed w, R(t)n is strongly
continuous at 0; this follows by induction on n. Since the conver-
gence (5.5) is uniform for bounded ί, S(t) is strongly continuous at
0. Since S is a semigroup, S(ί)/ is continuous from the right. It
suffices to show that S(t — h)f—> S(t)f as h | 0, for fixed ί > 0 and
feD. For O^h^t,S(t~h) is uniformly | |-Lipschitz on || ||-
bounded sets, and S(h)f is || ||-bounded. Hence

h)f~

which tends to 0 as ft | 0 since S is strongly continuous at 0.

Proofs of Examples 5.12 and 5.14. It follows from (5.11) that
each R(t) is a linear isometry of C; hence R is a restrained trans-
formation. The product formula takes the form

R(t/n)nf = /• exp {inθ(t/n)} ,

which converges to some limit S(t)f = feiμ{i) if and only if there
exists a limit

(6.14) μ(t) = lim w0(ί/w) (mod 2ττ) .

Also from (5.11) we obtain

(6.15) \R(t)R(s) - J2(ί + s)| ^ |0(ί) + ί(«) - θ(t + s)\ .

These considerations reduce our questions about R to questions
about θ.

We only need to consider the behavior of R and θ for small s
and t. For any continuous choice of R, we can always satisfy (5.4)
for large t + s by taking 7 sufficiently large.

For Example 5.12, it suffices to choose θ: [0, T) ~> R for some
T > 0 so that

(6.16) |0(ί) + θ(β) -
log

s

for some constant c and all small t + s, and so that
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(6.17) nθ(t/n) does not converge (mod2ττ) as n > °o .

We shall show that these conditions are satisfied by

θ{t) = ί log | logί |

To prove (6.16), temporarily fix any ft in (0, 1/e), and let p(s) =
0(s) + θ(h — s) (0 ^ s ^ ft). Then p is concave, nonnegative, and
symmetric about s = ft/2. It follows that

I θ(s) + θ(h - s) - θ(h) I = p(s) - p(0)

<

which proves (6.16).
For large n,

in + Dθί—L-Λ - nθ(±
\ w + 1 / \n

L-Λ nθ(±) ~ —J ,
+ 1 / \n' n log ^

which decreases to 0 but is not summable. Hence (6.17).
For Example 5.14, take θ(t) = t1+λ. The details are straight-

forward and are omitted.
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