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The Selberg, Piatetsky-Shapiro conjecture, now establi-
shed by Margoulis, asserts that an irreducible lattice in a
semi-simple group G is arithmetic if the real rank of G
is greater than one. Arithmetic lattices are known to
exist in the real-rank one group SO(n, 1), the motion group
of real hyperbolic w-space, for n ^ 5. These examples due
to Makarov for n — 3 and Vinberg for n ^ 5 are defined by
reflecting certain finite volume polyhedra in real hyperbolic
%-space through their faces. The purpose of the present
paper is to show that there are also nonarithmetic lattices
in the real-rank one group PU(2,1), the group of motions of
complex hyperbolic 2-space which can be defined algebraically
and leads to remarkable polyhedra. This serves to help
determine the limits of the Selberg, Piatetsky-Shapiro con-
jecture. The analysis of these polyhedra also leads to the first
known example of a compact negatively curved Riemannian
space which is not diffeomorphic to a locally symmetric space.

This paper arose out of an attempt to determine the limits of
validity of the Selberg, Piatetsky-Shapiro conjecture on the arith-
meticity of lattice subgroups. In 1960 A. Selberg conjectured that
apart from some exceptional G, an irreducible noncocompact lattice
subgroup Γ of a semi-simple group G is arithmetic ("irreducible" in
the sense that Γ is not commensurable with a direct product of its
intersections with factors of G). Later Piatetsky-Shapiro conjec-
tured: An irreducible lattice of a semi-simple group G is arithmetic
if U-rank G > 1.

The Selberg, Piatetsky-Shapiro conjecture was settled affirma-
tively by G. A. Margoulis in the striking paper that he submitted
to the 1974 International Congress of Mathematicians in Vancouver.

The simple groups of iί-rank 1 are (up to a local isomorphism)

S0(n, 1), SU(w, 1), SP(n, 1), F4

which act as isometries on the hyperbolic space

Rhn

9 Ch?, Hh\ Oh"

over the real numbers R, the complex numbers C, the quaternions
(or Hamiltonians) H, the octonians (or Cayley numbers) O respec-
tively. Nonarithmetic lattices in SO(2, 1)( = SL2(Λ)/±1) have been
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known for a long time. Nonarithmetic lattices in SO(n, 1) for n = 3
where first found by V. S. Makarov (in 1965) and shortly there-
after E. B. Vinberg initiated an extensive investigation which
turned up nonarithmetic lattices in SO(n, 1) for n ^ 5. Both the
Makarov and Vinberg examples are defined by reflecting a polyhedron
F of finite volume in Rhn in its (n — l)-dimensional faces, which
are point wise fixed under the reflections. The (n — l)-dimensional
faces thus must lie on geodesic subspaces of codimensionΛ 1. The
group Γ generated by the reflections in the codimension-1 faces of
F is a discrete group of isometries on Rhn and has F as a funda-
mental domain if and only if all the dihedral angles of F are of
the form π/integer.

Straightforward generalization of this method for finding lattice
subgroups of isometries on the other hyperbolic spaces is blocked by
the fact that only in J2-hyperbolic spaces do there exist codimension
1 geodesic subspaces. Thus it is not a priori clear what to take as
the bounding surfaces of a polyhedron F out of which we are to
construct a group Γ of isometries with F as fundamental domain.

The principal result of this paper is the construction of a class
of such polyhedra F in Ch2. The guiding principle in the discovery
of F is the exploitation of symmetry. The polyhedron F depends
on two parameters, (p, t) where p = 3, 4, 5, and \t\ < 3(1/2 — 1/p).
To each F(p, ί), there corresponds an infinite subgroup Γ of Z7(2, 1)
generated by three C-reflections of order p. For some values of the
parameter, the polyhedron F is stabilized by a subgroup of Γ of
order 3. For only a finite number of values of the parameters is the
group Γ discrete. Whenever Γ is discrete, it is a lattice subgroup.

The main theorems proved in this paper are:

THEOREM A (cf. § 17.3). There exist in PU(2, 1) nonarithmetic
lattices generated by C-reflections of order 3, 4, or 5. Up to an
isometry, any such lattice with Coxeter diagram

3

and phase shift φ, φ3 = exp πit, is given by the seven values

(p, ί) - (3, 5/42), (3, 1/12), (3, 1/30)

(4, 3/20), (4, 1/12)

(5, 1/5), (5, 11/30) .
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The noncocompact lattices Γ(p, t) are arithmetic.

THEOREM (cf. §19). For every rational value of t, with \t\ <
1/2 — 1/p, there is a complex analytic manifold Y(p, t) and a canon-
ical Γ(p, t) map π: Y(p, t) —» Ch2 such that Γ(p, t) operates disconti-
nuously and holomorphically on Y{p, t).

The quotient of Y by a torsion-free subgroup of Γ leads to the
first known example of a compact negatively curved Riemannian
space M which is not diffeomorphic to a locally symmetric space (cf.
[8]). M is in fact an algebraic surface and is negatively curved
with respect to a Kaehler metric.

The major effort in proving Theorem A once the groups Γ(p, t)
have been defined, is to decide when Γ(p, t) is discrete. Apart from
§ 4 which gives a criterion for the arithmeticity of a lattice, most
of § 3 to § 17 is aimed at the discreteness question. The choice of
the complex analytic structure in Theorem B with respect to which
Γ operates discontinuously and holomorphically depends on the
results in § 6 (though not on §6.5) and §18. In particular, explicit
information (cf. § 18.2) about the star of each vertex in the poly-
hedral space Y is exploited.

In anticipation of generalizing the construction given here to
n = 3 and 4, the results in § 3 on spinal surfaces are presented for
general n.

Part of the results contained in this paper were announced in
[7].

A large part of this paper is devoted to computations. At an
early stage of the investigation of discreteness, I profited greatly
from computer exploration. Without the computer it would have
been very difficult to recognize how much more complicated is the
fundamental domain of the group of order 72 generated by two
C-reflections with Coxeter diagram

than the fundamental domain for the group of order 24(^/6 — pf
generated by two C-reflections with Coxeter diagram

Thus the discovery of the family F(p, t) owes much to the vastly
wider exploration which the computer permits. Once the target
began to be discerned, it became possible to verify all the remark-
able properties of the family F{p, t) by a combination of geometric
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and algebraic methods. The account here is in the strictly logical
(rather than psychological) sense totally independent of the computer.

I take pleasure in acknowledging my debt and gratitude to my
associate and students at Yale who programmed the algorithms
described in § 7, 8 and other related capabilities. In chronological
order of their assistance, I was enormously helped by Dr. Sidnie
Feit, Alex Feingold, James Cogdell, Daniel Bar-Yacov, and Edna
Bar-Yacov.

2* Algebraic preliminaries*

2.1. C-reflections.

Let V be an w-dimensional vector space over C. A C-reflection
in V is a linear map R:V-^V of finite order with n — 1 eigenvalues
equal to 1. A C-reflection can be expressed in the form x —» x + β(x)e
where β is a linear function and 1 + β(e) is a root of unity other
than 1.

Let H be a nondegenerate hermitian form on V and denote
H(v, w) by (v, w) for all v, w e V. Given e e V with (e, e) = 1 and
a positive integer p, we denote by Re>p the C-reflection

x > x + (ξ — l)<cc, e)e, ξ = exp 2πV—1/p .

RβtP fixes each point in eL = {x e V; (x, e) — 0} and has order p.
Clearly Re>p preserves H.

Suppose {elf , eΛ} is a linearly independent set of unit vectors
and let Rt = Rei,Pi- Set Γ = {{Rl9 R2, , Rn}}, the group generated
by the set {Rlf*•*•., Rn). Then Γd U(H), the unitary group of the
hermitian form H.

The hermitian form H need not be positive definite. However
if Γ is finite and irreducible, then H must be positive definite. For
by Schur's lemma, an irreducible group stabilizes a unique hermitian
form up to scalar factor; on the other hand, a finite group preserves
a definite hermitian form. Since H(ei} et) — 1, H is positive definite
if Γ is irreducible. We will see in § 2.3 how to drop this last
hypothesis.

2.2. Finite groups generated by two C-re flections.

Let {elf e2} be a base of the C-vector space V and let H be a
hermitian form on V. The condition that {RβvPl, Re2,P2} generate a
finite group Γ may be determined as follows.

Consider the 1 dimensional protective space CP1 of one-dimen-
sional subspaces of V; let π: V — {0} —> CP1 denote the canonical
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projection. Let Rt denote the action of R,vPι on CP1, and denote
π{eϊ) by *β,J-(i = 1, 2).

CP1 may be identified with the standard 2-sphere S2, and Γ
operates on S2 by rotations. Thus Γ is finite if and only if the
group {Ru R2} generated by rotations of angle 2π\pi at *eϊ is finite.
This is the case if and only if there is a 7 in Γ such that the
geodesic trkngle with base y(*ei)*ei and base angles π/p19 π/p2 has
as third angle 2π/q where

1 1 2
(2.2.1) — + — + — ^ 1 and q is even if px Φ p2 .

Pi P2 Q

From spherical trigonometry the length of the base *et*e£ in a
geodesic triangle with angles π/pl9 π/p2f 2π/q is given by

c o s ^/Prcos π/p2 + cos 2π\q
:

sin πjPx sin π/p2

On the other hand, the inner-product on V is related to the metric
on S2 by the formulae

I (eu e2) I = cos σ, d{*e±, *e2

L) = 2σ .

Therefore, by the half-angle formula

(9 9 ox 1 /p p \ [ „ / cos (π/p, - π/p2) + cos 2π/q \1/2

V 2smπ/p1 smπ/p2 /

Let ψ be any complex number with | φ \ = 1 and let H{φ) denote
the hermitian form on C2 given by

<βi, β2> = aφ

where a is given by (2.2.2). Let Δ(φ) denote the determinant of
the matrix «e<, βy». Then

= 1 - α2 = sinV > 0

if H is nondegenerate. We note that A{φ) is independent of φ.
Let Γ{φ) denote the group {{RevPl, Re2,P2}} corresponding to Hφ. Re-
placing eί by βjfp does not change RevVl and provides an isometry of
JBΓ(1) to Jϊ(^). Thus Γ(?>) is independent of φ.

Set ^ = R9itPt(i = 1, 2). Suppose that if satisfies (2.2.1) and
(2.2.2). Then the group Γ = {{^ i22}} has the relations

If q is odd, the second relation signifies
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RιR2 * * * Ri ~ -K2.ffi * * R2

(cf. [4]). Moreover, the center of the group Γ is cyclic and gener-
ated by

( 2 2 3 ) {(RAY if q is odd

\(RJldqf* if Q is even

(this corresponds to the fact that on S2, RJRt rotates about the
vertex eQ opposite *βι*et through an angle of Aπ/q).

Let s denote the reciprocal of the spherical excess of the
geodesic triangleβ*e*et i.e., s~x = pϊ1 + p2

ι + 2q~ι — 1 then the order
of the center is (cf. [4])

(2.2.4)

9

and the order of Γ is given by

(2.2.5) #Γ =

Q

4s

, Q

, Q

odd

even

Q

2.3. Coxeter diagrams, phase shifts.

To each finite group generated by C-reflections, Coxeter has
associated a diagram. In the case of a group generated by two
reflections {Rei,Pl, Re2,P2} with

(elf e2) = aφ

with a given by (2.2.2) and (2.2.1) satisfied, the Coxeter diagram
consists of two nodes and a line

if q > 2; if q — 2, no line is drawn joining the nodes. This diagram
determines {i2βl>Pl, Re2,P2\ uniquely up to an isomorphism.

To a group generated by ^-reflections every two of which
generate a finite group, one associates a diagram made up of n
nodes, attaching pi the order of the reflection Rt to the ith node;
the nodes i, j are joined by a line labeled qiS if iϋέ = RUtPi, Rj =
Rej,Pj and the qu (resp. qtί/2) is the lowest power p of RiRi which
is in the center of Γiά = {{Riy Rά}} if p is odd (resp. even). Con-
versely, to any diagram £2ί

with n nodes, satisfying (2.2.1), one associates a family of groups
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Γ generated by ^-reflections as follows:
In Cn, let eί9 e2, , en be the standard base. Define the hermi-

tian form H:

(2.3.2) <βi' β'> = ~aiiΨii l Φ j

(ei9 et} = 1

where

y ^ ^ ̂  ==
2 sin π/Pi sin π/p2 / ' *'

and define 22, = RβitPi(i = 1, , w). For any i, jf, the group J ^ =
{{i2i? Rj}} is finite and independent of the choice of φiif up to an
isomorphism. More generally, if the graph of 3ί is a tree, then
one can replace et by <ptet (i = 1, , n) \<Pi\ = 1, so as to get an
isomorphism between any two groups Γ in the above family. For
any loop i ^ i* i n the graph, the product 9>M3 9><2ί2 £><A<1 is in-
variant under such changes, and indeed two groups Γ with the
same diagram need not be isomorphic. The set {φid; i Φ j, i, j —
1, , n} is called the phase shift of the hermitian form H. Two
phase shifts define isomorphic groups Γ if the products of phase
shifts over all closed loops are equal. A phase shift is called rational
if it is a root of unity.

The data ( ^ , phase shifts) determines a unique hermitian form
H and a unique group Γ generated by C-reflections; we sometimes
denote Γ by Γ ( ^ , H).

(2.3.3) // the Coxeter diagram of a group Γ is connected and
the hermitian form H is nondegenerate, then the group operates
irreducibly on the underlying vector space.

The proof is essentially the same as for Coxeter groups of JR-
refiections. (See Bourbaki, Groupes -Lie, Ch. 5, §4.7.)

Unlike the case of jB-reflection groups, groups with different
Coxeter diagrams may be isomorphic.

As a consequence of (2.3.3), if the hermitian form H of the
data, ( ^ , H) is nondegenerate and the group Γ is finite, then H is
positive definite. For Γ is a direct sum of irreducible groups cor-
responding to the connected components on the diagram &.

On the summand corresponding to each component, H is positive
definite by the result in § 2.1. Hence H is positive definite.

2.4. Finite groups generated by C-reflections.

Finite subgroups of PGL(%, C) generated by C-reflections were
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classified near the turn of the century (cf. G. Bagnera, I gruppi finiti
di tranzformazioni lineari dello spazio che contegono omologie, Rend.
Circ. Mat. Palermo, 19 (1905), pp. 1-56; C-reflections on projective
space were named homologies in those days). Subsequently the
classification was redone by G. L. Shephard and J. A. Todd in 1953
(see [10]) and then by Coxeter in 1966 (see [4]). Coxeter has listed
the group diagrams.

Finite linear groups Γ in -^-variables generated by C-reflections
are characterized by the property:

Γ possesses a set of n algebraically independent invariant
forms Ilf J2, •••,/» of degrees m1 + 1, m2 + 1, • , mn + 1
such that

(2 4 1} ft (wt + 1) = #Γ

(see [10] or (Bourbaki, Groupes -Lie, Ch. V §5.5) for
this and other properties).

If Γ is a finite linear group generated by C-reflections
(2.4.2) {R19 '"9Rn}9 then any C-reflection ReΓ is conjugate to a

power of some ^ ( £ = 1, •••, n): (See [3], Lemma 4.11 (iii).)

Given complex reflections Reι,Pl and Re2,P2 on a vector space F,
they generate a group Γr which stabilizes W — Cex + Ce2 and fixes
each point of et (Ί e2. If

, , (<fii, βi> <βlf e2)\

det = l - | (elf e2) |2 > 0
\(e2, e,) <β2, e2)J

the restriction of the hermitian form H to W is positive definite.
Hence Γ' is faithfully represented in the compact unitary group of
the restriction of H to W. Thus Γ' is discrete if and only if it is
finite.

One can use this observation to determine that some groups
are not discrete. For this purpose, one needs a list of all possible
admissible values of | (elf e2} | if RevPl and Rez,P2 are to lie in a com-
pact group and be discrete. Such reflections lie in groups Γ gener-
ated by two C-reflections, such that | (elf e2) | is given by the number
a on the right hand side of (2.2.2). For a finite linear group Γ
generated by C-reflections, any reflection is conjugate to a power of
a generator (cf. (2.4.2)). Thus the admissible values can be read
off from the list of {\(βl9 7β2>|; 7eΓ} corresponding to Coxeter dia-
grams with two nodes. We list only the connected diagrams with
Pi = Pi and values of | (elf ye2) | Φ 0, 1.
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@ ® cos kπ\q

® — ® .577

'2.4.3) d ) - 5 - ® .707

© — — © .851, .526

(D-i-© .816, .577

®-^~® .934, .356, .951, .309

2.5. Lattice subgroups.

Let G be a locally compact group. A lattice Γ in G is a discrete
subgroup such that G/Γ has finite Haar measure. Two subgroups Γ
and Γ' of G are called commensurable if Γf)Γ' is of finite index in
both Γ and Γ.

If G is a semi-simple matrix group having no compact normal
subgroup of positive dimension and Γ is a lattice in G, then Γ is
dense in the Zariski-topology of G; that is, any polynomial in the
matrix entries of G which vanishes on Γ vanishes on G ([1], cf. [9]).
In particular, if G acts irreducibly on the underlying vector space,
so does Γ. This last remark holds equally well if G is reductive
(i.e., G is a product of a semi-simple group and a commuting abelian
subgroup), and G acts (absolutely) irreducibly on the underlying
complex vector space.

If G is a Lie group, we denote by Ad G the representation of
G on its Lie algebra G induced by x -»gxg~\

Suppose now that G is a reductive Lie group of matrices and
Γ a lattice subgroup such that Ad Γ is Zariski-dense in Ad G. Let
k denote the field generated over the field Q of rational numbers
by Tr AdΓ={Tr Ad 7; 7 6 Γ}. Let T denote the function g-
on G. Let Sf denote the C-linear span of the functions

x >T(XΎ), xeG,7βF.

The group G acts on the space ά^ of all. polynomial functions
on G via the translations:

/—>g f, fe^geG

where we define (g-f)(x) = f(xg). Clearly ^fa^ andΓ ̂ c ^ .
Since T(xy) = Tr (Ad xy) = Tr (Ad x Ad 7) and Ad Γ is Zariski-dense
in G, it follows that G-^aSf. The set of functions {7 Tr;7GΓ}
span £f and from among them we select a base B = {7r Γ, , 7ft Γ}
(note: w <; (dimG)2 and is therefore finite).
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In the representation p of G on JSf, the matrix of <o(γ) with
respect to the base B is k-valued.

Proof, (cf. [5]). For any c e G, let c denote the evaluation
map ^ -> C given by /—>/(c). c is linear. Since AdΓ is Zariski
dense in Ad G, {γ; ΎeΓ} is a separating family of linear functions
on Sf. Hence we can select βί9 •• ,/9» in Γ so that φί9 -—,βn}
separates ,Sf. For any yeΓ and for fixed ί,

This gives a system of n equations for the n unknowns^, •••,
cin, with all coefficients in k. Hence the solutions are in k. Since
^(7) = (cί5), our assertion is proved.

The representation p provides a faithful representation of Ad G.
The Zariski-closure G* of p(G) in the full n2 x n2 matrix algebra
coincides with the Zariski-closure of p(Γ). Let I denote the ideal
of polynomial functions on Komc(^f, J*f) which vanish on G*. Since
p(Γ) is Zariski-dense in G* and the matrix entries of p(Γ) are in k,
the ideal I has a base of polynomial functions with coefficients in
k. Thus (strictly by definition),

(2.5.1) The algebraic group G* is defined over the field k.

3* Geometric preliminaries•

3.1. The ball B and its isometries.

Let V be an n + 1-dimensional vector space over C on which we
fix a hermitian form H of signature (n, 1) i.e., n plus signs and 1
minus sign. The unitary group of H operates on the projective
space Pn of one-dimensional C-subspaces of V; we denote the resulting
group on Pn by PU(H). Set (p, q) = H(p, q) and

V~ = {p e V; (p, p) < 0}

V° = {p 6 V; (p, p} = 0}

Let π denote the canonical map of V — {{0}} onto Pn. Set

B = τr(F~), Aut B = the restriction of PU{H) to £ .

On B one can define a Riemannian positive definite infinitesimal
metric invariant under Aut B by the formula (cf. [6])

_ (dp, dp) (dp, p)

t>>2 (p, dp) (p, p)
(3.1.1) ds2 = —
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Although there are many choices for p which map to the same π(p),
the formula above yields a well-defined metric. The angle between
two tangent vectors to B at a point π(p) is defined by the usual
associated real-valued inner product formula

, v Ό 1 <>, y> <χ, P>

(x, y) = - R e

thus

(3.1.2) cos

In particular, if x and # are nonzero tangent vectors to B at a
point r(p) with 7/ = α#, αeC, then <̂ C(#, 2/) = argα.

The distance between two points π(p) and π(g) in I? is given by
the formula (cf. [6])

(3.1.3) cosh d(π(p), π{q)) -

For any vector C-subspace W of V with dimc TF = k + 1 on which
the signature of the restriction of H to W is (fc, 1), the intersection
TFn F~ is nonempty. τr(TFn F") is called a C-ft-plane in J5; and
WΓ is called its preimage in F. In case k = 1, ττ( TF Π F") is called
a C-line in I?. A C-fc-plane is clearly a geodesic subspace of B for
A = 0, 1, •-., n.

By the principal axis theorem, there is a base of C-linear func-
tions on V such that

J E Γ = - | χ o ! 2 +

Such a base /3 is called a standardizing coordinate system; it is not
unique, any other differing from it by a unitary transformation of
H. The associated nonhomogeneous coordinate system {xjxo, ,
#w/#o} on the complement of xQ = 0 in P n is called a standard non-
homogeneous system. In the nonhomogeneous coordinates xjxθ9 •••,
ίcw/ίc0 of β, B becomes the open unit ball in Cn:

The point o of B defined by the n equations

0 = χ1 — χ2 = = χn

is called the center of the standardizing and of the standard non-
homogeneous coordinates. Every point of B is the center of some
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standardizing β.
The stabilizer (AutJ5)0 of the center o of β is the image in

Aut B of the subgroup of PU(iί) given in any standardizing coordi-
nates by

where tU = U \ The group U(H) is transitive on π(V ) and the
subgroup (AutjB)0 is transitive on the set of all C-lines through o.
It follows at once that Aut B is transitive on all pointed lines i.e.,
pairs (p, L) with p a point on the C-line L of B.

The geodesic subspaces of B having constant negative curvature
are of two distinct kinds. On the one hand by a direct computa-
tion one finds that all C-lines have constant curvature —2. On the
other hand, given in V any C-linearly independent vectors/0, •••,/*
such that </;, fj) e R(i, j = 0, •••,&), the subspace π([Rf0 + +
RfΛ Π V") is called an iί-fc-plane if it is nonempty; its sectional
curvature is —1/2. If k = 1, we call the i?-l-plane an i?-line.

REMARK 1. The ratio of 4 between the curvatures of C-lines
and i2-planes arises from the existence of a restricted iί-root 2a.
Any C-line is isometric to real hyperbolic 2-space i.e., the Poincare
disc.

REMARK 2. With respect to any nonhomogeneous coordinate
system on B, a C-&-plane is the intersection with B of a A -plane;
or as we shall say for short, a C-λ -plane is linear with respect to
any nonhomogeneous coordinate system. By contrast, an /ί-fc-plane
π([Rf0 + + Rfk] ΓΊ V") is the intersection with B of a &-dimen-
sional iί-linear subspace of Cn relative to nonhomogeneous coordinates
xjxo, - , XJXQ provided that /0, •••,/* lies in the l?-linear span of
the dual base to α?0, •••, a?n. Thus, with respect to a standard non-
homogeneous coordinate system, an iί-fc-plane need not be linear)
for example, a general iί-line is a circular arc meeting the boundary
of A orthogonally, where A is the unique C-line containing it.

REMARK 3. Any geodesic line P in B is an i?-line. For let
Pot PL be vectors in V~ such that π(p0) and 7t{px) are distinct points
of P. Set M= Cpo + Cpι and L = π(M Π V~). Then L is the unique
C-line containing P. Set e0 — (p0, Po)"^ and exeM Π {Ceύ)

L where
_L denotes the orthogonal subspace of V with respect to H. Then
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P = π((e0 + Rex) Π V~) and is thus an iϊ-line. We note that (pOf p^)Φ
0 since the restriction of the hermitian form H to M is of signature
(1, 1). Since π(p0) = π((pQ, p1}'1p0)9 we find that P= π((p0, p1}"1p0 +
RpJ is the geodesic line through π(pQ) and ^CpJ.

One can say that with respect to a standard nonhomogeneous
coordinate z on a C-line, an JR-line is linear with respect to Re z
and Im z if and only if it passes through the origin.

REMARK 4. Inasmuch as U(n) is transitive on all points of
{z e Cn; \z\ — 1}, it follows that Aut B is transitive on all pairs (p, P)
with peB and P an Λ-line through p.

3.2. Properties of an equidistant surface.

Given two points π(p^ and π(p2) in B, the equidistant surface
S of π(Pi), π(p2) is by definition

S =

The equation of S is easily obtained:

cosh d{π{x), π(p$) — cosh d(π(x)9 π(pz))

1 O, Pi) 1 = 1 <a, P2> 1

If moreover we normalize the points of V representing π(pt)
and τc(p2) so that (plf px> = <p2, p2>, the equation of S becomes simply

The locus of this equation is easy to describe. Let M denote
the 2 dimensional C-linear subspace Cpγ + Cp2 of V. Let A denote
the orthogonal complement to M in V with respect to H. We have
Af] M = (0) since the restriction of H to M has signature (1, 1) and
thus H on A must be positive definite. π(M (Ί V"~) is a C-line in B
and P — S Γ) π(M Π F~) is the perpendicular bisector in the Poincare
disc π(M Π V") of the points TΓfjO and π(p2). Now for any cc in V,
if a; satisfies \{x, p1)\ = \(xf p2)\ so also do the points x + A. Hence
S contains \Jz(x)ePπ(Cx + A) fl 5 .

Let α?o, •••,»• be standardizing coordinates with x2 = xz = =
ccw = 0 on M and αj0 = CCJL = 0 on A. With respect to nonhomogeneous
coordinates xjxθ9 , £w/#0 on Cw each of the planes π(Cx + A) is paral-
lel to π(Cy + A) (i.e., they meet only in the line at infinity x0 — 0).
Thus we see that S contains the R-(2n — l)-dimensional cylinder
erected on the geodesic line P.

Consider now the orthogonal projection μ (with respect to the
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Riemannian metric) of B onto the geodesic C-line π(MΠ V~). If
π{x) e S it is easy to verify that in the Riemannian metric the C-
(n — l)-plane π(Cx + A) {] B is orthogonal to the C-line π(M) Π B.
Hence μ(π(x)) eP. Thus π(Cx + A) Π B = μ~1μ(π(x)) for all xeS,

S = U j"" 1^)

and S is indeed the (2n — l)-dimensional cylinder elected on P with
respect to both the Riemannian metric as well as nonhomogeneous
standard coordinates on B. We call P the spine of S; for any
π(x) e S, we call each subset μ~~1μ(π(x)) = π(Cx + A) Π B the slice of
S through π(x) and it is denoted Aπ{x). An S-function is any func-
tion c0 + c1y1 + + cnyn which is constant on all slices of S, where
y19 yn is a nonhomogeneous coordinate system on B.

The spine P of an equidistant surface S satisfies the two pro-
perties

(PI) P is a geodesic line contained in S.
(P2) Let L denote the unique C-line of B containing P, and let

μL\ B~>L denote the orthogonal projection of B onto L. Then S=

The following simple lemma will be useful in showing that the
spine of an equidistant surface is uniquely characterized by proper-
ties (PI) and (P2).

LEMMA 3.2.1. Let C be a C-linear subspace of V which contains
an open (in the Euclidean topology) subset 0 such that π( V~ D 0) is
a nonempty subset of the equidistant surface S. Let P be a subset
of S satisfying properties (PI) and (P2), and let L be the C-line of
B containing P. Then μLπ(V~ Π C) consists of a single point.

Proof. Let M denote the preimage of L, i.e., the C-linear span
of π~\L). Then dimcΛf=2. It is easy to verify that orthogonal
projection μL of B onto L can be described as the map π(v)—>π(X(v)),
veV" where λ: V-+M is the orthogonal projection of V onto M
with respect to the hermitian form H. In particular, μL is a holo-
morphic map. On the other hand, the geodesic line P is an J?-line
and by hypothesis μLπ(V~~ Γ) 0) c μL(S) c P. Consequently μLπ is
constant on a nonempty open subset of C and therefore is constant
on V" Π C.

Let P be a geodesic line in an equidistant surface S satisfying
property (P2) and let μL be as in (P2). For any peP, we call μjMp)
the slice at p with respect to P.

LEMMA 3.2.2. Let P and P' be lines in the equidistant surface
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S satisfying (PI) and (P2). Then P = P\

Proof. Let p and g be distinct points of P and let Ap, Ag be
the slices at p, g respectively with respect to P. Let Cp denote the
C-linear span of π~ι(Ap). Let μv denote the orthogonal projection
of B onto the unique C-line U containing P'. By Lemma 3.2.1, one
sees that μL>(Ap) = μL>π(C9 Π F") = p', a single point of P'. Con-
sequently p' = Ap Π P ' and Ap = Ap,, the slice at p' with respect to
P'. Similarly, g' = Aff Π P' and Ag = Au>, the slice at # with respect
to P and the slice at q' with respect to P'.

Consider now the quadrilateral p, g, g', p'. Since each slice meets
P and P ' at right angles, the sum of the four angles of the quadri-
lateral is 360°. Hence it lies in a flat subspace of B (cf. [6]). But
B has rank 1; that is, the maximal flat geodesic subspaces have R-
dimension 1. Hence P — P'.

Terminology. An equidistant surface is hereafter called a
spinal surface.

REMARK. It is clear that the coordinate system in (iii) can be
selected to be standardizing.

Let AutS denote the subgroup of B stabilizing the spinal sur-
face S. Then Aut S stabilizes the spine P and indeed operates
transitively on P. Thus S is the orbit of any of its slices under
Aut S, and Aut S is the direct product AutPA x Aut P where A
denotes the slice through a point p e P and AntPA the subgroup of
Aut B stabilizing A and fixing each point of the normal to A at p
(i.e., the C-line L containing P), and Aut P is the one parameter
subgroup of Aut B which operates transitively on P and moves each
tangent vector to B at a point of P parallel to itself. Explicitly,
if P is the iί-line Im xjxo — 0, x2 = = xn — 0 with respect to a
standardizing coordinate system xQf , xn then Aut P is given by
the maps

x[ — ax0 + bxlf α, b e R, a2 — b2 = 1

= 6 0̂ + α#i

= #. (i = 2, •••, n) .

In purely algebraic terms, Aut S is the centralizer in PU(iJ) of
TR where T is a maximal i?-split torus in PU(H), i.e., !ΓΛ is a one-
parameter diagonalizable subgroup with positive real eigenvalues.
In the terminology of transformation groups, a slice of S is a slice
for Aut S operating on S.
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LEMMA 3.2.3. Let S be a spinal surface, P the spine of S, A
a slice of S, p = P Π A, L the unique C-line containing P, and let
M, C denote the preimage subspaces in V of L, A respectively. Then

( i ) M= (AfΓlC) + C1 and C= (AfflC) + M\
(ii) Let x0 and xλ be independent linear functions on V vanish-

ing on ML and let yx — xjxo. Then yx is an S-function.
(iii) // moreover x0 vanishes on (MCiC)1 and x1(MC\C) — 0

then the equation of S is arg yλ = θ, where θ is a constant and the
equations of P are:

a r g yx = θ, y2 = y3 = = yn = 0

where y^ — xjxo and x2, - , xn is a base for the annihilator of

Proof, (i) and (ii) are essentially a reformulation of previous
remarks (cf. proof of Lemma 3.2.1). As for (iii), let e0 be a nonzero
element in MΓϊC and e1 a nonzero element in C 1 such that
πCβo + βi) 6 P. Then P = π((e0 + Rex) Π V") and yiπ{e^ + ίej) = ̂ (eo+

on P, arg ̂  = 0, where 0 — arg yγ{π{e^ + βj). Since ^ is an S-f unc-
tion, arg yγ = 0 is the equation of S. The conclusion in (iii) is now
evident.

LEMMA 3.2.4. Let Sx and S2 each be spinal surfaces whose
spines lie in the same C-line and intersect. Then Si and S2 meet
at a constant Riemannian angle at all points of St Π S2.

Proof. Let Pt denote the spine of S* and let L denote the C-
line containing Pt(i = 1, 2). Since the geodesic joining two distinct
points of B is unique, either Px = P2 or P1 Π P2 consists of a single
point. We need only consider the latter case. Set {/̂ } = Pt Π P2.
Then Sx Π S2 = μi\^), a common slice. Set A = Sx Π S2. Since
Autΰ acts transitively on (point, line) pairs, we can assume with
no loss of generality that the spine of Sx is given by the line 0 =
x1 = x2 = = αjΛ_χ Im %̂/α?o = 0 with respect to a standardizing
coordinate system xQ, - - , xn and that the common slice A is at
a?w/a?o = 0. Then by Lemma 3.2.3, both Sx and S2 are iί-linear in
xjxo, , ajn/a?0 coordinates.

Let C denote the preimage subspace of A in V and let Hc denote
the restriction of the hermitian form H to C. For any π(x) e A
there is a ^ 6 U(HC) such that gGέ? = τr(#). Then grc is given by
equations
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χr __ a £ _|_ a χ _j_ . . . _j_ ^ %

x\ x = a< x + + a , j xn

We complete these equations to get an element g of U(H) by
setting

xf

n = axn, where a = α0l

With respect to the nonhomogeneous coordinates xjxθ9 xjxo

on B, g acts affinely on L. Indeed the element g sends any p with
peL into the point g(έ?) + ap/(am + 0) = g(έ?) + l α ^ P . Thus g
sends vectors ^ P with peL into vectors g(έ?)g(p) parallel with
respect to the coordinate system xjxo, •••, #TO/αv Hence g(p)eSi for
pe S{d L since Ŝ  is R-linear (i = 1, 2). Consequently, # sends
(S:L n £, S2 Π L) to (Si Π ̂ (I/), SI Γl ί/(L)). Inasmuch as L is the normal
to A at έ? with respect to the Riemannian metric, g(L) is the
normal to A at g(έ?)> and hence by definition ^(S1 Π ̂ (^), S2 Π g(L))
is the Riemannian angle formed by Sl9 S2 at g(^). Since gr induces
an isometry on JS, it preserves Riemannian angles. The proof of
Lemma 3.2.4 is now complete.

LEMMA 3.2.5. Let S be a spinal surface and let I be a C-line.
If 1 is orthogonal to a slice of S, then I Π S is a geodesic line.

Proof. Let A be a slice of S such that / is orthogonal to A
at a point q oί A. Let P denote the spine of A and set ^ = AΓ)P.
Let yl9 y2f — -, yn be a standard nonhomogeneous coordinate system
centered at έ? with yv = y2 = = yn_± = 0 on P and yn = 0 on A.
The proof of Lemma 3.2.4 shows that the C-line / orthogonal to A
at q is given by the equations

and moreover, the geodesic lines in / through the point q are given
by the additional equation

argτ/% = constant.

In particular, If] S is a geodesic line by Remark 3 of 3.1.
The common Riemannian angle between St and S2 along S, Π S2

is denoted as <£(Sj, S2); it is called the angle formed by Sl9 S2.

LEMMA 3.2.6. Let S^i = 1, 2) 6e a spinal surface in B, and
assume that z is both an Sx-function and an S2-function. Then the
Riemannian angle betiveen S1 and S2 is given by the euclidean angle
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in the complex z-plane of the image sets z(Sx) and z(S2).

Proof, By definition, z is nonzero polynomial of degree 1 in
nonhomogeneous coordinates on B which is constant on all slices.
Let L be a C-line containing the spine of Sx. Then L is orthogonal
to S1 Π S2 at the point L Π A. By definition, as Riemannian angles,
<2C (Slf S2) = <>C (Si Π L, S2 Π L). As a Riemannian space L has con-
stant curvature and the Riemannian angle coincides with the eucli-
dean. The function z restricted to L is a complex analytic map of
a C-line and is therefore conformal. Consequently

< ( S , n i , s 2 n i ) = <(*($nL\Z(S 2 nI,)) .

Since z is an S^function, z(St Π L) = z(Si)(ί — 1, 2). Consequently,

LEMMA 3.2.7. Let S be a spinal surface, and let I be a C-line,
and let μ denote the projection of S onto its spine.

( i ) With respect to any nonhomogeneous coordinate system,
IΠ S is an (Riemannian-unbounded circular arc in the disc I or
is empty.

(ii) // / meets the spine of S, then IΠ S is a geodesic sub-
space.

(iii) / (Ί S is a geodesic line if and only if for any pe IΓΊ S,
the line pμ(p) and I (Ί S span an R-k-plane k <, 2.

(iv) If IΠ S is a geodesic line, then IΠ S and the spine of S
span an R-k-plane with k <̂  inf (3, n).

(v) Let v0, vl9 v2 be elements in V such that π(v^) and τc(v2)
are distinct points of IΠ S and τc(vQ) = μ{π{vύ). Then I f] S is a
geodesic line if and only if (vQ, v^)(vu v2}(y2, v0} eR.

Proof. Let P denote the spine of S. Let yL, ••-,!/« be any
standard nonhomogeneous coordinate system centered at a point
^ e P with yn = 0 on the slice through έ?. By Lemma 3.2.3, the
surface S is /2-linear in Re^, I m ^ (i — 1, •••,%), and for any C-
line /the same is also true. Hence IΠ S is J2-linear. With respect
to any other standard nonhomogeneous coordinate system, I is a
disc and / Π S is the transform of a straight line by a fractional
linear transformation. Hence / n S is an unbounded circular arc.

Assertion (ii) follows from the fact that any straight line in
the yx, , yn coordinate which passes through & is a geodesic line.

To prove (iii), suppose first that / Π S is a geodesic line. Let
p, pf be distinct points on IΠ S, and let #, 0" be the orthogonal
projections of p, pf on P. We can choose e0, v, v' in V which are
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mapped by π onto £?9 p, p' respectively and standardizing coordinates
xQ, * , xn with dual base eύ9 el9 , en so that yn == 0 on the slice
through <£?, y,(v) e # ,

v = e() + α^i, ΐ/ = eϋ + 6 ^ + 6MeΛ + /

where a1 e R, bn e R, and / = b2e2 + + 6%_1β%_1. We have / ( I S c
πOv + Rv'). Since / Π S is a geodesic line, <v, ?/> eR. Clearly
(e(), v) = <e0, ΐ/> = <<?0, βo> 6 R. Consequently π((Re0 + Rv + /fa;') Π F~~)
is an JS-λ -plane spanned by I f] S and p ^ 7 of dimension 2 or 1
according as p Φ έ? or p — (7. Set e' = e0 + 6Λβn. Then τr(e') = ̂ ?"
and <β', v>, <e', v'), (e\ e0) are all in R. Hence τr((i?β0 + JK̂ ; + ^v' +
Re') Π F") is an iί-A -plane with k £ 3 and k ^ 2 if n = 2.

Conversely, if I Π S and pμ(p) span an /?-2-plane, then / Γl S is
the intersection of two geodesic subspaces and is therefore geodesic.

Assertion (v) is clearly a restatement of (iii)

LEMMA 3.2.8. Let A and B be orthogonal C-planes in Chn with
dimcA = k and dimci? = n — k. Let G be a geodesic R-j-plane. If
A n BdG and dim«A f) G = k, then dimΛi? Π G — j — k.

Proof. Let p denote the unique point in ACl B, let T denote
the tangent space to Chn at p, and let A, B, G denote the tangent
space at p to A, B, G respectively. It suffices to prove that
dim/ 2β f)G = k — j . Clearly we can choose elf , ej9 , en an
orthonormal base of t with el9 , eά a base for G, and el9 , ek a
base for A. Then ek+l9 , en is a base for B. Hence B n G has a
base efc+1, , e5. Thus dim Λ ΰ Γl G = i — &.

LEMMA 3.2.9. Lei S, 6e α spinal surface with spine Pi and let
Lt be the C-line containing Pi (i — 1, 2). Assume that Lx f] L2 con-
tains a point p0 which is not on Pλ or on P2. (i) Let & e S1f] S2.
Then the tangent space to Sλ and S2 at έ? are distinct, (ii) // SL

and S2 have a common slice, then Lλ — L2 and Px Π P2 is not empty.

Proof. Suppose not. Let At denote the slice of St through έ?
(i — 1, 2). Let A% and St denote the tangent space to A% and St at
& respectively (ΐ = 1, 2). Then At is the maximum C-linear sub-
space of Si (i — 1, 2). To prove (i), suppose that Sλ — S2. Hence
Ax — A2. This implies that Ax — A2 since At is a C-linear subspace
(i ~ 1, 2). Let μέ denote the orthogonal projection of the ball onto
L, (ί = 1, 2). Then μlέ?) = 4 ^ ^ (ΐ = 1, 2). Consequently the
geodesic line po/Λ(^) forms a right angle with the geodesic line

Similarly, μ^)μ^) forms a right angle with poμ9j
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at μ2(&). Inasmuch as the sum of the three angles in the geodesic
triangle p^χ{d7)μ^) is less than or equal to two right angles with
equality only if the triangle is degenerate, either pQ = μ^) (i = 1
or 2) or /£1(^) = /ι2(^>). The first possibility is excluded since μ^) e
Pi (i = 1, 2). Consequently μx{^) = μJί#) e Px Π P2. In particular,
Lx n L2 contains the two distinct points pQ and μ^έ?). Therefore
Lx = L2 since a C-line is uniquely determined by two points. Apply-
ing Lemma 3.2.4, one infers that <>£ (Slf S2) = 0 at μx{&) as well as
at &. Hence Px = P2 and Sx = S2.

To prove (ii), let A denote a common slice of Sλ and S2. Choose
^ e i , and consider the geodesic triangle Po
argument above, μ^) = μ2(<^) e Px Π P2 and A = L2.

LEMMA 3.2.10. If the spines of two spinal surfaces Sx and S2

have two distinct common perpendicular lines which meet one spine
in two distinct points, then Sx = S2. In particular, if two spinal
surfaces have two common slices, they coincide.

Proof. Let Pi denote the spine of St (i = 1, 2) and let g1 and
g2 be distinct geodesic lines orthogonal to both Px and P2. Then
the quadrilateral formed by g1, Plf g

2, P2 has four right angles. Con-
sequently, it must be degenerate and P1 = P2. Hence St — S2.

3.3. Intersections of half-spaces.

LEMMA 3.3.1. Let St be a spinal surface with spine Pt (ϊ = l, 2).
Let Lt denote the C-line containing Pt (i — 1, 2) and assume that
Lx Π L2 contains a point p0. Let Sf denote the half-space bounded
by S± and containing p0, then

( i ) for any slice A2 of S2, Sf Π A2 is convex (with respect to
geodesies in Chn);

(ii) S1f] S? is an unbounded connected (2n — 2) manifold or is
empty.

Proof. To prove (i) it suffices to prove A2 Π S? is convex for any
C-line A2 in A2. Choose a standard nonhomogeneous coordinate system
Vi> Viy '' y Vn centered at p0 so that Lx has the equation y2 = =
yn = 0. Then the ball B is given by \y^2 + + \yn\

2 < 1, the
spinal surface Sλ is given by the equation \yι — a\ = b where |α |>6,
and Sχ+ is given by \yx — a\ > b. Moreover the slice A2 is a disc
orthogonal to the C-line L2. Consider now the orthogonal projection
μx of the ball B onto Lx. The restriction of μx to A2 is holomorphic
and hence a conformal map if Lλ Φ L2; if L1 — L2, μx maps A2 onto
a point. In the former case, μx(A'2) is a circular disc lying in the
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disc Lλ: \ yx \ < 1; and μλ(A2) Π S+ is therefore a convex subset of
μx{Af

2) with respect to the induced metrics, (which coincides with
the Poincare metric). The inverse image of μx{A[ f] S?) in A2 is
therefore also convex, because conformal maps of Poincare discs are
isometries. If Lx = L2, then \μx(A2) Π Sf = μt(A2) or is empty, and
correspondingly, A2 ΓΊ Si+ = A2 or is empty. This proves (i).

To prove (ii) for n — 2, consider the projection μx of the spinal
surface Sx onto its spine P1# By Lemma 3.2.7 (i), for each slice Ax

of Si, Ax Π S2 is either an unbounded circular arc in Ax or is empty.
From this (ii) follows. For larger n, a, similar inductive argument
can be given. Proof of the lemma is now complete.

LEMMA 3.3.2. Let Δ be α finite subset of isometries ofCh71. Let
pQ e Chn. For any Ί e Δ, set

7+ = {x e Chn; d{x, p0) <; d(yx, p0)}

7 = {x 6 Chn; d(x, Po) = d(yx, p0)}

F{Δ) - Π y+ .

Then F{Δ) and each of its k-dimensional faces is topologically a
cell, k = 0, 1, 2, •••, 2n.

Proof. We prove the result for n — 2. For larger n, an induc-
tive argument based on similar considerations can be given.

The region F is clearly star-shaped with respect to geodesies
originating at p0. Inasmuch as the boundary of F is made up of
a finite number of piece wise smooth 3-sur faces, F is a 4-cell.

Let es be a 3-face of F\ that is, ez is a connected component of

Let μ denote the projection of the spinal surface 70 onto its
spine P. By Lemma 3.3.1, each slice of 70 meets 7+ in a convex set
and consequently each fiber of the map μ is a cell. Since ez is con-
nected, μ(ez) is an interval. It follows that e5 is a cell. The proofs
for 2-cells and 1 cells are similar.

4* Arithmeticity of groups generated by C-reflections*

Let G be a semi-simple real Lie group and let Γ be a lattice
subgroup of G.

DEFINITION. Γ is an arithmetic lattice in G if and only if there
is an algebraic matrix group A defined over the field Q of rational
numbers and containing AdG, the adjoint group of G such that

( i ) AR — Ad G x K (direct) with K compact.
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(ii) Ad Γ is commensurable with the projection of Az into G
i.e., AdΓ Π (AZKΠ G) is of finite index in both Γ and AZKΠ G.

REMARK. Let G* denote the Zariski-closure of AdG in the full
matrix algebra £? over complex numbers and let k denote the field
generated by Q[TrAdΓ]. Let # denote the ring of algebraic
integers of k and let Galfc denote the set of all monomorphisms of
k into C. It is known (cf. (2.5.1)) that the algebraic group G* can
be defined over the field fc. Let I denote the ideal of polynomial
functions (in the entries of matrices in g7) with coefficients in k
which vanish on G* and let °I denote the image of I under σe
Gal k. One denotes by σG* the algebraic matrix group on which the
ideal °I vanishes; σG* is defined over the field σk.

In this paper, the group Ad G will usually be PU(w, 1) and G* =
PGL (n + 1, C) which is a simple group. Whenever G* is a simple
group, the groups A and K in the definition of arithmetic group
are easy to identify. Set & = Galfc, and

&X = {σeGalk; σ = σ)

?_ = {(T6 &R\ (σG*)Λ is compact} .

For σ e ^ - ^ Λ , aG* x σG* is defined over R, and, as is easy to see,
(σG* x dG)R = (σG*)c. It is well-known (and easy to prove) that a
connected compact complex group is abelian. Thus < τ e ^ - &R

implies that (σG* x σG*)R is not compact. Consequently if we form

A = Π σG*

and set

(4.1.1) JΓ - σ II CG*)β, 5 - e Π ^ σG*

then I? is defined over J? and the algebraic group A is defined over
Q; it is the group obtained from G* by "restriction from k to Q".
Moreover, BR is the product of all the noncompact factors of AR.
By definition, the subgroup AZK Π B is an arithmetic lattice in BR,
the fact that it is a lattice following from the theorem of Borel-
Harish Chandra that AR/AZ has finite measure (cf. [2]).

If G* is simple and k = Q[Tr AdΓ], then BR = AdG, 5f_ = Sf-
{identity} and thus σkczR for all σ ^ identity. Since G is a real
Lie group, kczR, thus fc is a totally real field with σ(G*)Λ compact
for all ae^_.

The following lemma provides us with a test for arithmeticity
of a lattice generated by complex reflections.

LEMMA 4.1. Let H be a nondegenerate hermitian form ΣaijZiZj



ON A REMARKABLE CLASS OF POLYHEDRA 193

on Cn, let h — Q{{ai:}}; i, j = 1, , n) and let G = U(H), the unitary
group of H. Let Γ be a lattice subgroup of G, let k = Q[Tr Ad Γ]
and let έ? be the ring of algebraic integers in k. Let E denote
the composite field of h and k. Assume

( 1 ) The field k is totally real.
( 2 ) For all xeh and σ e Gal h, σ(x) = σ(x).
(3) Tr[AdΓ]c^.

Then Ad Γ is arithmetic in Ad G if and only if:
For all σ e Gal E with σ Φ 1 on k, °H is definite.

Proof. Let G* denote the Zariski-closure of AdG. Then G* =
PGL (n, C), a simple group. Let A = RkίQG, the group defined over
Q by restricting the ground field from k to Q. Then

A - Π σ<3*

where 5̂ " = Gal k. For any σ e Gal E which is not the identity on
k, °G* is defined over R by hypothesis (1) and aH is a hermitian
form by (2), (G*)Λ = PU (H) and (σG*)* = PU (σH).

Assume °H is definite for σ Φ 1 on k. Then σ(G*)li is compact
for all σ e Gal & with σ Φ 1. Let Γ7' denote the projection of Az into
the σ = 1 factor. Since ΓL î (°G*)R is compact, /"" is a discrete sub-
group. The Q-structure on A arises from the Q-structure on the
field k regarded as a Q-vector space, embedded into

Π σk ^ k ® C
t e// Q

via the diagonal embedding x —> ΐ[σev
σ% Hence Γf = (G*)#. By

hypothesis (3), Γ c Γ . To prove that Γ is arithmetic, it remains
only to prove that Γ'jΓ is a finite set. By hypothesis, G/Γ has
finite Haar measure. Hence AdG/AdΓ has finite Haar measure.
We have G« = AdG, and (AάG)/Γr has finite measure. Moreover

μ(Ad Gin-μ(Γ'in = μ(Ad G/Γ)

where n denotes Haar measure. It follows that Γ'/Γ is finite.
Hence Γ is arithmetic.

Conversely, assume that AdjΓ is arithmetic in AdG. Then
σAd Γ is bounded for all σ e Gal k with σ Φ 1. Since the map of
GL (n9 C) to PGL (n, C) has compact kernel and since σAd 7 = Ad σj,
the matrices °Γ are bounded in PU (Ή) for any σeG&lE with σΦ
1 on i Hence the topological closure °Γ is a compact group and
as is well-known stabilizes a positive definite hermitian form on Cn.
But σΓ is irreducible on Cn (cf. (2.3.3)) and therefore stabilizes aunique
hermitian form up to a scalar factor. Consequently σH is definite.
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REMARK 1. The proof of Lemma 4.1 shows that the group AdΓ
is commensurable to G% if G* is simple and & is the ring of inte-
gers in Q[Tr AdΓ].

By the same argument one can prove:

Let G be a semi-simple matrix group defined over a field k, let
& denote the ring of algebraic integers in k. If

(1) k is totally real
( 2) σTr Ad Γ is bounded for all σ e Gal k with σ Φ 1, then Go

is discrete (and an arithmetic lattice in G).

REMARK 2. Let k be a subfield of R and £? the ring of inte-
gers of k. Let G be an algebraic matrix group defined over k. If
G& is discrete, it is an arithmetic lattice in GR. The proof involves
"weak approximation" i.e., a generalization of the Chinese remainder
theorem to algebraic groups.

LEMMA 4.3. Let & be a Coxeter diagram, let H be a non-
degenerate hermitian form associated to 3?, and let Γ be the group
generated by C-refiections associated to (3?, H) and rational phase-
shifts. Then for all jeΓ, Trγ is an algebraic integer, and more-
over, it is a sum of roots of unity if px — p2 =

Proof. Let n be the number of nodes of 3f, let eu •• ,e Λ

denote the canonical base of Cn, and let {pif qijf i, j = 1, , n,
denote the data of 3f. Then

(ei9 e5) = H(eu eό) = aiόφiό, \ φiό \ = 1

and

ttu = 1, Ψu = 1

where

_ /cos (π/pj — πjpj) + cos 2π/qij \1/2

ciό - ^ - )

si:i = (sin π/pt sin π/pj)1/2 .

By definition, the C-reflection Rt in eϊ is:

that is, Ri = 1 + et (g) βt, where βi is the linear map x -> (η\ — l)(x,
ety, and e® β denote the endomorphism of Cn: (e ® β)(v) = β(v)e. In
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this notation, (e (g) β)(f (x) a) = β(f)e (X) a. Thus

Tr RtιRh. .Rim = g ^ ^ Σ ^ ^ ^ ^ ^ ^ ^ / β ^ ) . A i | (β i y i ) .

Thus Trγ is a sum of terms of the type

or

sm-

Now

sin- π

Pi

Hence Trγ is a sum of terms of the form im Π?=i ίVΠi=i ( 2^i- κ)
Since 2co is an algebraic integer and moreover, a sum of roots of
unity, if pλ — p2 — — pw (by the cos (0/2) formula) the same is
true of TrY provided Π i = i ^ ^ i + 1 is a root of unity.

This last condition is assured by the hypothesis of rational
phase shifts. Proof of the lemma is now complete.

LEMMA 4.4. Let Γ be a group generated by C-reflections asso-
ciated to a Coxeter diagram 3ί with n + 1 nodes and Hermitian
form H. Assume

(1) H is of type (n plus, 1 minus).

( 2 ) The group Γι generated by the n-reflections Rlt - , Rίf ,Rn+1

of the reflections Ru , Rn+t has a connected diagram and is finite.
( 3 ) H has rational phase shifts.
( 4 ) p, = p2 - = p Λ + 1 .

I%e% Ad Γ is arithmetic in PU (H) if and only if: For all auto-
morphisms of C which are not the identity on the field Q[AάΓ],
σH has positive determinant.

Proof. Let W = Ceλ + -Ce\ + Cen+1. By (2.3.3) and hy-
pothesis (2), Γ* is irreducible on W. Consequently Γ* stabilizes a
unique hermitian form on W modulo a scalar factor. Since Γ* is a
finite group, it stabilizes a positive definite hermitian form on W.
Hence any hermitian form on W stabilized by Γι is definite. Then
the restriction of σH to W is definite for each automorphism σ of
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C. Inasmuch as (eu et} = 1 for all i, °H is positive definite on W
and is of type (n plus, 1 minus) or else positive definite for each
automorphism σ of C; these two possibilities correspond to σΔ < 0
and °Δ > 0 respectively, where A denotes the determinant of the
(n + 1) x (n + 1) matrix H(ei9 es).

Let fc = Q[TrAdΓ]. By Lemma 4.2, k = Q[\ΎrΓ\2]. By hypo-
thesis (4) and Lemma 4.3, k consists of sums of real parts of roots
of unity. Hence k is totally real. By hypothesis (3) and (4) H(eif es)
lies in a field generated by roots of unity for i, j = 1, , n + 1;
let k denote the field generated by htj. Then for all σ e Gal h and
xeh, σ(x) = σ(x). Thus hypotheses (1), (2), and (3) of Lemma 4.1
are satisfied. Let E denote the field generated by h and k. We
have seen that for all σ e Gal E, σH is either of type (n, 1) or posi-
tive definite according as °Δ < 0 or °Δ > 0. The conclusion of the
lemma follows from Lemma 4.1.

5* Verification of discreteness*

In the search for nonarithmetic lattices among groups Γ gener-
ated by C-reflections, we can test a lattice for arithmeticity by the
criterion of Lemma 4.4. But how do we test whether Γ is a lattice?
Most particularly, is there a test for Γ to be discrete?

It may be of interest to describe an algorithm applicable to a
wide class of Γ which is finite if and only if Γ is discrete.

It is based on the following general simple lemma.

LEMMA. Let X be a connected simply connected metric space
and Γ a group of isometries of X. Let F be a closed subset of X
and Δ a finite subset of Γ satisfying

(1) F lies in the interior of ΔF — \JγejΊF.
(2) If 7uy2eΔ and yxF Π Ί2F Φ φ, then TΓ^ e Δ.
(3) The induced metric on F modulo Δ is complete,1

Then A generates Γ and Γ is discrete.

Proof. On the space Γ x F define the equivalence relation (7X,
x±) = (τ2, x2) if and only if rr1xι = 72x2 and T Γ ^ e ^ Let Y denote
the quotient space mod^ oΐ ΓxF and let η:ΓxF —>Y the quotient
map. Let π denote the map of Y to X induced by (7, x) —> ΎX.

Γ acts on Y in the obvious way and π is a Γ map. It is easy
to see that ΓF is open and by (3) is closed in X. Hence ΓF = X.

Moreover, the map π is a covering map. To prove this, it
suffices to prove it is an even covering at each interior point of F
in view of hypothesis (1) and ΓF — F.

1 I am indebted to Bernard Maskit for pointing out the necessity of this hypothesis.



ON A REMARKABLE CLASS OF POLYHEDRA 197

On η(Δ x F), the map π is a homeomorphism by definition of
the quotient topology. Given 77(7, x) eπ~\x') with 7 eΓ and x, xr eF,
then 7x = xr and hence η(ΊΔ, F) maps homeomorphically onto jΔF.
The latter contains jF in its interior. Indeed U= f)ΐeΓjAF is a

neighborhood of x'; since Γ c Isom X, U contains a ball centered at
xf of radius d(F, xf — AF). Then π maps each connected component
of π~\Ur) homeomorphically onto U'.

Since X is simply connected, π is a homeomorphism. Clearly Γ
is discontinuous on Y. Hence it is discontinuous on X.

Suppose next that Γ is a group of isometries on X = Chn. Let
F be a compact region in X and let 4 be a finite subset of Γ
satisfying

(1) ί7 lies in the interior of ΔλF*
(2) Δ, = ΔτK
Set Λ2 = {r/; 7, 7' e 4J.

^ = {76 A\ - 4 ; 7FΠFΦ φ).
Inductively set

4 + 1 - z/, U Et

Ei+1 = {je Δ2

t+1 - A. yFΠF^φ} .

PROPOSITION. Γ1 is discrete if and only if Et is empty for
some i, (i = 1, 2, •)•

Proof. (<--). This assertion follows immediately from the lemma.
(—>). This assertion follows immediately from the de-

finition of discontinuous group.
This algorithm for proving discreteness is impractical because

if the group Γ is not discrete, the algorithm never comes to a
conclusion. However, a refinement of the lemma on which it is
based leads under the added hypotheses of § 6, to a criterion which
is more effective i.e., it implies discreteness in some cases, and
enables us to prove nondiscreteness in others by suggesting where
to look for pairs of C-reflections with nonadmissible values.

6«. Joined spaces and a discreteness criterion*

6.1. Abutted families of polyhedra.

For any ^-dimensional polyhedron F we denote by Ek{F) the set
of its ά-condimensional faces. We consider only finite polyhedra F
which are cells minus faces and whose faces are also of this type.
In particular, each eeE2(F) lies on exactly two elements of E±(F).
Write En+1(F) for the empty set 0 and set EQ(F) = F.
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DEFINITION. Let X be a topological space. An abutted family
J?~* of polyhedra in X is a family &~ of polyhedra together with
a distinguished subset ^V of ά^ x &~ satisfying;

(1) If (F, F')e^r; then F Φ Fr and (F'9 F)e^Π
(2) If (F, F') e ̂  then Ff)F'e EX{F) n W ' )
( 3 ) If (F, F') 6 ̂ r and (F, F") e ^ a n d F n F ^ F ί l F " , then

Ff = i*7".
(4) For each eeE^F), there is an F ' e ^ with F n F ' = e

and (F, ί7') 6 ^ τ
The JP' in (4) is necessarily unique and is denoted e(F). n is called
the adjacency of ^\ two elements of ^ ^ are called adjacent if
and only if {F, F') e ̂ K

For any Fo and F in ̂ * and e e Ek(F0) Π ^ ( F ) , we say that Fo

and F are β-connected, if there if a sequence Fu F2, , Fn = F
with (Fif Fi+1)e^Γ (i = 1, 2, , n - 1) and e e JΘ4(F0) Π Π ^ F J n
Ek(F»); in case & = %- + 1, we say simply that Fo and F are con-
nected. We called the abutted family ^ connected if every two of
its elements are connected.

We set for any

For any subset S^ a ̂ , we write

A subfamily ^ d ^ is called open if ^V{£f) = ̂ . Clearly
any open subfamily of ̂ " which contains F contains any connected
subfamily ^ with

6.2. ΓΛβ joined

Let ^ ^ be an abutted family of polyhedra in a topological n-
manifold X. Let X x ^ ^ denote the topological direct product of
the spaces X and ά^ where ^ is given the discrete topology. Set

D= \JFx{F) = {(x,F);xeF,

On the topological space D consider the relation = which is gener-
ated by the equivalences

0, F) = (&', F') if x - x' and a? 6 EX(F) n -£Ί(F') .

Set F = D mod =. Let 77 denote the canonical map of D to Y.

DEFINITION. The space Y is called the joined
The projection X x &~ —> X induces a well-defined continuous
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map π of Y into X. We call π the canonical map of the joined
space into X.

For any face e of an F e ^ , let Fe denote the union of the
interiors (of F and) of all faces of F which contain e. Set

Then J^e is an abutted family of polyhedra on the space Xe which
is the union of {π(Fe)\ Fe e<JQ, when we restrict adjacency in ^l
from j ^ " .

For any eeEk(F), let ^e,F denote the maximum connected sub-
family of ^ which contains Fe. Clearly ^~etF, = J\,F for all F' e
^ e . Let Y(e, F) denote the joined ^9tF space. It is easy to see
that Y(e, F) is a neighborhood in Y of {η(x, F);xe interior of e}.

Suppose that X is a topological manifold. Let Fe^~, eeEk(F),
and let eL be a closed small (topological) k ball transversal to e. Set
Se = de1. Se is a (jfc — l)-sphere. Set

DEFINITION. The abutted family ^ on I is called smooth if
it satisfies the following conditions:

(1) The polyhedra of a?" are "nice" in the sense that for any
Fe^, eeEk(F), and "nicely" embedded small transversal k ball
e1, F Π Se is a polyhedron.

(2) ^e(Se) is an abutted family of polyhedra on the (k — 1)-
sphere Se, and combinatorially, this family is independent of the
choice of the nicely embedded small transversal k ball e1.

(3) Let S(e, F) denote the joined J^ΛSe) space. Then Y(e, F)
is homeomorphic to the direct product Int e x S(β, F), where Int
denotes interior.

6.3. A criterion for discreteness.

THEOREM 6.3.1. Let ά^ be a connected abutted smooth family
of compact polyhedra in the (connected) simply connected topological
n-manifold X. Assume that X has a metric and that there exists
a positive number r such that each F e a?" contains a ball of radius
r. Assume also that J?~ satisfies the condition

(CD2) For any F o e / ' and eeE2(F0), and any sequence FOy Fu

F2, - , Fn of successively adjacent polyhedra with e e E2(FQ) Γ) E2(F1) n
• n E2(Fn), if FQ Π Fn has a nonempty interior, then Fo — Fu.

Let Y denote the jointed ^-space. \Then the canonical map
π: Y ~> X is a homeomorphism of Y onto X.
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Proof. We use induction on n = dim X. If dim X = 1, then X
is homeomorphic to the real line, and the hypotheses imply that d^
is a locally finite covering of the line by intervals which meet only
at their end points.

Now assume the result for spaces of dimension less than n. If
k — 2, then by hypothesis (CD2) any maximal connected subfamily
of ^ e gives a cell decomposition with disjoint interiors of the circle
Se. For k ^ 2 and eeEkf it is clear that the family ^e{Se) inherits
property (CD2) from J^. Thus any maximal connected subfamily
of ^e(Se) yields a finite cell decomposition with disjoint interiors of
the (k — l)-sphere Se.

It follows, using the smoothness, that for any Fe^~, eeEk(F),
and p an interior point of the fe-polyhedron e, that the space Y(e, F)
is an ^-manifold. Moreover the canonical mapπ : Y—+X is a homeo-
morphism of Y(e, F) onto a neighborhood of Int e.

Consider now the canonical mapπ: Y—> X. The hypothesis that
each F e ^ contains an r-ball easily implies that the π image of
each connected component of Y can contain no limit points and that
it must be all of X. It follows at once that π is a covering map.
Since X is simply connected, π is univalent on each connected com-
ponent. Since J^ is a connected family, Y is connected and π is a
homeomorphism of Y onto X.

THEOREM 6.3.2. (I) Let F be a smooth polyhedron in the
Riemannian manifold X. Let A be a finite subset of the isometry
group Isom X and let Γ denote the subgroup of Isom X generated
by A. Assume

(1) J = Δ~\
(2) There is a bijective map 7 —• e(y) of Δ onto EX{F) satisfy-

ing Ί{F) n F = e(τ) for all y e A.
Set ^K^={{ΊF, jdF); y e D), J^=ΓF. Then ^ is a connected abutted
family of polyhedra with adjacency ^V. Moreover Γ operates dis-
continuously on the joined J^-space Y.

(II) //, in addition, J^ satisfies the codimension 2 condition,
(CD2) and X is simply connected, then

(1) Γ is a discrete subgroup of Isom X.
(2) Let A.π.tΓF denote the stabilizer of F in Γ. Then a

fundamental domain for AutΓJF in F is a fundamental domain for
Γ in X (i.e., F is a fundamental domain modAutr-F7).

Proof. That ^ is a connected abutted smooth family of poly-
hedra with adjacency § follows directly from definitions. Clearly
J^ yields a decomposition of the space Y into polyhedra with
disjoint interiors. Consider the action of Γ on Y. It follows at
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once that Γ operates discontinuously on Y, since it permutes the
interiors of the polyhedra of ^ . Under the additional hypotheses
in (II), we can apply Theorem 6.3.1 to conclude that π: Y—>X is a
homeomorphism. Hence Γ is discontinuous on X.

REMARK. Let Γ be a discontinuous group of isometries on a
Riemannian space such as Ch*. Let poeX, and set

F={xeX; d(x, p0) ^ d(x, Γp0)} .

Then clearly X = ΓF. Also, for all y eΓ with jp0Φp0, the interiors
of yF and F are disjoint. F is called a "Dirichlet1 fundamental
domain" for Γ. For any k, let Ek(F) denote the set of codimension
k faces of F. For each eeE^F), let T(e) denote an element 7"1 of
Γ such that

ea{xeX; d(x, p0) = d(jx, p0)} .

Set Δ = T{Ey(F)). Then T: EX{F) -> J is a bijective map and 4 = zΓ1.
Moreover, î 7 satisfies the condition

(CD1): T(e)F f] F = e ΐor all e e EX{F) ,

and also the codimension-two condition (CD2). Thus the converse
of Theorem 6.2 is valid, so that (CD1) and (CD2) are necessary
conditions for a Dirichlet fundamental domain.

THEOREM 6.3.3. We continue the notation and hypotheses of
Theorem 6.3.2 I and II. A presentation for the group Γ is given
by the generators Δ with the following relations:

For each e e E2(F), choose e1 e EX(F) with ecze1 and let re denote
the word of shortest positive length 7i72 7»(7t 6 Δ) such that

( i ) eci7172'"7iFf]Ύ1Ύ2'-Ύi+1FeE1(Ύ1'"7iF) (i = 1, - , w - l ) .
(ii) FΠΎιF=e1.
(iii) F Π 7i72 Ί%F has a nonempty interior.

Set R2 = {re;eeE2(F)}. (By condition (CD2), the words of R2 yield
elements of AutΓF. Set RF = {relations among words of R2 as
elements of AutΓ.P}. Then

(a) R2 generates AutΓF.
(b) (Δ, RF) is a presentation for Γ.

Proof. Let & denote the free group generated by the elements
of Δ, let R denote the kernel of the canonical homomorphism of ^
onto Γ and let Rf denote the preimage in & of AntΓF. One defines
a homomorphism of Rr into the fundamental group of X — ΓE2(F)

(Also known as Poincare or normal fundamental domain.)
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as follows. Choose a base point Po interior to F and a point pr e
yF for each 7 eΓ. For each 7 e J, choose a path in f U Tί7 from
p0 to pγ which does not meet any codimension 2-face of F or 7F.
To each element in w in & there corresponds a path £>(w) in
ΓF - ΓE2(F) = X - ΓE^F) with initial point po; the path <?(w) is a
closed path if and only if weR'. Moreover φ{w1w2) — φ(w1)-φ(w2).
The resulting map Θ: R' -» π^X — ΓE2(F)) is a homomorphism.

Inasmuch as X is simply connected, π^X — ΓE2(F)) is generated
by .Γ-eonjugates of closed paths linking E2(F)f and therefore {θ(re);
eeE2(F)} generates πλ(X — ΓE2(F)). It is easy to see that for we
R\ any homotopy of θ(w) in X — ΓE2{F) leads to a path θ(w') where
wf is obtained from w by successive substitution of subwords xz for
xyy~ιz(x, y, zeΔ), and vice-versa. It follows at once that the kernel
of θ is (1) and θ is an isomorphism. In particular, R2 = {re; ee
E2(F)} generates R'. This proves (a).

Let RF denote the normal subgroup of R' generated by words
in R2 that represent 1 in KutrF. Then RF represents 1 in Γ and
it is clear that RF — R. Hence (z/, RF) is a presentation of Γ.

6.4. Branching and complex analytic joined spaces.

The foregoing results provide a criterion for deciding which of
the subgroups of Z7(2, 1) presented in § 9 are discrete. We shall
require a generalization of the above discussion in order to treat
the action of some nondiscrete subgroups of U(2, 1). The results
of the rest of this section will not be required until § 18.3.

PROPOSITION 6.4.1. Let J^ be a connected abutted smooth family
of compact polyhedra in the topological n-manifold X. Assume
also that for any F e ^ and e e Ek(F) the joined J^\(Se) space is
an (k — 1)-sphere (k = 1, , n) {which is a finite branched over of
Se). Then the joined ^-space Y is a topological n-manifold and

gives a polyhedral decomposition with disjoint interiors of Y.

Proof. This proposition follows directly from definitions. As
asserted above, Y(e, F) is a neighborhood of ^(Int e, F) in Y. By
the hypothesis on ^e{Sβ) and the smoothness of ^ , Int Y(et F) is
an ^-manifold for every &-face e (k — 1, 2, , n). It follows at
once that Y is an ^-manifold. That ά?" gives a polyhedral decom-
position of Y with disjoint interiors is obvious.

DEFINITION. Let &~ be an abutted smooth family on a space
X. We say that ά?" satisfies condition BR if
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for all FzjΓ and e e E2(J*~'), S(e, F), the joined J>;,,(Se)
^ ' space is a circle.

If J?~~ satisfies condition BR, then the canonical map of S(e, F)
onto Se is an even covering map for every codimension 2-face e; we
denote the degree of this map by β(e). We call β(e) the branching
order of ά^ around e. We call a codimensionΛ 2-face e branching
if β(e) > 1. Set

B2(^l = {β; β(e) > 1} .

For any face eeEk(F), where FejT, set 52(e) = {ef; ef e E2(Fr) with
Ff e .0TtF9 β(e

f) > 1}. Thus B\e) c 52(J^) and β c e' for all e' e B\e).

PROPOSITION 6.4.2. Let X be a complex analytic manifold of n
complex dimensions. Let J^ be an abutted smooth family of poly-
hedra on X, which satisfies condition BR. Assume:

(1) Each codimensionR 2-face e such that β(e) > 1 lies on a
hypersurface of C-eodimension 1.

( 2 ) For any s branching codimensionR 2-faces {el9 , es} whose
hypersurfaces are distinct, ^Π f]es is either empty or has dimen-
sion 2n — 2s.

(3) Let eeEk(F) with FeJ^^, and let elf * ,β s be the distinct
elements of B\e) {thus k ^ 2s). Then for any compact subset Kcz
e, there exists an admissible complex analytic coordinate system
z — (zl9 - *, zn) in a neighborhood U in X and a neighborhood W
of η(K, F) in Y(e, F) so that Ude.c: {z; z, = 0}, Kd U=π(W), and
the restriction to W of the canonical map of Y(e, F) into X is
equivalent to the map (wlf , wn) —> (zL, , zn) given by

z% •==• w t (i = s + 1, , n) .

Then the joined J^-space has the structure of a complex ana-
lytic n-manifold such that the canonical map into X is holomorphic.

Proof. For any face e such that β(e') = 1 for all codimension
2-faces e' containing e, the (codim 2) condition of Theorem 6.3.1 is
satisfied, and we can argue just as we did there that the canonical
map of Y(e, F) into X is a homeomorphism onto a neighborhood in
X; we endow such Y(e, F) with the structure pulled back from X.

For faces e lying in s branching codimension 2-faces with
branching orders m19 m2, , ms the hypotheses give us the structure
of a complex analytic manifold on Y(e, F), such that the canonical
map of Y(e, F) into X has degree mjn2 m8. Putting together
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these complex analytic structures from the various Y(e, F), it can
be verified directly that we get the desired complex analytic
structure on Y.

REMARK. Let X be a complex analytic manifold. Let JΓ be
an abutted smooth family of compact polyhedra on X which satisfy
condition BR. Hypothesis (3) of Proposition 6.5 follows from the
apparently weaker hypotheses in which we restrict the face e e
Ek(F) to satisfy the condition: B\e) is a maximal subset among
{B\e')\ all faces e'}. The verification of this observation comes from
straightforwardly studying the situation of Y(e', J?") in Y(e, J^)
when e c e ' .

6.5. Polyhedral Γ-spaces Y and the Γ-cover F*.

A polyhedral Γ-space 7 is a topological space which is covered
by a family J^ of polyhedra with disjoint interiors, together with
a group Γ of transformations of Y which permute the polyhedra
of ^ . The polyhedral Γ-space is called a joined Γ-space if

(1) Γ acts transitively on ^ i.e.. &~ = ΓF where
(2) There is an injective map EX(F) —> Γ satisfying

(1) A = A~ι where Δ = T{EX{F))9

( 2 ) T(e)F n F = e for all e e E,(F).
( 3) Δ generates the group Γ.

We define the subset of ^ x

= {(ΎF, yδF), yeΓ,δeΔ} .

Then J^ is clearly an abutted family of polyhedra on Y with
adjacency ^V, and the joined .^-space may be identified with Y.

Let ΓF denote the stabilizer in Γ of the polyhedron F. We can
define a joined Γ-space Y# covered by a family J^* of polyhedra
and a Γ-map π*: Γ* -> F such that π*j^* = ^ " and Γ*, = (1) for
F e ^ 1 . Namely, fix F^J^, let Γ operate on the topological
space Γ x F via left multiplication on the first factor. Set

F* - (1, F)

and define the Γ-stable equivalence relation on Γ x F generated by

(1, y) - (δ, δ~\y)) for all y e e, δ = T(β)

where e varies over Et(F). Let F* denote the quotient topological
space Γ x .Fmod = and &~% = {Tî *; 7 6 Γ}. The map π#: (T, y) -> 7̂ /
of Γ x F-+ Y induces a well-defined continuous Γ map of Y# to Y.
Moreover the stabilizer ΓF$ — (1); for if (1, y) is an interior point of
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F * and yeΓF*, then 7(1, y) Ξ (1, y') with y, y' interior points of F.
Since the only identifications on interior points of (1, F) come from
equality, we conclude that 7(1, y) — (1, yf). Consequently (7, y) =
(1, y') and 7 = 1.

DEFINITION. Γ* is called the Γ-cover of the joined Γ-space Y.
On the associated family of polydedra ^~*, Γ operates simply

transitively, since ΓF$ = (1).
Warning. Even if Y is a manifold, F # need not be. However,

Y* is connected, locally connected, and locally simply connected if
Y is a manifold.

6.6. The stabilizer of a face in a joined Γ-space.

Let Y be a joined Γ-space, let ^ denote the associated abutted
family of polyhedra on which Γ operates transitively, and let ^
denote its adjacency. Let F e ^ and eeEk(F). In keeping with
previous notation, set

Fe= \J{Intf;feEk(F)(k = 0,1,2, . . . ) and e<zf}

jTe = {Fe;Fe^ and eczF]

JK,F = the maximum connected subfamily of ^ containing Fe

ΓeF = stabilizer of e and of ^,F in Γ.

Clearly Γ{βtF)cG(e, F), Γ{e,F)G{e, F) = G{e, F), and {G(e,
Tracing back definitions, one sees that

G(e, F) - {7 6 Γ; 7 - 7χ72 7«, 7, e J , β e JE?ft(7i72 T,F) ,

i = 1, 2, , m; m = 1, 2} .

REMARK 1. If the underlying topological space 7 is a ^-mani-
fold as it is in the cases of interest here, t h e n X ) F = ^ . Theorem
6.3.2 (I) describes the situation out of which our joined Γ-spaces
will arise.

The family <i*% is an abutted family of polyhedra and we denote
^V ΓΊ C-̂ I x ^e) by <sΫ~ also; it is the adjacency of ^ .

PROPOSITION 6.6. Let eeEk(F) (ft = 0, 1, 2, , n) and let Γ be
a subgroup of Γ(e, F). If

ΛΛΛΛ^e) c Γ\^nFe) U Fe)

then jTe>F = Γ\<sV(F,)\jF.) and Γ{βtF) = Γ'S where S = {yeΓ yFe
), ye = e}.
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Proof.

u F.)) = r\^n^r(F0) u
c Γ'(^T{F.) U Γ'Fe)

Hence Γ\^K(Fe U i^)) is an open subfamily of ̂ 7,/,-; since it contains
Fe it contains the e-connected family ^e,F. This proves the first
assertion.

As mentioned above, ^ΦtP = G(e9 jF)Fe and Γ{e>F)G{e, F)^G{e, F).
Let Γ = {7 e Γ; yFe e ̂ Γ(Fe) U Fe}. Then we have G(e, F) = Γ'T.
Hence Γ(e,F) = Γ(Γfl Γ(e,F)). Clearly Til Γ(β>F, = S. Consequently
Γ[e,F) — Γ S.

REMARK 2. Set F[e] = {γeJ; τ F e e%(Fe)}, T = {1} U F[e], and
let S' be any subset of T such that Γ'S' = Γ'T'. Then S = Γ T , Π
Γ(e,F) and therefore Γ'S=Γ\T'ΓF Π Γ{ΦtF)) = Γ'T'ΓF Π Γ{e,F)=Γ'STFΠ

r{e,F) - r ' ( s τ , n r ( β f F ) ).

REMARK 3. Set S* = (^[e] Π Γ(βfί.,) U {1}. In the Γ-cover Γ* of
the joined Γ-space F, let ^^* and ^V% denote the associated abutted
family and adjacency. For Fz^ and eeEk(F), set F* = (1, F)
and e* = (1, e). Then G(e\ F*) = G{e, F) and Γ{e, F)G{e\ F*) - G{e\
F*) and Γ ( # W I ) = Γ\S* U {1}).

7* Fundamental domains for finite groups generated by C-
reflections*

7.1. An algorithm for finding the faces of a fundamental
domain in Ch2

Let Γ12 be a finite group generated by two C-reflections {Rβvpιf

Re2,P2} in Cs and preserving a hermitian form H of type (2, 1). We
follow the notation of § 3 writing V(H) or V for C3 with ϋ as inner
product:

<p, >̂ - JBΓ(p, g) p, ζf e V

V- = {peV;(p,p)<0}

Fix a point p0 e Ch2 fixed by no 7 6 Γ12, y Φl. For any 7 6 Γ12r set

7+ = {α; 6 X; <Z(a;, p0) ^ d(7x,

(7.1.1) 7 = f x e l ; d(a?, p0) - d(yx, p0)}

e / 2 1
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It is easy to see that
(1) Γ12F12 = X
(2) 7̂ 12 Π F12 has empty interior if 7 ^ 1 .

These two properties define a fundamental domain.

In order to determine whether the domains we encounter in §9
satisfy condition (CD1), we must explicitly know the faces of the
fundamental domain F12. Some of the groups under consideration
have order 600, and thus the explicit computation of (7.1.1) would
be lengthy, even if we were merely seeking a fundamental domain
for the action of F12 in C2.

Despite the length of the computation, it is clearly finite.
Therefore a computing machine can be used to settle the question.

Let p12 = π(et Π e£), then p12 is the point in π(V) fixed under
RevPl and i?e2>3>2. Inasmuch as 0 ^ | (eί9 e2) \ < 1, et Π ei c V U {0}
and thus p12eπ(V~) = Ch2. We call p12 the apex of F12 since yp12 =
pl2 for all 7 e Γ12 and thus p12 e 7 for all γ e Γ 1 2 . Let Sr denote the
boundary of the ball in Ch2 with center at p12 and radius r. Then
Sr is Testable. A machine can best be used to compute numbers.
Thus, the machine can be programmed to compute the coordinates
of the vertices of Sr Π F12 for any given value of r. If we select
r = d(p12, p0), then p0 e Sr and Sr Π F12 is a Dirichlet fundamental
domain for Γ12 acting on Sr (with distance on Sr defined by the
ambient Ch2).

A machine can be programmed to find the vertices of Sr Π F12

as follows.
Set

d = inf {d(yp0, po);yeΓ12\

DQ = {ΎeΓ12;d(7po,Po)

(The 2 is merely a good empirical choice.) Let To denote the set
of distinct triplets of elements of Do. In each distinct triplet t =
C/i, 72, 78) of elements in Γ, set

y% = ^1 n 72 n 73 n s r .

Set Fo = U{F t ; ί eΓ 0 , F t is finite}. For any xeX, and for any
subset DaX, set

= {7 6 D; d(yx, p0) =

= {7e Γ12; d(7a?f p0) <

and let σ(a ) denote an element of A2 such that

d(σ(x)x, Po) = inf

Set
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V! = {x e Vo; d(x, p0) ^ d(jx, p0) for all 7 6 Do}

Ό\ - U {D*(x); x e V!)

So — {xe V$; E(x) is not empty}

Eo = {α(aθ; x e So}

A - Dt u s0.

Recursively, define

A-H - A* U #,
Γί+1 = the set of distinct triplets of elements of Di+1

Vi+1 = U {Vt; t e Ti+U Vt is finite}

V?+1 = {xe Vi+ί; d(x, p0) ^ d(yx, p0) for all x e D i + 1}

Dί+1 = U {DUx); x e V?+1)

Si+1 = {x e V*+1; E{x) is not empty}

Ei+i = {^(»), » e Si+1} .

Each element of Vf is a vertex of

Π { τ + ; 7 e Z?*} .

Each x e V} with S(ίc) not empty is cut off by 7 for 7 e E{x) (σ{x)
makes a deepest cut) and disappears from F/+1. After a finite
number of cuts, the process stops. At the final stage, no more
vertices of Vt can be cut off and VI is the set of vertices of F12Γ)
Sr. Let An denote the set of all 7 e Dt such that 7 contains at
least three points of VI. Then {7; 7 6 J12} yield the 3-faces of F12

which meet the sphere Sr.

REMARK. It turns out in most cases that 4 C A

7.2. Enumeration of Γ12.

In programming the algorithm of §7.1 for the computation of
the faces of F12 Π Sr, it is convenient to have a simple way of enu-
merating the finite group Γ12, for repeatedly one has to compute

{d(7x, po);yeΓ12} .

In §2.1, we remarked that the canonical map of C2 — 0 to the
complex protective line gives a representation p of Γ12 in SO (3, R)
the group of notations of the standard 2-sphere S2. The kernel of
p is the center Z of Γ12 whose generator and order is given by
(2.2.3) and (2.2.4). j

For the groups Γ12 with Coxeter diagram
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the group p(Γ12) is the group of rotational symmetries of the regular
tetahedron, cube, and duodecahedron respectively according as p =
3, 4, and 5. Each generating C-reflection Rt corresponds to a rota-
tion of a face of the regular polyhedron &(p). Let Γ1 = {{iZJ},
the subgroup generated by Rλ.

Each element of Γ12 can be expressed as a product 7 R\zm where
7 is a representative of a coset of ΓJΓ^, and z is a generator of
Z. In turn Γ ^ is the stabilizer in Γ of the face of &(p) stabilized
by /V Hence #Γ12//\Z = 4, 6, 12 according as p = 3, 4, 5. Explicit
representatives are indicated in Figures 7.2 a, b, c: the face labeled
1 is stabilized by R1 and the face labeled 7 is the image of the
face 1 under 7. Thus the computer runs through Γ12 by running

FIGURE 7.2a. p=S: Representatives for Γ&jΓ
The bottom face represents the

R,

/

RXR,

1

R\R2

/

R~R,

\

FIGURE 7.2b. p=A: Representatives for Γ^ΓxZ
The bottom face represents the coset R\ΓXZ.
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FIGURE 7.2C. p=5: Representatives for
The bottom face represents the coset Λ^

through the 3-fold product (ΓJΓ.Z, Γu Z) of orders

χ p χ
χ p χ 2 4 (

6 - p 6 - p \6 - p
24, 96, 600 according as p = 3, 4, 5.

Similarly, if Γf has the Coxeter diagram

4

i.e.,

then the representatives of Γf\ΓxZ can be read off the faces of
the regular octohedron. Note that #Γ' = 72 by (2.2.5).

In § 10.1, we give an explicit description of the Dirichlet funda-
mental domain F12 for Γ12 on Ch2: its 3-dimensional faces lie in {τ;
7 e z/12}, where

- {Rΐ\ )*1, i Φ J, i, i = l, 2, 3},

a set of 10 elements. By contrast the group Γ' has as Dirichlet
fundamental domain a much more complicated region having 24
faces.
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8* Solving a system of four equations of degree 2*

In §7.1, we described an algorithm for finding a fundamental
domain for a finite group generated by two C-reflections in Ch2. That
algorithm can be executed readily by a computer, provided that there
is a program for computing the intersection of surfaces such as
7i Π 72 Π 73 Π Sr. In § 9, one deals with intersections TJ. Π 72 Π 73 ΓΊ 74 If
we introduce nonhomogeneous coordinates yl9 y2 on Ch2 and express the
equation of 7 or of Sr in terms of Re yl9 Im y19 Re y2, Im τ/2 the equa-
tions turn out to be real polynomial equations of degree 2. Strange
to say, as of 1978 there seemed to be no reliable program in the
computation centers' bibliography which could provide all solutions
of four such simultaneous equations. Accordingly the implementa-
tion of the algorithm necessitates elimination of variables and reduc-
tion to a polynomial equation of degree six in a single variable.
We sketch the solution.

For any 7 e U(H), the surface 7 is by definition {x e Ch2; d(yx, po) =
d(x, Po)}. For convenience, we denote a point x eC3 — {0} and π(x) e
Cp2 by the same letter x. Thus the preimage of 7 in C3 satisfies
(in view of (jx, yx) = (x, x))\

(8.1)

where 7e* = Σ ? =i ^ e i >

x — X& + x2e2 + xzez, and pQ

is selected so that (elf pQ) = (e2, p0} = <β3, p0) = h and (p0, p0) < 0.
Thus (8.1) is equivalent to

( 8 2 )

ii^ I tt>2 I X

Then 1/1 + 1/2 + 2/3 = 1 and T/J, ]/2 form a nonhomogeneous coordinate
system on CP2. Thus (8.2) is equivalent to

I oi1y1 + a2y2 + azy, | = 1, α, = 7« + 72i + 73i

or

/ o o , l(«i - «β)2/i + (<*2 ~ «a)2/2 + ^ i = 1
(0.0)

I ayγ + by2 + c | = 1 .

The equation of a sphere with center at a point p

Sr = {x 6 C/i2; ώ(x, p) = r}

and radius r is given by
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cosh"1 K*'P>1 υt = r

I <>, p> |2 = (cosh r) 2 <p, p>O, #> = fc<α, α?>, & < 0
3

Dividing both sides by \x1 + #2 + #3 |
2 and collecting terms, one gets

(8.4) 2Re (g1y1 + g2y2 + gδy1y2) + g%y{ΰ\ + gύi^Vi + ^6 — 0

where gz, gif g6 are real.
Given two distinct surfaces of type (8.3):

(8.5)

Set

(8.5)'

I α ^ _j_ 5 ̂  + d I = 1

I α22/i + &2?/2 + c21 = 1 .

v2 =

If ^2 = cvlf then (8.5) is equivalent to 1^ + cx\ — 1, 1^ + c2/c| =
1/1 cI, and these can be solved in the ^-plane to give 2 solutions for
Vii only one solution is in Ch2 by Lemma 3.4.1. The solution of a
system of 3 equations of type (8.3) with a fourth of type (8.3) or
(8.4) then reduces to intersecting these surfaces with the C-line
v1 = constant. The problem reduces to solving a quadratic equation
in one real variable. Suppose therefore that vγ and v2 are independ-
ent. Then (8.5) is equivalent to

(8.6) v,\ = 1, \v2\ = 1 .

Expressing a third equation of type (8.3) in terms of vl9 v2

yields

Squaring both sides, we get using (8.6)

(8.7) 2Re ViQbM + d) + dv2 + e = 0

with β real.
Thus we need only solve the system

+ c j + ^(6^2 + cj + di^ + (Ztΐfg + d = 0

+ <?2) + vxQ)2v2 + d ) + ^2v2 + d2v2 + e2 = 0
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with eu e2 real.
Elimination of vt from these last two equations2 yields

vJ&iVi - G,v2 + G3) - FyVl - F2v2 - F3v2 - F, = 0 ,

and solving for ^

(8 8} v = FiV*
ι G

Since 1̂ 1 = 1, we get

IF.vl + F2v2 + Fzv2 + F 4 | = \Gxv2 - G^ 2 + G3 | .

Squaring both sides yields an equation

2Re (P.vl + P2vl + Pzv2) + P 4 - 0

with P 4 real. Multiplying the above equation by 2Re (Pxvl + P2v\ +
P3v2) + P4, one obtains an equation of the form

(8.9) 2Re (Qyyl + Q%v\ + Q3vJ + + Q6v2 + Q7) - 0

with Q, 6 i? for i = 1, , 7. Set

v2 = z + w .

Since \v2\ = 1, Re ̂  is a polynomial in z and thus (8.8) becomes

(8.10) R,zG + i?2z
5 + R,zA + ^ 3 + i?5^

2 + R,z + i?7 = 0

with iϋ; real, i = 1, , 7.
One can use a packaged program to solve (8.9) to any desired

degree of accuracy for z. Thereafter one gets, in turn, wy v2, vx

(from (8.8)), and yl9 y2 (from (8.5)'). One admits only common solu-
tions which lie in π(V~).

9* Γ(φ) and its automorphisms*

9.1. Γ(φ) and some of its elements.

Let Γ(φ) denote the group generated by C-reflections corresponding
to the diagram

2 The solution presented here is an improvement of the original solution. I am
indebted to Dr. Sidnie Feit for this solution.
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where the corresponding hermitian form Hφ is given by

9>βi, e2) = (e2, e3) = <e3, O =

V

<peC,\φ\ = l. Select p so that 1/p + 1/p + 2/3 > 1, i.e., p < 6. Set
α = 1/(2 sin 7r/p),

( 1 —aφ ~aψ\

— aφ 1 — aφ\

— aφ—aφ 1 /

- 1 - 3α2 - a\φ3 + ^3) .

Set φ = ei0. Then J = 1 - 3α2 - 2α3 cos 30. Recalling that cos 30 =
4 cos3 0 — 3 cos 0, we find that for cos 0 = l/2α,

Δ = 1 - 3α2 - 2α3f4 — - 3 — ) - 0 ,
V 8α3 2α/

J < 0 if and only if cos 0 > —
2a

that is, cos0 > sinπ /p or |0| < π/2 — τr/p. Thus the hermitian form
H has signature (two +, one —) only for p > 2. Therefore for
p = 3, 4, 5 and

a r g («p3) < 3
/ 7 Γ 7Γ \

XT ~ T>
the group Γ(φ), which preserves the hermitian form Hφ is embedded
in £7(2, 1). Hereafter we impose these conditions on p and φ. We
write V(φ) for the vector space V with Hφ as inner product; when
there is no ambiguity, we write V for V(φ).

Set η = exp ( π i / ^ / p ) , ^(α) = a; + ()72 - l)(x, e^e, (i - 1, 2, 3).
The C-reflection i2̂  depends on φ and we sometimes write it as
Rt(<p). Since (η2 - l)α - (τj2 - l)i/(^ - 77-1) = ψ we find

~ηiφ -ηiφ\ / 1 0 0

1 0 I R2 = i-ηiφ rf -ηiφ\

0 1 / \ 0 0

0 — ^ 3 ί ^ — rfψ1—

1 rf —ηiψ

0 1

/ 1

= 1 0
\-7)iφ

0
1

-rjiψ

0

0
1 rf
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rfiψ — rf — rfφ1 —yfψ —

= \-ψφ- ηψ 0 - rfiψ

\ — ηiφ — ηiφ rf

(
* __ η%φp + γf + γfφ^i 0

- rfiψ* + rfψ + rfiφ ηHφ3 φ2η\ - 1 + η2φ6 + ηi

— rfφ1 + rfiψ 0 ~γf — γfiψ

( f Ύfiφi 0

φηS(rfφ6 — rfΛ- η%φ*) 0 — 97V6 — V*i

(rfiψ' — rj1 —rfφ1 -rfφ{rjψ

-rfφ2

— ηiφ

The characteristic polynomial of R1R2RZ is:

- λ3 + X2[ηHφ"\ - λ[τy4 - (jfiφz + ̂ ) + (rfiψ ~η"~ {rfiφ" -

and its roots satisfy

λ3 - λ'2|)73^3] - X[ηHφ"] - if = 0

which factors

(λ2 - 773ΐcp3)(λ - ηHφ") = 0

yielding as eigenvalues λ = ??3i^3 and the roots of λ2 = ηHφ3. Simi-
larly, the eigenvalues of RZR2R1 satisfy

λ3 - X2[ηiφ3] - X[ηiφ3] - ηi] = 0

this yields X — η%φ:>> and the roots of λ2 = η3iφ~\
The eigenvalues of (R1R2RZ)

2 are therefore

(9.1.1) —η6φ\ η3iφ3

1 η3iφ3

and the eigenvalues of (R^RM^2 are

(9.1.2) -η6φ\ ηHφ\ ηHφx .

We next compute the image of (R.R.RJ1 — ηHφ3 x 13 where lλ

denotes the identity 3 x 3 matrix.

(9.1.3) (R.RMJ2 - ηHφ'Λ,

( —φηi 0 —φηi-φηi\

1 0 1 φηi I .
φηi 0 φηi. φ^ϊ/
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Set

φηi \ /I

1̂23 = I 1 ] 2̂31 = I -ψηΛ 3̂12 =

φfji J \ 1 / \-φηi

φfji \ l-φηi

I
—φηίl \ 1 / \ φfji

vijk is the normal in V(φ) to the multiplicity-two eigenspace of
jRjc)2 where i, j , k denotes a permutation of 1, 2, 3.

iez, - φηie, + e2 + φηiez}

= 3 —

= 3 — — ^ = r [ — ̂ i — ψrfΛ-fji — ηi—
η — η

= 3 - ^
77 — 37

(9.1.4)

sm —

v-
COS

"1 i

— 1 +(9.1.5) - .
sin —

We have

O123, î23> > 0 if and only if

p

and

<v82i, 3̂2i> > 0 if and only if

JL - JL)
2 3? /

< arg ^ < JL _ JL
2 j?
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Similar computation shows that the characteristic polynomial of
RJEtyRJEiz is

- λ 3 + X2[ηSφ3 + rfiφz - rf\ - \\~rf - rfi - φHφ] + η8 = 0

so that its eigenvalues are

(9.1.6) γiφ\ ηHφ\ —rf .

9.2. Automorphisms of I\φ).

Let J and J' denote the linear maps of V onto itself given by:

J: xxex + x2e2 + # 3 e 3

 > x^2 + oc2eΆ + ^ 3βi

eJ Jb-^d-^ I «Λ/2«Λ/2 I *^3^3 *^1^3 i «^2^2 I *^3^l

Then J" is an isometry of V ^ ) to V(φ), and J ' is an isometry of
V(φ) to V(φ) with J ' of order two. Since Hφ(eu e2) = — aφ =

Jϊ^fe, βi) = -flfeOs, β2).
Define

Σ î

Then Λ: is a semi-linear map of V(φ) to V(φ) which is an isometry
since,

ΆitciΣ xtfi), K(ΣA %iei)) = Hψ(Σ %&, Σ %&)
I ί

= Σ XiX3 Hφ(eif βj)

= Σ XiX3Ήφ(eif eά)

= Hφ(Σ Xίei, Σ »<βi)

Regarding the index as an integer modulo 3, we have

J(Rt(φ)) = Ri+1(<P)

ιc(Ri(φ)) - RM = Raft'1 i = 1, 2, 3 .

Set α13 = J'/c. Then α13 is a semi-linear isometry of V(φ) to V(φ)
with

α18: Λ*(9>) > RUΨY1 1 - 1, 2, 3 .

Set α21 = JalzJ~λ

f α32 = J^a^J.
The group of isometries of V(φ) generated by α12 and J is of

order 6 — these are the isometries which permute elf e2, β3. (For
φ = 1, there is the additional isometry A:.) The subgroup of linear
isometries is of order 3. All these isometries induce automorphisms
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Of Γ(φ).

10. The region F(φ).

10.1. A fundamentίal domain for Γi3.

Set p0 — e1 + e2 + es. Then

(Po, βι> = <Po, O = (p0, 03> = 1 - a(φ + <p) .

As in § 3, we take as our model of hermitian hyperbolic space Ch2

the image in projective space CP2 under the map π: V — {0} —> CP2

of the negative cone

V~ = {ze V; (z, z) < 0} ( - the ball in C2)

- cosh- ( ί 5 . ^ > ^ ^ i > .

with metric

Since (p0, p0) = 3(1 - a(φ + φ)), <p0, p0) < 0 for | a r g ^ | < π/2 - π/p.
We denote by p0 also, the image of p0 in Ch2. For any φeΓ,

set

7 = {xe Ch2; d(x, p0)

Set Γtj = {{Ri9 Rj}} (iΦj; i, j e (1, 2, 3)) where {{α, 6}} denotes the group
generated by {α, 6}. Γiό is a finite group. Since Γi5 is irreducible
on Ce1 + Cβ2, 7Po ̂  Po if 7 e Γij9 Ί Φl. Set

Then Fij is a fundamental domain for Γiά. Set β/ = {2eF; (z, et} =
0} and denote also by el the subset π{e\- f] V~) of Cfe2 i = 1, 2, 3.
Then el is the fixed point set of Rt whether in V or in Ch2.

Set pίό = 7τ(et̂  n βj). The equation of et- is given by:

(10.1.1)

p -

e2

L:

ei:

Pn

0 = <a

0 = <a

0 = <a

i + X2

JA + xt

x3

aφ

aφ

1

— aφ

e2 + a

β2 + x&,

e2 + x3β3,

— aφ

1

— α<p

1

β 2 )

= x L — α9>α?5

= —aφxx +

- - α ^ -

1 — a2

x2 — c

aφx2

• — /̂

+ x%

aφ
1

ί

+ α2<^2

- α 2
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Thus p12 = π(φa(l + aφ3), φa(l + aφz), 1 — α2). Set ξ = φa(l + aψ).
Then <p12> pL2) = (1 - α2)J < 0, p12 = ττ(f, | , 1 - α2), ̂  = π( l-α ' 2 , f, f),
^8 j = 7r(f, 1 — α2, ξ). We also write p12 = (£, ς, 1 — α2) and similarly
for ^23, p31.

For any 7 € / \ 2 , the equation of 7 is given by

since <a;, x) = <τx, 7x>. Since Rλp12 = >̂12 = i?2pi2, we have 7£>]2 = ί?12

for all 7 e Γ12 and thus p12 e 7 for all 7 e Γ12. F12 is a curvilinear
solid angle with apex at p12. We must know the 3-faces of Fi2. In
principle, the 3-faces of F12 in some neighborhood of the apex p12

can be computed by hand thanks to Lemma 3.2.9. For by that
lemma, the tangent planes to each 7 at p12 are distinct for all 7 6
F12. Hence the fundamental domain F12 for Γ12 acting on the
tangent space to Ch2 at p12 determines the faces of Fi2 near p12.
The computation of the faces of Fι2 involves the solution of a system
of 24(^/6 — pf linear inequalities (p = 3, 4, 5) and in principal this
can be done by hand.

For any ?• > 0, set

Sr = {x e Ch2; d(x, p12) = r) .

Then Sr is stable under Γ12. A fundamental domain F£ for l\2 on
Sr can be calculated (for any fixed φ) via computer.

In Figure 1, we exhibit the domain F£ with r = d(pi2, p0). The
faces of F*2 correspond to the 10 elements

Rt\ Rt\ (R&)*1, {R2RXY\ (R&Rd*1

of the finite group ./7

12. In Figures 2, 3, and 4, we show the 3-faces

of Fι2 which lie on the surfaces Rl9 RJt2, and RjRJt^ The defini-
tion of the vertices sι3 , tik are given in § 11.

From the remark following Theorem 6.3.2, we know that F12

satisfies condition

(CD1): 7"'(7" ] Π Fl2) - 7 Π F]2

for all 7e{Rΐι

9Rί\(R1R2)
±\(R2R1)

±1

f(RιRM1)
±1] and also condition

(CD2). This last condition yields for each two faces of F12 an
identity corresponding to the circuit F{yxF, Ί2Ί2F, where

e = v 0 n iτι n F12, %-\e) = 7x n 7J1 n Fl2, 72

ι%-ιe = %n %ι n F]2,

and 7372 -ΎnF12 Π Fy, has a nonempty interior; namely

7i7 2 7 n = 1 .
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"23

FIGURE 10.1. The intersection F% of F12 with a 3-sphere Sr centered at p12 of
radius r=d(pi2, po).

FIGURE 10.3.
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From Figure 1, one can read off the elements of E2(F12) which
contain pn; they correspond to the twenty edges of F12 Π Sr. For
any 7 such that 7 Π F12 e E^F^), set

*Ύ = 7 n F12 .

Then along with the knowledge of Ex{Fί2) one can determine the
circuits around each e e E2(F12) and the corresponding identity. For
*Ri Π *Rϊ\ the circuit yields the identity Rf = 1 (i = 1, 2). The
remaining eighteen 2-faces of Fn occur in circuits of three terms
each

1/* \R, (R.Rd-'R.R, = 1

/ R N

Π *R\-1^L- *R2 Π *Rϊ1

*R2 n *

\

R2

\

i)-1 Π *i22-
x

REMARK. In § 13, we shall show the eighteen mappings of
(10.1.2) can be verified easily. Thus these circuits yield the pres-
entation

Rf — 1 = R\, RιR2Rι

of the finite group Γ12.
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The isometry α12 corresponding to the automorphism R1-^R-\
R2~>R^ of Γ12 permutes the elements of E^F^) sending *(i?ijβ2) to
*(R2

1Rϊ1) = *&&)-', *(Λ2Λi) to *(R2R1)-\ and *(R1R2R1) to *(R1R2R1)~1.
The isometry α12 sends E2(F12) to E2(F12) and thus we get two

additional isometries

/in i ON * ^ n * ( « i f i A ) = *(ΛiΛA)- ιΠ *(Λ1Λ0-1 s *(ΛA) Π •(Λ1Λ1«1)
(XU.JL .o)

*i?2 n " ( i ^ A ) = *(βiΛ8Λi)-1 n • ( B A ) - ^ * ^ ) n *(ΛiΛA).

10.2. Γλe domain F(φ), |argφ| < π/2 - π/p.
We continue the preceding notation. Set

JF(9>) = ^12 n F 2 3 n Fβi -

When there is no ambiguity, we write F for F(φ). In § 12, we
shall determine certain vertices of F. For the present we note
that for all φ with |arg<p| < π/2 — π/p, F is stable under the
isometries J and {atj; (ί Φ j, i, j = 1, 2, 3)} and that J' and K' are
isometries of F(<p) to F(φ). We denote by Isom F the group of six
isometries of V{φ) generated by J and α12.

It will turn out that the combinatorial scheme of F and its
faces remains unchanged for ) arg (<p3) | < π/2 — π/p, is unbounded for
arg (<p3) = π/2 — τr/p, and becomes bounded, and combinatorially con-
stant for l/3(π/2 — π/p) < | a rgφ | < π/2 — π/2; but it is combinator-
ially different than the case |(arg(<p3))| < π/2 — π/p.

11 • 2-faces of F(φ) not containing an apex*

For any permutation (i, j, k) of (1, 2, 3), set

lijk — (RiRj)"1 Π ^iί2fc

and using indices modulo 3

Ij — I3-1,3,3+1

LEMMA 11.1. Iijk is the common slice of (RiRj)"1 and RjRk-

Proof. Let J and Jf denote the isometries defined in § 9.2,
Then clearly

JI2 - IsJ-% - I, .

Moreover, J'R^φ) = R^^φ) so that

(11.1) JΊyJfP) = I2J&)
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Consequently, it suffices to prove that L is a common slice of

(RJiz)'1 and R2RZ. We have

1 0 0 \ lψ ηiφ ηίφ\

(R.R,)-1 = R^RΪ1 = (ηiφ v2 ηiφ\ I o 1 o
0 0 1 / \ 0 0 1

ψ rjiφ rjiφ \

= ( ηHφ 0 - η 2 φ 2 + ηiφ I

0 0 1 /

1 0 0 \ / 1 00

= I -ηiφ η2 -ηίφ) | 0 1 0
/ \ -

0 0 1 / \ — ηiφ —ηiφ η
1 0 0

0 _ γfiφ j #

• ^2

In the homogeneous coordinates dual to el9 e2, e3, we get the equa-
tions

ΣίlJX η2φ2 + ηiφ)x*\ =

~ ηiφ)x1 - ^ΐ

multiplying the equation of ( i ? ^ ) " 1 by —ηHφ it takes the form

CRiίJa)-1: 1(1 - ^ ΐ φ ) ^ + 772φ2x2 + (>72 - )?3ΐ<p + 57Ϊ93 + ^ 2 φ 2 )^ 3 | = 1

or

I (1 — ηiφ — η2φi)x1 + {η2 - ^ 3 ί^ + ^i^)x3 + ^292(^i + x2 + x3)\ = 1 .

Similarly

RJRZ: I (1 - ηiφ - η2φ2)x, + (rf - ηHφ + ηiφ)x, - ηiψ(xi + x2 + xs) \ = 1.

Therefore, set

* _ (1 - ^ ^ - ^ 2 ) ^ i + (V2 ~ ^73^
fy — ———

Xι ~γ~ X2 1 XQ

to obtain as equations

(RJtt)-1:\z + ηφ\ = l

Rtfs: \z - ηiψ\ = 1 .

These equations have 2 solutions (see figure):
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η i φ

FIGURE 11.1

z = 0 and z = ηiφ — rfψ .

We note that 1 — ηiφ — η2φ2 = — ηiφ(yf — ηHφ + ηiφ) and thus

* = (η* - ηSφ + ηiφ)(-ywχi + χά .
Xl + #2 + #3

The above two solutions yield two possibilities for the preimage of
J2 and by Lemma 3.4.1, exactly one of two possibilities.

Case a: —ηiφx1 + xz = 0

Case b: - i ? ^ + *, = . fa + ̂  + aύ .
φη%φ

or

or

Case b is equivalent to

- ηiφ - η2φ2)xι + ()?2 - )?

- (ηiφ -

ηiφ)xz = (^i^ ~

(η2 - ηHφ = 0

(11.36)
- ηiφ - ηiφ)x1 - ηiφ(l

+ η\l - ηiφ + φ2)x3 = 0 .

Applying J, the equation for the preimage of Γ2 is exactly one of
the two possibilities

(11.3a)' Case a: —ηiφxz + α&i = 0
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(11.3b)' Case b: (1 — ηiφ)xz — ηiφ(l — ηiφs)x2 + η\l — ηiφ)x1 = 0 .

The next lemma determines the values of φ for which Cases a
and b apply.

LEMMA 11.2. Let viik be the point in V defined in § 9.1.
{i, j, k) being a permutation of (1, 2, 3)

(1) The equation of π~\I2) is given by ~ηiφx1 + xz = 0 and
vm is the normal in V to π~\I2) for

pi \2 p

and n~\I2) is given by (11.3b) for — 3(π/2 — π/p) < arg<p3 <; —(π/2 —
π/p),

(2) The equation of π~\Il) is given by xx — f}iφxz = 0 and
vm is the normal in V to π~\Iζ) for

) < a r g (

P

) < τ ;

p/ 2 p
and π~\I2) is given by (11.3b)' for π/2 — π/p ^ a r g ^ 3 < 3(π/2 — π/p).

Proof. Consider the orthogonal subspace v^ to v123 in V with
respect to the inner product H. Then X& + x2e2 + xzez is in v^ if
and only if

(x1e1 + x2e2 + xze8, —Ύ]iφe1 + e2 + ηiφ) = 0

^ [ ^ ~ α ( ^ - ηiφ2] + ^2[1 - α(^* — ̂ i)] +

Replace a by i/{η — f})\ we find

Note that φ(rj2i + ψ) = ηiφ-φ{ — rfi + ^ 3 ) . Hence we get

+ a?3 = 0 .

By (9.1.4), <^123, vm> > 0 for -(ττ/2 - π/p)< a r g ^ 3 < 3(ττ/2 - π/p).
Hence for such φ, vj^ Π ^ ~ is not empty and π(v{-2z Π F") is a (Mine
in Cfe2. Its equation is precisely that of J2. Hence J2 = π{v^ Π V~).
For the remaining values of φ, I2 is given by (11.3a). This proves
(1). (2) follows from (1) by applying the isometry J ' : V(φ)—> V(φ).

REMARK 1. In Case a, the preimage of J2 in V~ has an equa-
tion independent of x2. It follows at once that I2 is stable under
the C-reflection R2: x -» x + (η2 — l)<a;, e2}e2t since αĵ β^ = α?3(e2) = 0.
Clearly I2 is not pointwise fixed under R2. Being stable under i?2>



226 G. D. MOSTOW

it must be orthogonal to π(e2

L), the fixed point set of R2. From
this it follows that the C-reflection in the C-line J2 commutes with
R2. But by (9.1.3), (R^R,)2 multiplies each element of v^ by the
scalar rfiφ*. Thus I2 is the fixed point set of {RJtJR^f. Conse-
quently R2 commutes with {R^JR^f in PU (H) the protective unitary
group of H. We shall prove in §14 that they commute in U (H).

REMARK 2. In the protective space (V — {0})/C*, the intersection

of the two 3-surfaces containing (JβyR^"1 and R2Rd meet in two
complex lines, one meeting the ball V~/C* and one not. As arg<p3

passes through the value — (π/2 — π/p), we get ηiφ — rfφ2 = 0 and
the two complex lines coincide. The intersection of I2 with the
boundary of the ball is thus a single point of tangency for φ5 = ηi.

12* T h e vertices pijf si3 , sijf tik.

In this and the next two sections, we verify that a region Ω(φ)
related to the region F(φ) satisfies the codimension-1 condition (CD1).
In order to achieve this, we need information about certain fc-faces
of F(φ) for k = 0, 1, 2, 3. The apexes pijf i Φ j e {1, 2, 3}, and the
ά-faces containing an apex have been discussed in § 10. It remains
to discuss those A-faces which contain no apex. We do this in stages.

First we define points sih sih tik lying on the intersection of
four spinal surfaces containing 3-faces of F(<p). In §13, we calculate
the images of these points under 7 for the 7 which contain them.
In § 14.3, we define the region Ω(φ) and in § 14.4 we verify the
(CD1) condition for all its 3-faces.

The shape of F(φ) undergoes a change when arg (φs) increases
from values less than π/2 — π/p to greater values. Accordingly, we
ultimately consider two cases.

Case 1. I arg (φ*) | ^ ττ/2 - π/p
Case 2. π/2 - π/p ^ |arg φz\ < 3(ττ/2 - π/p).

In point of fact, parts of F(φ) remain combinatorially unchanged
for — 3(τr/2 — π/p) < arg<p3 < π/2 — π/p, while other parts remain
unchanged for arg φ~z in the above range. Define for any % modulo
3, and for any φ

(12.1) siii+1 = 1,0 iUu βM-i = i, n iu .

By definition therefore

sί2 = (iζβi)-1 n i£s 2 n (.B^)-1 n

The intersection on the right hand side is symmetric under inter-
change of indices 1 and 2. Thus we can define sn = s12 without
contradiction, taking care not to confuse s21 with
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s21 = (Rji,)-1 n RJis n (Rji,)-1 n Rjt*.

More generally, set

8<y - ( i X )-1 n (iQti)-1 n 5 A n R^Rk.

Also, define for any distinct i, k modulo 3,

(12.2) tik = Iijk ΓΊ et .

LEMMA 12.1. Assume |arg(^ 3) | ^ π/2 — π/p. Then

es)

= π(aa(φ)a(φ)e1 + α(^)e2 + α(?>)e8)

= π(aa(φ)a(φ)eί + α(^)β2 + α(^)e8)

where a = 1/(2 sin π/p), α(<p) = ^(1 — 7]ίφd). Moreover, all the above
points are in the ball π(V~).

Proof. By § 9.2, κ(Rt(φ)) = B*^)- 1 for i = 1, 2, 3. Hence
ΦniΦ)) = s21(φ) and ic(t&(g>)) = ί32(^) Thus it suffices to verify the
lemma for s12 and ί82. By definition s12 = / t Π J2'. By Lemma 11.2,
the equation of the preimage of /2(<p) is:

Applying J" 1 , we get as the equation for Ix\

(12.3) U<p): x2 - W ^ 3 = 0 .

By (11.2), I&φ) = JΊ2(φ). Hence the equation of the preimage of
I2\φ) is given by

Hip): %i - yiφx* = o .

Hence a preimage of s12(φ) is given by

verifying the assertion for s12.
As for tm by definition

^32 : = : -^312 I 1 ^ i .

The equation of /812 is given by (12.1.1):

Ix: x2 — ηiφxs = 0 .

By (10.1.1), the equation for et is
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e£: x1 — aψx2 — aφxz = 0 .

Solving these two equations simultaneously yields

π~\tn) = xz{aφ{fjiψ + 1), ηiφ, 1)

= x(a{2
= x(aaa, a, a)

where a = a(φ) = ^(1 — T/iφ3) and x e C — {0}.
It remains only to verify that the points are in the ballπ(F~).

NOTATION. For convenience, we shall denote by si3 and si9

vectors in V. For example, we write

$12 = yvp^ + yiφe2 + β8, s2l = —ηiφe1 — ηiφe% + e3

and similarly we sometimes denote by tik the vector in V represent-
ing it as in the formula of Lemma 12.1. When there is risk of
confusion, we write siS (in the ball) to indicate π(si5).

For the vector s12,

= 3 - -~—[ηiφ(-ψφ-φ + φ) + ηiφ(-ηiφ.φ + φ)

+ (-ηiφ-φ - ηίφ φ)]

= 3 - - ± ^ [

(12.4) - 1 -
v-v

cos arg φ3

PThus <s12, s12> < 0 if and only if |arg^3 |<τr/2 — π/p. Since fc(sn(φ)) =
S2i(φ)> we see that <s21, s2]> = <s12, s12> and thus s216 7τ(F~) for
I arg φ31 <π/2 - π/p.

Before verifying that tZ2 e V~, we note the identity

φ + a2φ =

Hence

= 2 -

= αα .

=rf 2
η \
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Then

<̂32> £32) = {cίaae1 + άe2 + aeΆ, aade1 + de2 + aes)

— aad[aaά — aφa — aφa]

+ d[a — a2adφ — aaφ]

+ a[d — a2adφ — aaφ]

= 2αά — α?αα — α(α 2 ^ + d2φ)

= αά(l — α2αα) + αα — α(α 2 ^ + άV)

= aa(l — α2αα) .

Thus (tz2, t32) < 0 if and only if 1 — a2aa < 0; that is, a~2 < αά.
This is equivalent to

2 - Ύ]2 - ψ < 2 - ^ 3

- 2 cos - ^ - < 2 sin ( — + 3 ^ , θ = arg ?>
p \ p /

p

p I \ p

Thus ί32 e V- for -(ττ/2 - πjp) < arg «p3 < 3(π/2 - τr/j)). Applying
ί23(^) - κ(fijψ)), we find that ί23e F~ for -3(π/2 - π/p) < argφ8 <
τr/2 — π/p.

The next lemma will allow us to determine how the cell complex
F{φ) changes as argφ3 attains the values π/2 — π/p.

LEMMA 12.2. For |arg(^ 3)| ^ π/2 — π/p, and for any integer i
modulo 3,

a(φ)eί+1 + aa{φ)a{φ)ei_ί

where a = (2 sin π/p)~\ a(φ) = φ(l — )?i<P3), αwώ α(φ) = α(?>).
(i i) s i f i+1 = s^^! ΐ/ α^d owẐ / i/ a r g ^ 3 = —(π/2 — π/p)

*i,i+i = St_lti+1 if and only if arg φz = π/2 — π/p
(iii) sM + ι = ίi_ l j ί+1 if and only if arg^ 3 = —(π/2 — π/p)

«i+i,i = U+ui-i if and only if argφ 3 = π/2 — π/p.

Proof. By Lemma 12.2

s18 = π(-ηiφe1 + e2 - ηiφez)
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and s12 = π{yjiφeι + ηiφe2 + e8) = π ^ 2 ^ + e2 — ψφe3). Thus s12 = s13

if and only if <£>3 = —ηi. By applying J and J~\ we get the first
assertion of (i), and by applying tc one gets the second.

As for the remaining values of φ, the next lemma gives an
explicit formula for the points si3 9 sid, and tik in terms of the vector
vijk of V listed in § 9.1.

LEMMA 12.3. Assume that π/2 — π/p <̂  |arg2>3| < 3(π/2 — π/p).
Then for any permutation ijk of (1, 2, 3),

[vkH if (vm, vkji} < 0

0

0

ί ii if /u v \ <^ 0

vHk if <v f Λ f v i t t> < 0

_ (vm if <vtt*. viity < 0
ί ί f t " jby

That is,

ίA: "~ (by the formula (12.2) if (vίjk, vijk) > 0 .

s -(f -f)
for sf-ϊ- - — ) > arg^ 3 ^ 3 ^ _ J

V 2 p I \ 2

Proof. The computation of the indicated points in the indicated
range for φ proceeds from equation (11.3.b) for Iijk, and the veri-
fication entails straightforward solutions of two linear equations.
The condition on φ that vijke V~ can be read off (9.1.4) and (9.1.5).

REMARK 1. For | a r g ^ | ^ π/2 — π/p, ski = stj if and only if
(vijkvijk) ^ 0.

REMARK 2. As a consequence of the given relations in the
group Γ, we will see in §14 that (vίjk, vikj) = 0 = (vίjk, vjik). This
can be verified directly of course. Since H has signature (two posi-
tive, one negative) (vijk, vijk) < 0 implies <vjik, vjik) = (vihh vikj) > 0.
If <ytjk, vίjk) = 0, then vijk 6 Cvikj + Cvjik.

13* ToΛvards verification of (CD1): images of points*

LEMMA 13.1. For all distinct i, j and all values of φ with
| arg^ 3 | < 3(ττ/2 - π/p)
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π{Rtsi3) = π(sίk) .

Proof. By symmetry, it suffices to prove that

rf
0

0

-•ηiφ

1

0

0

1

If | a r g φ 3 ! <; π/2 — π/p, then by Lemma 12.1, s12 =
β;, and the components of i?Ls12 are given by

j ITrfrr
so t h a t π{Rιsl2) — τr(s13).

If π/2 — π/p <: a r g ^ : { < 3(τr/2 — π/p), then by Lemma 12.3, s12 =
vsn since <v321, v321> = <v213, v2n) < 0. Thus RLsi2 is given by (cf. § 9.1
for v321 and v132).

η2φ2\ I-ηiφ \

1 J= - ^ ί W J
ηiφ I \ 1 /

Thus i?!S12 — —ηiφvίZ2 = —ηiφsιz and again π{Rιsl2) = τr(s13). The
result for — 3(ττ/2 — π/p) < arg ̂ >3 ̂  ττ/2 — ττ/p can be deduced from
the above by applying the isometry J ' : V(φ) —> V(φ).

LEMMA 13.2. For all distinct i, j and for all φ with |arg<p s | <
3(τr/2 - π/p)

π(Rksjt) = π(stj) .

Proof. It suffices to prove the result for JB3S21. If \&τgφ2\ <
π/2 — π/p, the computation is

-ηiφ\ ί-ηiφ\

-ηiφ J = -ηiφ =
1 / \ -η2 I

If π/2 — π/p <̂  arg<^3 < 3(ττ/2 — π/p), then by Lemma 12.3, s21 = v2n

and svl ~ v32l. The computation is (cf. §9.1).

l \ / l \ j ηiφ

-ηiφ = I -ηiφ = -ηiφ\ l

ηiφ I \-η2φ2/ \~ηiφ

For the remaining values of φ, the result can be deduced from the
foregoing by means of the isometry Jf; V(φ) > V(φ).
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The information in Lemmas 13.1 and 13.2 yields the hexagonal
diagram

Si2

(13.1)

\ /• \ / *

LEMMA 13.3. ( i ) For each index i modulo 3,

EtRi+1 = J on Ii if sifi+1 Φ sM_,

Ri+1Ri = J1 on J/+1 if siti+ί Φ s<_1><+1

(ii) (RiRjRje)2 fixes each point of Iijk if

(vίjkt vίjk) > 0

(iii) RkRiRjRiSij = stί (in the ball)
(all permutations (ΐ, j , k) of (1, 2, 3) w (ii) and (iii)).

Proof, (i) By symmetry, it suffices to consider the case i = 1.
Then by definition (12.1),

s12 = £ n /2', §i8 = Λ n /3

;.

By the hypothesis s12 Φ s1Zf Iλ is the unique C-line containing s12 and
s13. From the hexagonal diagram,

Hence RJt^ = I2, the unique C-line containing s23 and s21. Since
the restrictions of RJt2 and J to JI are isometries, which coincide
on s12 and s13, the isometry J~γRxR% fixes these two points and there-
fore every point of the geodesic line joining them, and therefore
every point of the C-line joining them. It follows that RXR2 and J
coincide on Ix. That RJRλ — J~λ on // comes from applying the
complex conjugation isometry κ2: V(φ) -> V(φ):

κ{Rx{Ψ)) = R ), κ(R2(φ)) = RΛ
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At φ, i21jB2Si2 = s2S, R1R2sιz = s21. Applying /c, we g e t a t φ: R^R^s^^
§32, R^R^Sn = s12. Hence R2RiSS2 = s21, R2Rλs12 = s3L. I t follows t h a t
J?2i2 t coincides w i t h J " 1 on J2\ If <>123, v123> > 0 (resp. (vS21, v321) > 0),
w e can apply R e m a r k 1 following L e m m a 12.3. The i n f o r m a t i o n in
(i) then yields the triangular diagrams

(Λ Q Oλ RzRi/ \R1R2 RlRz / \R2R1
( 1 3 2 ) / \ / \

R{R RR

On I29 RJt2.RZRX.i?23 = J 3 = identity, so that (RXR2RZ)* fixes each
point of I2 if (vm, t;123> > 0. Similarly {RJRJty fixes each point of
Iζ if (v^ v321> > 0.

(iii) follows at once from the hexagonal diagram.

REMARK. Assertion (ii) of Lemma 13.3 has been pointed out
before in Remark 1 following Lemma 11.2; it comes from the fact
that vιjk is the eigenvector of {RiRάRk)

2 corresponding to the eigen-
value of multiplicity 1. Thus vtjk Π V~ is not empty if and only
if (vijk, vijk) > 0.

Consequences in another direction of the information in the
hexagonal diagram are given in the next lemma.

LEMMA 13.4. For any distinct i, j from {1, 2, 3},

T> /-~\ ~D f\ 7~> ~D ΓΛ J~> Έ) ΓΛ ~D 7 ? Z? ΓΛ Z?~~l (~\ ( ~D Z? \ — 1 C~\ ( Z? ~D \ — 1

Sij = i t ί i 1 JtCj I 1 KtKβ 1 I KjKi 1 I Ki-tίjiίi 1 1 lίk [ 1 {JXjcJXj I 1 {rCkKj)

Proof. The definition of the above points are given in (12.1)
and (12.2), explicit formulae for them being given in Lemmas 12.2
and 12.3.

It is easy to verify that the number | (p0, 8ίy>] is invariant under
the cyclic permutation automorphism J and also under the isometries
Jr and tz of V(φ) to V(φ) and hence under the group Isom F of
the six isometries of V(φ) to V(φ) generated by Jand α12 (cf. § 10.2).
Under Isom F, the six points {sίjf sάi\ i Φl) are permuted transi-
tively and the point pQ is fixed. Hence for any permutation (ijk)
of (1, 2, 3),

en) = d(p0, sik) .

By Lemma 13.1, Rtsi3 = sik (in the ball). Hence d(sijf pQ) = d(sikf po) =
φPo). By definition therefore, sio^Rt. By symmetry s^eR,-.
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The proof s{j e Rϊ1 is similar. Also

Rs Ri8i3' = Rβih = skί

so that d(sijf p0) = d(sM, p0) = d(RjRisίh p0). Hence s^eR^. Also

so that d(8<y, Po) = dCs^ , p0) = diRtRjRiS^, p0). Hence s<y e RJEt^.
The remaining assertions for siά and s ί y result from applying Isom
F to the above results:

As for tik, by definition,

tik = j , y j b n e+ - 4 n Λ71 n RάRk n (/^Λy)-1.

Since R5 fixes each point of ef9 RβRkR5(tik) = RόRktik. If (vijk9 vijk)>
0, then /<ifc is given by (11.3a) and Lemma 13.3 (i) yields R5Rktik =
tH. Thus

diRjRjcRjtik, p0) = d(tjif p0) = d(tik, p0)

and tik 6 RjRJΪj. On the other hand, if (viJk, vijk) < 0, then £<A. =
Vϋfc = s i f c, a n d

Thus by the same argument, ίiJfc e RόRkRό is this case too. That
tιk 6 (RjRtRj)-1 can be deduced from the foregoing by applying the
isometry aik. The proof of Lemma 13.4 is now complete.

LEMMA 13.5. For all permutation ijk of (1, 2, 3) and for all
φ with I arg φs \ < 3(π/2 — π/p)

RjRjctik — tji (in the ball) .

Proof. This was demonstrated in the proof of Lemma 13.4.

14• Some identities in Γ, some lines in F, and (CD1) for

14.1. Relations in Γ. We mentioned in Remark 2 following
Lemma 12.3 that (vijk, vjik) — 0 = (vίjkf vίkj} for all permutations
(ijk) of (1,2,3). The group relations proved in the next lemma
explain these orthogonality relations and the relation (eif vijk} — 0
as well; they arise from the relation RiRjRt = RjRiRj.

LEMMA 14.1. For any permutation (ijk) of (1, 2, 3) and for all φ,
( i ) RάRtR&γ = (RtRsRtfRj.
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(ii) Let a = RtRβRkR59 b = Rj'R.R.R^ c = Rΰ'R^R, and Γ =
{{a, &}}, the subgroup of Γ generated by {α, &}. Then Γ' is abelian.

(iii) (RiRjRj,)2 and (RJtJϊj)2 commute.
(iv) (RiRjRk)2 and (RjRiRj,)2 commute.
(v) a^iR^R.γ iRARjY.

Proof. R&RsR^RjRk = R.R^R^RjR,

This proves (i).
By (i) ab - (RτRάRkf -= ba. This proves (ii).

= (RARJY, by (i).

Moreover b~ιa = R^R^R^RjRiRjRkRj = Rk'RjιRϊι R%RjRtRkR3 =
RkίRiRkRά = c. Hence {{α, 6}} - {α, c} and (R^R^eΓ. This and
(ii) imply (iii). Applying the isomorphism tc: Γ(φ)—> Γ(φ) to the
relation (iii) in Γ{ψ) yields that (RVRjlRk

lY and {R^R^Rj'f com-
mute in Γ(<p). This implies (iv).

We have from above

(RiRjRkYiRiRkRiY = α&cα = α6(6^α)α = α:; .

This proves (iii).

14.2. Geodesic lines.

LEMMA 14.2.1. Assume —(ττ/2 — π/p) < &rgφ'} < 3(π/2 — π/p).
For all i,

( i ) /, (Ί Ri and It Π Rϊι are geodesic lines.

(ii) β D RiRt+L and el Π (Rι-1Ri)~ι are geodesic lines.

Proof. Ii is a slice of RiRi+ι by Lemma 11.1. Clearly ei is a
slice of Ri. We have ^ is orthogonal to It at ίt_lf,,+1; for by Lemma
11.2 (i), v123 is the normal to /2, and <e2,

 /y123> = 0 as is easily verified.
Hence It Π Rτ is a geodesic line by Lemma 3.2.5. The same argu-

ment applies to I z π R7L. This proves (i).

Since the C-line e4 is orthogonal to the slice /̂  = {R^Ry Π
Rft^y^ (ii) also follows from Lemma 3.2.5.

REMARK 1. For -3(ττ/2 — π/p) < arg9?:; < π/2 - π/p, we get by
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the map J': V(φ) -> V(φ), that:
( i ) ' II f) Ri and I- f] RT1 are geodesic lines.

( i i ) ' βiL Π RiRi-ι and 1/ Π {Ri+ιRι)~1 are geodesic lines.
Assertions (ii) and (ii)' are in fact valid for |arg£>3 | < 3(π/2 — π/p).

For el Π RΆ is real analytic curve in the ball depending analytically
on the parameter φ throughout the interval |arg£>3 | < 3(7r/2 — π/p).
Since it is a geodesic line on an open subinterval of φ, and since
the condition of being a geodesic line is real analytic (with respect
to standard nonhomogeneous coordinates centered at pι2, it amounts
to being a real line), it follows that e£ (Ί R±R2 is a geodesic line for
all φ with |arg<p3 | < 3(ττ/2 — π/p).

13

FIGURE 14.1. A schematic drawing of Δίύk = Iijk π F(φ) for
|arg<£>3| < π/2 — π/p. As <p3—> ̂ "i, z/321 approaches the point at oo.
For arg φ* > π/2 — π/p, J321 becomes a single (finite) point in the
ball so long as arg<£>3 < 3(ττ/2 — π/p). For — 3(ττ/2 — π/p) <
— (π/2 — π/p), J123 is a single point.

LEMMA 14.2.2. Assume (vijk, vijk} > 0, then

( i ) i 4 # A n iijk - ^ n iijk

(ii) (R^Ri)-1 n i<y* = ̂ z1 n iijk

for all permutation (i, i, &) o/ (1, 2, 3).
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Proof. Set £, = Rά Π Iijk. Then for any x1e i^ set x2 = Jxu xz~
J2xλ. Then d(xl9 p0) = ώ(#2, p0) = d(#3, p0) since Jp0 = p0. By Lemma

13.3, J = RiRi+i on J,. Hence c£(2212ϋ2221#1, p0) = d(R2R1R2xu p0) =

d(R2x2, Po) = d(α?2, p0) since x2eR2. Hence d(R1R2Rιxιp() — d(xlf pQ). I t

follows that Zx c RtR2Rt Π J8i2. By Lemma 3.2.7, R^R^ Π I8i2 is a
circular arc. Consequently ^ = RxR2Rλ Π /3i2 By symmetry R0RkRaC\
Iijk = i2yn/iy*. Since #,22*22, = RkR3Rk, (i) follows, (ii) follows from
(i) by applying the automorphism αifc.

LEMMA 14.2.3. 2^or αίϊ permutations (ijk) of (123) αmϊ /or αίZ
a r g ^ 3 | < 3(7r/2 — njp\ RaRkR5 Π ef is a geodesic line.

Proof. Assume first that (vijk, vijk) > 0. By Lemmas 14.2 and
14.1, RjRJtj Π Iijk is a geodesic line lj which contains ttk. By Lemma
3.2.7. (iv) lά and the spine of R5RkR5 span a geodesic 22-2-plane G.
The C-line ef is orthogonal to /<,* at tik. By Lemma 3.2.8, R3'RkR3-Π
e is the geodesic line, for it coincides with G f] ej .

By the analytic continuation argument of Remark 1 following
Lemma 14.2, R3RkRd Π ef is a geodesic line for all φ with |arg£>3 | <
3(τr/2 - π/p).

LEMMA 14.2.4. For all permutations (ijk) of (123) and for all
φ with | a r g ^ 3 | < 3(ττ/2 — π/p),

( i ) RΪ1 Π Ink is a geodesic line.

(ii) JSΓ1 n/,,* = 4nI,,*.

Proof. By Lemma 14.2. l(i)', R^1 π /ί is a geodesic line. By
Remark 2 following Lemma 12.3, /• is orthogonal to Ii+1 at si+lti. By
the argument above based on Lemma 3.2.8, ί&ϊ1nli+ι is a geodesic line.
By symmetry one infers that RΪ1 Π /<,* is a geodesic line as asserted
in (i). By applying the isometry aik:V(φ)->V(φ), one infers that
Rjc ΓΊ Iijk is a geodesic line. By Lemma 13.4, both Rϊ1 Π 2i,* and JSfc Π
IίίΊfc contain the points sjk and s,i# Since geodesic lines in Chn are
unique, (ii) follows.

14.3. The region Ω(φ).

We have defined in §10.2

F(φ) = F 1 2 n F 2 3 n F 3 1 .

From the results of §10.1, we have

Sij £ F129 Sij 6 F12

for all distinct i, j (modulo 3). Also
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ΐl3t ^23) ^31> ^32 ^ •& 12

By symmetry it follows that for iφj,

8ti9 sίά e F12 n F2Z n Fzl

and also

and as a matter of fact for all permutations of i, j , k, the points
Puf in, Siίf Uh are in F(φ).

We would like to assert that the above points make up all the
vertices of the cell F(φ). To verify this, we would have to show
that the faces of the region F12 intersect the edges of F(φ) in no
points other than the above vertices. Proving this would entail
estimates on the derivatives of (cosh d(x, p0))2 — (cosh d(yx, po)f and
their behavior on the faces of F(φ). We circumvent this difficulty
in the following way.

Let Δi5 = {Rΐ\ (RtR^1, (R.RjR^1; iΦj = 1, 2, 3}, and let Δ =
Λ2 U 4s U Λi As in §10 set F12 = Γlrej127

+. Let Ek(F12) denote the
set of codimension Λ-faces of Fi2. The set El\F12) consists of twenty
2-faces; set V - *Rt Π *Rϊx (where *7 = 7 n Fn for 7 e A12), ί = 1, 2.
Then for

( i ) any eeE2(F12), e Φ *et or *β2

J, the information of § 14.2
shows that e Π F(φ) lies in a curvilinear triangle with vertex at p12

and opposite edge a geodesic line.
(ii) et Π F(9>) lies in a geodesic quadrilateral p12t32pnt2B bounded

the geodesic lines

et n Λi^Λi, î1 Π (R%)-\ et Π W 8 , î1 Π (iD^i)-1 .

For each eeE2(F12), define the g' as the above curvilinear triangle
if e Φ et and as the geodesic quadrilateral for e — et

By use of the automorphism /, we define e for e e E2(F12) U
E2(F2S) U EZ(F2^). (It is easy to verify that the resulting et — J*et
coincides with the geodesic quadrilateral obtainable from *et 6 E2(F12).)
For any γ e J , we define 7 as the region of 7 that is bounded by
the 2-faces e lying in 7. Finally, we define Ω(<p) as the 4-dimensional
region which is bounded by {7; 7eJ}. It is clear that F(<p)czΩ(φ).
Computer calculations for certain values of φ of interest to us, shows
that in all such cases F(φ) = Ω(φ).

Indeed, for all cases in which Ω{φ) satisfies (CD1) and (CD2), Ω(φ)
is a fundamental domain mod Aut β by Theorem 6.3.2. On the other
hand, if D=Γ\rer7+, then ΓD = X. Therefore Ω c (Aut Ω)D c
AutΩ-F=F. Consequently F{φ) = Ω{φ) whenever Ω(φ) satisfies (CD1)
and (CD2).
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Henceforth we focus attention on Ω(φ) rather than F(φ). The
3-faces Rl9 RXR2, RJtJRi in case |arg<£>3| < π/2 — π/p are shown below.
The 3-faces Rz\ (RJti)-\ {RJtJRd'1 can be obtained from the complex
conjugation map V{φ) ~^V(φ), and the faces R2, R2Rλ can be obtained
by applying to these the isometry a12:V(φ) —>V(φ). The remaining
faces can be obtained from the symmetry J.

FIGURE 14.2. The nine faces of Rλ (labeled by the intersecting 3-faces) for
|a rg^ 3 I <π/2—π/p.

RiR2Ri(Pi2t S12, £32), R2RΛP12, S12, s32), R^iPn, S32, S31), (RiRi)~x(Pn, S31, tiz)

ΉPsi, S12, U2), Rz^Pzi, S12, s32), RzRiiPzi, S32, S3i), RsRiRsiPn, ssl, tZz)

RZ^Pi* U?, Psu t2s)

FIGURE 14.3. The four faces of R^R2 for -(πj2-π/p)<argφz<3{πl2-~/p).

FIGURE 14.4. The four faces of RiR2Rz for |arg^ 3 | <π/2-π/p.

l2, ί32), RlR2{Pl2, Sί2, ti2), R2(Pl2, S12, tZ1), R2Rl(Pl2, 812, ί 3 l)

14.4. Condition (GDI) /or

PROPOSITION, i^or αiί ^

Ω(φ) satisfies condition (CD1).
arg φ \ < π/2 — π/p, the region
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Proof. It suffices to prove that:

(14.3.1) T: Eh(ff) = Etf-*)

for k = 0, 1, 2 and all 7 e Δ. For this will imply that 7 maps the
boundary of 7 onto the boundary of 7"1 and therefore 7 onto r"1.
Actually it suffices to prove (14.3.1) only for those 0, 1, 2-faces which
do not contain the apex pn. For by §9, each FiS is a fundamental
domain for the finite group ΓiS and therefore satisfies (CDl)(ΐ Φ j,
i, jel, 2, 3). The (CD1) condition for F12, together with (14.3.1) for
e 6 EjJcf)\ 7 6 Δlif with p12 $ e, k = 0, 1, 2, yield 7-7 = 7"1 for all 7 6 Δ12;
by symmetry one gets

(CD1) 7.7 = 7-*, all 76 J .

From the definition of Ω(<p), one sees that the only 2-faces of
Ω{φ) which do not contain an apex are for any permutation (ίjk) of
(1, 2, 3).

(14.3.2) Iijk for | arg φ* | < - | - iL

(14.3.3) I123, /231, /312 for ( i - •*) ^ argφ 3 < 3 ^
V2 p/ \2

(14.3.4) I32i, I132, / ω for - 3 ^ - -^) < arg 9 ^
\2 /

- ( £ - 2L)
V2 p/

and that each vertex and 1-face not containing an apex lies on the
above 2-faces.

Set

4/* = luh Π Ω(φ) for <viifc, vίifc> > 0 .

From the results of §14 and §10, one sees that every eeEx(Ω) which
lies in some 7 e E^Ω) but does not lie in any / e E2(F12) is a geodesic
line segment. Inasmuch as the geodesic joining any two points in
Chn is unique, to prove (CD1) for Ω, it suffices to prove (14.3.1) for
k = 0; for reasons of symmetry, we need only consider 7 6 Δ129 and
7 = Ru RJt2, or RJtJϊi. The requisite information

is given in §13.

R15 • (RtRj)-1, RjRk) and related angles.
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In order to determine for which values of the parameter φ the
region Ω(φ) satisfies condition (CD2), we compute the angles at which
the 3-f aces of Ω(φ) meet at those e e E2(Ω) which do not contain an
apex of Ω. Such 2-faces are Δi5k corresponding to all permutations
(ijk) of (123) if |arg<p3| < π/2 — π/p, to the even permutations if
π/2 — π/p ^ arg φ* ^ arg φ2 <£ 3(ττ/2 — π/p) and to the odd permutations
if -3(ττ/2 - π/p) < arg φz ̂  -ττ/2 - π/p.

LEMMA 15.1. (i) For any permutation (ijk) of (1, 2,

and RjRk meet in Iίjk at a constant angle if (vijk, vijk) > 0. Moreover

(ii) ^((RJi2)-\ l£kz) = π/2 - π/p + arg φ" for arg <pz ^
-(π/2 - π/p) ^ ^

(iii) <£(lQϊ2)-\ RJi1 = π/2 - π/p - arg φ3 for arg φ5 ̂  π/2 - π/p.

Proof. By Lemma 11.1, Iidk is a common slice of ( i?^)" 1 and

RjRk. By Lemma 3.2.9 (ii) the spines of (J?^)" 1 and R3Rk lie in the

same C-line. Hence by Lemma 3.2.4, (i) follows. The angle ^((RxR2y\

R2Rz) can be computed as ^(z^R^)-1), z(R2R3)) for any C-valued
S-function (S - (RJi2)~\ RJi,) by Lemma 3.2.6. By (11.2), for such
a function z, we get as the images of spinal surfaces

(RJl2)-1:\z + γ-2φ\ = 1
R2R3: \z - ηiφ\ = 1 .

The angle θ at which the normals to the two circles at 0 intersect
is clearly

(ηiφ/-ψφ2)

θ = &Yg(7jiφ = 7J2~2φ) = arg( — ηiφd) .

Hence the angle at which the two circles intersect is \π — θ\ =
π/2 — π/p + arg^ 3 for arg^»3 ^ — (π/2 — ττ/p). This proves (ii). (iii)
is obtained from (ii) by applying the isometry J'\ V(φ) — >V(φ), wnich
interchanges 1 and 3.

LEMMA 15.2(i). In the geodesic triangle Διjk

τr( -7Γ - — ~ arg φ*) , for even (ijk)

=
— ( — - — + arg φή , for odd (ijk)
2\2 p )

where (ijk) is a permutation of (123).

Proof. By symmetry, it suffices to consider the geodesic triangle
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4*i2 The calculation is somewhat analagous to the one used in
proving Lemma 15.1. We shall first determine the equations of the
lines Rx Π 4*2 and R2 Π 4?i2 From the matrices of §9, we get as the
equations of Rx and R2

Rλ: \η% + (1 - ηiφ)x2 + (1 - ηiφ)x*\ = \Xχ + x2 + xz\

R2: |(1 - Ύ]ίφ)x1 + rfx2 + (1 - ^ ) a ? 8 | = l&i + ^ + #31

From (11.3a) we get as the equation of Im

Substituting for xz and setting z = x2l(Xi + x2 + «8)

4 - ηiφ){l - ηiφ - ηψ) + 7]2\ = 1

/312 n i e 2 : | « ( — 1

Setting 6 = 1 — ηiφ — η2φ2

f we get

/312 Π R2: \z + η'lbil - ηiψ)\ - 1/16(1 - ηiψ)\

The common solution corresponding to the point s12 = ηiφeι + ηiφe2 + e3

is

s12: z = ηiφ/(l + ηi(φ + φ)) .

The map of the C-line Im into C given by the function z is
holomorphic and therefore conformal. It follows from elementary
geometry of circles that one of the two angles between the two
circles is the arc of

ηiφ , η2 1

1 + ηi{φ + φ) 6(1 - ηiφ)
w = — l — ηiφ

b \b(l-ηiφ)\

After clearing denominators and simplifying numerators we get

(1 + ηiφ + η2)(l - ηiφ)

Note that 1 + ηiφ + φ2 = φ\l + ηiφ + η2). Hence

ηiφ)
(1 - )?ίφ)(l - ηiφ)

1 —
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It follows that <̂C tZ2s12sls = (ττ/2 — π/p — arg φz)\2. From this the
lemma follows.

REMARK 1. The angles above can be computed by applying the
analogue of Napier's rule for a right triangle ABC with hypotenuse c:

cot A cot B = cosh 2c

in the constant curvature C-line Iijk. The resulting computation is
longer than the one presented here.

REMARK 2. Note that the triangle Δiάk is isosceles since Rά

carries one side into another by Lemmas 14.2.l(i) and 13.4. Hence

for I arg φ31 < τr/2 - ττ/p.

LEMMA 15.3. < £13p12ί31 = ((6 - p)/2p)π(p = 3, 4, 5).

Proof. Let ^ = i^12 Π e4̂ (i = 1, 2). From the description of the
fundamental domain Fn in §10.1, we see that F12 has only two 2-
dimensional faces fixed under a C-reflection; namely ΔL and J2. Con-
sequently, from X = Γ1 2F1 2 we infer

eί = U h 4 ; ΊΔ2 C 621} u {τΛ; T Λ C ^ 1 .

Clearly jΔ1 c e2

L implies Tβ^ = e£ and therefore 7 6 ZΓ2 where Z is the
center of Γ12 and Γ2 = {{R2}}. We have RλR2eL^ -ηiφe2 by §9.1.
Hence RJtJR^t = RxR2et — β2

L. Inasmuch as i ^ L = e^i = 1, 2) and
(R1R2R1)

2 e Z, we see that

{7 6 Γ12; T Λ c e^

Hence

β2

J- - ZΔ2 U JJi

Thus 021 is a union oί 2% Z sectors with disjoint interiors. It follows

at once that

by (2.2.4).

16. The stabilizer of Ω{ψ) in Γ.

Let p be order (in the multiplicative group of nonzero complex
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numbers) of yjiφ*, and let σ be the order of Ύjiφ*. Let

r = orderCRA^a)2 in PU(ff)

s = o r d e r ^ i ^ ) 2 in P(U)(H) .

Let AutΓ i3 denote the stabilizer in Γ of the region Ω(φ). From
§9.2, we know that the order #AutΓi2 is at most 3. The following
theorem determines AutΓi2.

LEMMA 16.1. Assume that p is finite (or equivalently that σ is
finite)

( i ) if ZJfp then (RJRJEt^RJt* = / in Ch\ where 3μ + 1 ΞΞ 0
mod jθ

(ii) if 3 1 σ, then (RzR2Rλ)
2vRzR2 = J~ι in Ch\ where Zv + 1 = 0

modσ,

(iii) (RJtJt^RiRz = {RJRzRxf
μR2Rz =

(R3R2R1)
2vR8R2 = (R1RsR2)

2uR1R3 —
(iv) r =

Proof. Set f = ^"iφ3. From (9.1.1) we see that the eigenvalues

(RJtJRtf are

(16.1) —η6φ-6 , ^3ί^3 , Ύfiφ* .

In addition by (9.1.3)

(e2, vm) = 0 .

This implies that (RXR2RZ)
2 fixes the point π(vm) of CP2, and each

point of the complex protective line π(vt*ώf rotates CP2 around the
point π(vm) by the scalar multiple

(16.1) Ύfiφ*Ί - Ύfφ-* = f3

stabilizes e£, and rotates the complex protective line π(e2

1) around
the points

Π et) and π(vt2s fΊ et) by

scalar multiples (ηiφs)/(—γφ~6) — ξ3 and ί3 respectively.
The order of (RJtJttf in PU(ff) is the order of ξ\ This proves

the first part of (iv) and proof of the second part is similar.
By Lemma 12.3

__ (π(vίn Π et) if O123, v123> > 0

\π(vm n βί ) if {vm, vm} < 0 .
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From §9.1 we see that RJR^ — —ηiφβx (by symmetry from
RxR2ex — —ηiφe2) so t h a t RzRλet — βj1. By Lemma 13.5, R3Rxt21 = tZ2.

Hence R3Rt sends the quadrilateral Q3 = [?>31ί12p23ί21] into the C-line
π(eϊ) so as to abot the quadrilateral Qx = [j^sPsi^] along the geo-
desic line segment [ί32, p3ί] (cf. Figure 16.1) since R^: R^-^ (RzRi)~N - l

t23

FIGURE 16.1

By symmetry one sees that image R3RrR2RS RχR2Qi is given by
rotation about £32 through the angle 3 <£ (R^)-1, RJt2 = 3(ττ/2 — π/p +
arg ψz) — 3 arg ξ in the sense from p12 to p31f this is a rotation about
the point t32 by the scalar multiple ξ3 if (vm, vm) > 0 and by the
scalar multiple I3 if <t7128, v123} < 0.

Suppose now that 3 \ p. Then one can choose μ so that (RJRJt^fμ

rotates RZRXQZ back into Qx; one need only select μ so that

(ey = e if <v13ifvmy>o
{ξsy = ξ-i i f <Vmy Vmy < o β

In either case ί3/<+1 = 1; so select μ to satisfy 3^ + 1 =
Then we have

{RJRJRtfRJtJtn - p12

In addition, by Lemma 13.3 (i), i ? ^ = J on /3 sending I3 to ^ if
<ι;123, 1̂23> > 0. In this case, {RJtJt^R^ — J on 73 (by Lemma
13.3(ii)) as well as on π(el) and therefore on the ball.

It remains to consider the case (vm, vm) < 0. In this case, the
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triangles Δm, Δm, Δ2Zl collapse to points and the reasoning of the proof
of Lemma 13.3(i) does not apply. Instead, one argues as follows:
RZRX carries /3 to Ix and RBRλ R2R3 R±R2 carries Ix to Λ rotating the
C-line Iχ about the point tS2 by the scalar factor ζ3. Hence by symmetry
RZR1 restricted to J3 is the map ρί°J where pλ is the rotation of the
ball about ί32 by the scalar multiple | . Consequently, RZRX — ρλ-J.
By (16.1), (RJtJt^1 = pϊ1. Consequently J = p^RJΆi = (R.R.R^R.R,.
This proves (i).

(ii) follows from (i) by applying J': V{φ) -> (<p).
(iii) follows from (i) and (ii) by symmetry. The lemma is now

proved.

REMARK 1. From (9.1.6) it follows that the order in PU(iί) of
R2RJt2Rz is 1.cm.(order —ηίφP, — rjiψ%) — lcm(σ, p).

REMARK 2. If Ω{φ) satisfies conditions (CD1) and (CD2), then
3||O and Z\σ implies that # AutΓi2 = 1. For then the circuits around
Jijk result in the identity map. By Theorem 6.3.3(a), AutΓ Ω = (1).

REMARK 3. More generally, in the joined ΓΩ(φ) space, if 3|<o
and 3|σ, then # AutΓi2 = 1, provided that | a r g ^ 3 | < π/2 — π/p. We
shall prove this in § 18.4.

REMARK 4. By Lemma 13.3(i), J~ιRxR2 fixes each point of I l β

Clearly J^RJt^p^ = J~lfpl2 = pu. Consequently, J-XRXR2 is a rotation
of CP2 about the line 7X stabilizing the line et and rotating p12 into
2>3i about tZ2. Comparison with (16.1) shows that J-^RJii is a
rotation of CP2 about Iλ by the multiple ξ. Moreover, the matrices
J^RJtz and RL commute. For JRt = Rί+1J for any ί mod 3; hence

J~ RtR2Rι — J~ R2RλR2 '=z Rίj
1R1R2 .

17. Nonarithmetic lattices Γ(φ).

17.1. Values of φ for which Ω(φ) satisfies (CD2).
Set

p = oτάeτiηiφ3) , σ =

r =

From Lemma 16.1 we know that r — orderiR^R^)2 in PU(£Γ), and
s = order (R.R.R,)2 in PU(£Γ). From the fact that i ^ is a funda-
mental domain for the finite group Γih we know that the codimension
two condition (CD2) is satisfied for all 2-faces of Ω(φ) which contain
an apex pij9 i Φ j , i, i e { l , 2, 3}. The only 2-f aces not containing an
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apex are Δijk with ijk ranging over all even permutations of (123)
if — (π/2 — π/p) < arg <p3 < 3(π/2 — π/p), and over all odd permutations
if — 3(π/2 — π/p) < aτgφ°° < π/2 — π/p. The circuit around Δijk is
RiR^RkRi^RύRk Ω. Each such circuit places side by side around
Δijk the region bounded by two spinal surfaces whose spines lie in
a common C-line and which intersect in the slice Iijk. By Lemma

15.1, (RiRj)"1 and RjRk meet at a constant angle equal to π/2 — π/p ±
arg<£>3 (the ( + ) or ( —) corresponding to even or odd permutations).
Since (yjiφ?)9 = 1, the image of Ω(φ) after p terms of the circuit
coincides with Ω(φ), and by definition of p no shorter circuit brings
Ω(φ) back to coincidence with itself. On the other hand, by (CD2)
all the interiors of the p images of Ω(φ) in the circuit must be dis-
joint. Hence for |arg^>3| < 3(π/2 — π/p).

( i ) p{π\2 — π/p + argφ3) = 2π, if arg^ 3 > — (π/2 — π/p).
Similarly,

(ii) σ(π/2 — π/p — argφ*) = 2π, if arg<^3 < π/2 — π/p. If
|arg<p3| ^ π/2 — π/p, both (i) and (ii) apply and adding we get

JL _ JL = JL + JL
2 p p σ

Setting m = inf(̂ o, σ), this implies m ^ ^p/{p — 2) ^ 2m. Thus

(iii) 6 ^ m ^ l 2 if p = Z

4 ^ m ^ 8 if p = A

4 ^ m ^ 6 if p = 5 .

If 3(ττ/2 — π/p) > arg φ3 > τr/2 — π/p, we see from (i) that

Thus p/(p - 2) < <o < 2p/p - 2, yielding

(iv) 4 <; p <i 5 for p = 3

3 ^ |0 ^ 3 for #> = 4

2 ^ / 0 ^ 3 for p = 5 .

In this latter range for φ, ΔmΔm, and Δm are the only 2-faces of
Ω{φ) not containing an apex.

In order to determine all the φ for which Γ(φ) is a discrete
group it suffices to consider the range 0 <; argφ3 < 3 (π/2 — π/p),
inasmuch as the negative values of φ are given by the symmetry
J': V(φ) ~>V(φ). We shall give the φ in two lists, one for 0 ^ arg^>3 ^
π/2 — π/p, the other for π/2 — π/p < arg<£>3 < 3(π/2 — π/p). In case
arg φz = π/2 — π/p, the geodesic triangle Δ321 degenerates to a point
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at oo and it can be regarded as limiting value of arg φz > or <
π/2 — π/p; we list this case on our first table.

Set t = (1/π) arg φ\ then t = 2/p - (1/2 - 1/p). If O^ί then
inf (p, σ) = p. We therefore arrange the tables according to increasing
values of the integer p. In Table 1, 1/ρ + 1/σ = 1/2 — 1/p; in Table
2, we have instead, 1/ρ + 1/σ = t. The requirement that σ be an
integer reduces the number

V

3

3

3

3

3

3

4

4

4

4

5
5

P

3

3

4

5
5

of cases in

6
7
8
9

10
12
4
5
6

8

4

5

4

5

3

2

3

(iii).

TABLE 1.

σ

OO

42
24
18
15
12
oo

20
12
8

20
10

TABLE 2. 1/2

a

12
30
12
5

30

ί

1/ 6
5/42
1/12
1/18
1/30

0
1/4
3/20
1/12

0
1/5
1/10

-llp<t

t

1/ 3
7/30
5/12
7/10

11/30

1/2 - Up

#AutrΩ

1

3

3

1

3

1

3

3

1

3

3

3

< 3(1/2 - 1/p)

#Autri2

3
3
1
3
1

r

2
7
8
3

10
4
4
5
2
8
4
5

r

4
5
1
2
1

s

CO

14
8
6
5
4

oo

20
4
8

20
10

s

4
10
4
5

10

REMARK. Let p = 5, φ3 = i, α̂ 3 = exp(7πi/10). We will see in §21
that Γ(φ) is an arithmetic lattice despite the fact Ω(φ) does not satisfy
(CD2). In this case Ω(φ) is not a fundamental domain modAutΓ42;
nevertheless, Γ(φ) is a lattice. In fact, as we show in §21, there
is an isomorphism of Γ(φ) onto Γ(ψ). Thus (CD2) is a sufficient
condition for Γ(φ) to be discrete but is not necessary. On the other
hand, the failure of (CD2) for Ω(φ), |arg^ 3 | < π/2 — π/p, seems to
imply the Γ{φ) is not discrete. For example, (CD2) fails for p — 5,
t = 0. In this case, one can compute that {RJiJt^fe^ ex> is a non-
admissible value (cf 2.4.3). This implies that {RJtJt^R^RJtJR^ Rx)
is a C-refiection group which fixes a point in the ball but is infinite.
It follows that Γ(l) is not discrete.

17.2. The field Q[TrAdΓ]* In applying the test of §4 for
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arithmeticity of the lattice Γ(φ), we must determine the field generated
by TrAdT, as 7 ranges over Γ(φ); we denote this by Q[Tr AdΓ].
For any subfield k of C stable under complex conjugation, we denote
by Re k the subfield k Π R. We continue the notation p = order
fjiφ\ η = eπί/p. For arg<p3 > -(ττ/2 - π/p), yίφ3 = e2πiίp/ by 17.1(i).

LEMMA 17.2.1. Q[Tr AdΓ] = ReQ[e2πi/p, 2ez

πί/p] for arg φ3 >
— (ττ/2 — π/p) and for Γ(φ) discrete.

Proof. We identify Hom(F, F) with F(x)F* in the standard
way so that for any e, / e F, a, β e F*,

= x + (jf- — l)(x1e1)e1 — rfx^ — ηiψx2e1

x) e3 + e2 (x) e2 + e3 (g)

(e (X)

Let {e\ e2, β3} denote the dual base to the base {el9 e29 e3} of our vector
space V(φ). We rewrite the generating C-reflections Rx of Γ(φ):

and

where e(j, k) = (-1)*^', (i, fc = 1, 2, 3). Then

z

Tr S y ^ Rh = Σ Σ dh^φHJ^ αy< <

= Σ

where w is the topological degree of the map of the loop {ixi2 - - ipi^
into the circular loop (1231) and m — Sn is a nonnegative even integer
2u. (The only terms having φ or φ have ηi with them.) Write
7 = 72̂  i2yfc. Then TrY is a sum of terms of the form
ψ (rji)™-*1 {ηiφy with (rji)m-n = (ηί)2{u+n) == ̂ («+») (-!)«+*. Hence
Tr ΎeQ(η\ rjiφz). But ^ 3 - e 2 ^ for argφ 8 > - (π/2 - τr/p) and
Tr Ad 7 = (Trγ)2 by §4. Consequently

Q[Tr Ad Γ] c Re Q(eM% e2πί/p) .

In order to prove the converse inclusion, we consider Tr Ad 7
for 7 = R2RtR2R,. By (9.1.6) the eigenvalues of R2R,R2R3 are rfiφ*,
Ύfiψ*, —Ίf and therefore
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(Trγ)2 - \(-η)\-V

= 3 + 2 Re(ηiφ* + ηiψ + φ6)

= S + 2(cos — + cos ^ - + cos27rt)
V p σ I

where t = π~λ arg φz and v is an integer prime to σ, the order of
Ύ]iφ\ with v = 1 for |ί | < 1/2 - 1/p.

Additional elements of Q[Tr Ad Γ] are cos 2π/p and cos βπ/^ aris-
ing from Tr Adi?! and Ίτtβjtjttf respectively (cf. (9.1.1)).

Let K denote the field Q[e2πί/p, e2πi/p]; K is generated by a primitive
root of unity z, and its Galois group is given by automorphisms
z -+ zm for integers m prime to the order of z. The Galois group
of K, Gal K, is thus abelian and the subfield Q[Tr Ad Γ] is stable under
all automorphisms of K. Hence

cos 2™L + cos ^ ^ - + cos 2mπt e Q[Tr Ad Γ]
p σ

for all m such that z —> zm is in Gal K. Examining the cases in Tables
1 and 2 one by one, it is easy to verify that some linear combination
of the foregoing elements in Q(TrAdΓ) yield each of cos2π/p,
cos2πn/σ, and cos2ττ£ except in the case p — 4, p = 5/12. In the
latter case one computes

Tr EJRJR.RJR, = yfijfiψ - η - 1 - rjiψ + ηίφ")

thus Q(TrAdΓ) contains — (τ/3/2) = cos(2πn/σ) in this case too.
The field K has as a primitive generator any element z = e

2xiN/L

where L is the least common multiple of p and p and gcd(iV, L) = 1.
Thus each element of the field JK" has the form Σi=o <*>,& with αy 6 Q,
and each element of the field Re K has the form

As is well known, cos i<9 is a polynomial in the powers of cos θ with
integer coefficients for any integer j . Thus

On the other hand, we have

p P \2 p / \ \p
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Hence σ, the order of rjiφz is the order of e2πί/p 2πi/p if σ is even,
and half that order if σ is odd. Thus if σ is even and gcd(p, p) = 1,
then σ — L and exp(2τrίv/o ) generates the field iΓ. In these cases
cos(2πv/σ) generates Re K. In the remaining cases of Tables 1 and
2, exp 2πit generates K and cos 2πt generates Re K. As noted above,
these generators for Re K are in ReQ[TrAdΓ]. Hence ReϋΓc
ReTrAd/\ From this the lemma follows.

17.3. Non-artithmetic lattices.

It remains only to apply the criterion of § 4 to the groups Γ(φ)
listed in Tables 1 and 2 of §17.1 to determine which of them are
non-arithmetic lattices.

TABLE 3

t k-gen. Arith.

10

12

1/ 6

5/42

1/12

1/18

1/30

0

1/ 4

3/20

1/12

0

1/ 5

1/10

1/ 3

7/30

5/12

7/10

11/30

ir

15
π

COS

cos~

cos-

cos

COS

COS

cos-

cos-

COS"
15

1

6

4

3

4

2

1

4

2

2

4

2

2

4

2

2

4

-cos

cos ̂ / ( 3 sin I ) aΊ(Δ) = - cos^/(-3 s i n ^ ) < 0

) = — cos-

-1/3 sin-f
o

1

1/ cos3τr/20\
2 Γ + sinπ/4 /
1 / cos r/20
2\ + sinπ/4

"¥\ 1 +sin7r/4/

3 cos π/5

= _I(1 +~g^\< 0

2\ -smπ/4/

2 \ sm5π/4 /

4 sin2 7r/5 4 sin3 π/5

3 cos ττ/10

4 sin2 π /5 4 sin3 π/5

1
2 3sinπ/3
cos 7π/30

" 3sinττ/3

=l-2.1708+.9959<0

σ3(Δ)>0

, (772(Z/)>O,

1 / COS5JΓ/12\

2\ 3sinπ/4/

1 -

1 -

cos3π/10
4sin2π/5 4sin8π/5

3 cosllπ/30

4sin2π/5 4sin3π/5

A

NA

NA

A

NA

A

A

NA

NA

A

NA

A

A

A

A

A

NA
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All the groups of §17.1 are discrete. Except for the two cases
(P, P) — (3.6) and (4.4) in which σ = <*>, the regions Ω(φ) are compact
and therefore PU(H(φ))/Γ(φ) is compact; in the other two cases,
Ω(φ) has three cusps at the boundary of the ball but nevertheless
has finite measure. Accordingly Γ is a lattice subgroup of PU(H)
for all the groups listed in Tables 1 and 2.

We list the arithmeticity results in Table 3. The fourth column
lists a primitive generator of the field k — Q[Ad Γ], the fifth column
lists the order of the Galois group of k. A — 1 — 3α2 — a\φz + φ3),
the determinant of the matrix (eίf eά} (i, i —1, 2, 3). The sixth column
lists the effect of the automorphism σn: z—>zn an Δ, where z is a
primitive generator of the cyclotomic field containing η\ i, φ% and
the value cτn(Δ) for some n when σn(Δ) < 0 and σn Φ identity on k —
QfTrAdΓ]. In the last column A and NA denote arithmetic and
non-arithmetic respectively.

In our situation, Δ — 1 — 3/(4 sin2(τr/p)) — cos πt/(4 sm\π/p)) which
simplifies to — (cos ττί/)/(3 sinπ/3), — (1/2)(1 + (cos τrί)/(sin πβ)) for p =
3, 4 respectively.

Summing up the information contained in Table 3, we get the
following result.

THEOREM 17.3. There exists in PU(2, 1) a non-arithmetic lattice
generated by C-reflections of order 3, 4, or 5. Up to an isometry,
any such lattice with Coxeter diagram

and (elf e2) (e2, e3) (e3, e^ = eπιt is given by the seven values

(p, ί) - (3, 5/42), (3, 1/12), (3, 1/30)

(4, 3/20), (4, 1/12)

(5, 1/5), (5, 11/30)

The non co-compact lattices Γ{φ) are arithmetic.

18. The space Y(φ), |arg^ 3 | < ττ/2 — π/p, (aτgφ)/πeQ.

18.1. The joined space.

We have seen in §14.2 that for |arg^ 3 | < π/2 — π/p, the region
Ω(φ) is bounded by the 24 3-dimensional faces
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Et(Ω) = {Rf\ Ri9 Rs)±\ (R.Rft^ i, j = 1, 2, 3; i Φ j}

and that for each y e Γ,

rγ. Pf > fγ-1

Set A{φ) - {Rf\ (RtRjr1, (R^R^1; i, j = 1, 2, 3; i Φ j} and let Γ(φ)
denote the subgroup of Isom B generated by A(φ). Write F, A, Γ
for Ω(φ\ A{φ), and Γ{φ) respectively. For any 7 6 A, set

By the proposition of §14.4, we may assert

j(F) Π F = e(τ) , all 7 e

Set J ^ ~ ΓF. By Theorem 6.3.2(1), &~ is a connected abutted family
of polyhedra. We let Λ" denote the adjacency of &* and we let
Y(φ) denote the joined ^^space. In §14.3 we have seen that the
polyhedron F has 15 vertices of 4 distinct types, up to equivalence.
Mod Aut F

Putt Φ j) with piS = pόi

Sad Φ j) with 8i3- = 8Si

SijiiΦJ) with 8iS = sdί

tφ Φ 3)

We recapitulate here the results from §16. Let

r = order(i2ii?2i23)
2 = order >73iφ9 — oγάer(jίiφf

s = o r d e r ^ i ? ^ ) 2 = order rjHφ9 = order(^i^3)3

^ = order rjiφ*

σ — order fjiψ .

These integers are finite if and only if (27r)~1arg^6Q. In this case,
ΓF = Zz if either p = r or σ = s; equivalently 3 does not divide |0
or σ. Cyclic permutations of indices make up Aut F for all φ Φ 1.
Thus for φφl9 Aut F = Zs. If <p = 1, ί7 is stable under all permu-
tations and Aut F = ^ e Set Γα = (Aut Γ)Γ. Then modulo Γα, the
vertices of -EΊ(î ) are

modulo /"«, the remaining (4 — &)-faces Ek(F) are

EB(F)/Γa: p12tm p12, ί28, Pi28i2(via sf2),

(18.1.1) S i 2 6 3 2 , ^31^23 t
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E,{F)IΓa: el- n F, Διn, Jm

(I8.1.2) RX n Rjt,, R2 n &,&» R, n Rjίjt* R, n RMΆ, RA n RM& ,

R2R1 Π R±R2Rχ

(18.1.3) E1(F)/Γa: Rlf RλR2, R2Rlf RxR2Rλ .

18.2. Stabilizers.

Up to an automorphism of /\ the stabilizers of all faces in the
polyhedral decomposition J^ of the space Y(φ) is given by the stabi-
lizers of the faces η(e, F) where η denotes the canonical map of
F x ^~ onto Y(φ) (cf. §6.2) and e ranges over the faces in the list
(18.1). As above, Γ(ef F) denotes the stabilizer of the face ηie, F).

(18.2.1) Γinz>F) is the subgroup Γ12 of Aut J5( = PU(ίί)) generated by
Rλ and R2; it has order 24(p/(6 - p))\

Proof. Let jeΓ{Pl2tF). Then ΊVn~ Pn and yF is p12-connected
to F in ^ and 7Fe^PlΛtF. By Remark 2 of §6.6, ^ 1 8 i F - Λ 2^ 1 2.
Since F lies in a fundamental domain for the action of Γ12 on B, Γ12

operates simply transitively on ^Pl2,F and 7 e Γ12. The order of Γ12

is given in §2.

PROPOSITION 18.2.3.
JϊJϊi, RiΛRzRιRz}} — {{R3R2RιR2, i2ί"1i23i22i2i}}

and these stabilizers are abelian.
(ii) (a) IfSJrpσ, then Γ{Sl2,F) = {{(i?3JBA)2, (^A) 3 } } - Z r xZ,.

(b) IfZ\pσy then {{(R^R,)2, (R.R.R,)}2}} is a subgroup of
index 3 in Γi8l2iF).

(iii) Γ{Sl2fF)\G(s12, F) has 6 elements represented by

1, iϋj"1, R21, Rz, R3R1, R^R2

(2 elements represented by ί7, R3F
(iv) Γ ( S 1 2,F )\^:1 2^ ^αs if ΓFΦ {1}

[6 elements if ΓF = 1 .

Proo/. Set α = R^RJtJRu b = R^RzRtR29 c - ft"1©. Then c =
R2

ιRΐιR^~ {R1R5R1)R2Ri — R2 R^ Rΐ R^RiR^R^Ri — R2 R3R2Ri' bet Γ —
{{a, b}}. Then Γ 1 - {{a, c}} = {{R.R.R.R,, R^R^R,}}.

We shall prove (i) with the help of Proposition 6.6. By §14, the
3-faces of F containing s12 are

Rlt R2, ΐίϊ\ R,R2, R2R1, (RA)-\ (R&)-1, R&Ri •
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Thus the adjacent cells ,yK(FSl2) are of the form (yF)Sl, with 7 in
the subset of Δ denoted

F[sn]: Br1, Btι, Bt, ( i^)" 1 , ( i^)" 1 , RJt» R,R,, {R.RΆY1 •

We first verify

(1) .yV\yV\FsJ) c Γ\..Λ\F^ U F.J .

In verifying this, we make use of the evident fact: for any yeΓ,

In order to prove (1), we must show for each 7 e F[s12] and δ e
-%,] that

(1') Ύ$ 6 Γ\F[βa] U 1) .

For 7 = Rϊ\ we find 7~1s12 = ^s 1 2 = s81. From §11, we find the 3-
faces of F containing su and accordingly we get for

F[s31]: Rit Rlt BJtlt RJtt, BJt^, Rί\ (R.R,)-1, (RA)-1

and^r1i7[s3 1] = JRr1^8, 1, Rl'R^, Rt, RJt^BJi,)-1, (R1RiRJ-1,(BtRtB1)-1.
We have R^R^A = beΓ\ Thus

Similarly R^R.R, = (B^BJt^Rj1 c ΓιF[sn], and

Consequently R^F[sai\c:r\F[sn] U1). The verification of (1') for 7 =
R21 and R3 is similar. For 7 = ( i?^)" 1 , we find {RιRi)812 = s23, and

F[s2i]: R~\ Ri\ Rlf (RA)"1, (RA)-\ R&, R&, (R.RA)-1

(R^-'Fls^: (R&Rd-1, (^A^"1, Rl1, (R,RsR1R,ri(.RsR,RA)-1,

1, R^RZ, {RΆRΆRd'1

RT'Ri = Rϊ'RiRAiRzRύ-1 e Γ'FfβJ .

Similarly, (RAR^RiR^)-1 = a^Rϊ1 e ΓΨ[8n]. Verification of (Γ) for
7 = (RiRj)"1, R3R1, R%RU and (RJtJR^1 is similar. For example,
BLR2B)8a = s12 and we have for

.F[s1 2]: Rlf R2, R1R2, R2.Ru R2R1R2, R^1, R2

J-1, ( i^)" 1 , Rϊ\ Rt, 1, {RJIJIAY1 , and

all in Γ^FfoJ U 1), in verification of (Γ).
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Next we compute S = ({l}UF[s12])TFΓiΓ(Sl2>F). Let J denote the
automorphism of B arising from the cyclic permutation (1, 2, 3) ->
(2, 3, 1). Then Aut F = {{J}}. From §16 we know that if 3 does not
divide p,

J = (R1R2Rs)
2μR1R2 = (R2R3R1)

2μR2RΆ = {R3R1R2)
2vRzRί

where 3μ + 1 = (Kmod^o); if 3 does not divide σ

J~λ = (R3R2R1)
2vR3R2 — (R2R1R5)

2vR2R1 = (R1R3R2)
2vR1R$

where 3v + 1 = O(modσ); if 31̂ o and 3|σ then ΓF = (1).
From the relation of §13:

These permit us to find

Consequently if

[A] Γ F = (1), S = {Ύ e {1} U F[sί2]; ysl2 - s12} = (1)

[B] ΓF = {{J}}, S - {1, (ΛAJ-V, {RΆYιJ~\ RAJ~

If 3|/o, (RΆY'J = R2

ιRτ\R1RAYμRΆ = (RzR,R2f
μzΓ\ If

Similarly, we find in Case [B] that S c Γ . Hence Γ1 = Γ(βl2,F). By
Proposition 6.6. Γ^,^, = ΓXS = Γ1. The result for Γ{~,F) follows
from the isomorphism of Γ{φ) to Γ(φ) provided by complex con-
jugation which sends si5(φ) to siό(φ) and Ri(φ) to Rϊ\φ).

Proof of (ii). ac = (RJRJRtf and 6c = R^R^R^R, = R^ιR1RzRιR2Rι =
α. Thereforeα^α& αceΓ 1 . Let S denote the subgroup {{α&, αc}}. Then
ΓVJE' has order dividing 3. By §10 the matrix R3R1R2R1 is diagonal-
izable with eigenvalues (jfiψ, η%φ*, —η2) so that its order in PU(iϊ)
is the order of the diagonal matrix d = (—ηίφ3, —ηiφ3). On the other
hand, by §10, the order {RZRJR2)

2 in PU(JSΓ) is the order of rfiψ =
(~ηiφ5y and the order of (RJRJRtf = {-ηiφ*Y. If 3 does not divide
the order of d, then α3 has the same order as a and a? eE implies that
aeE. Therefore E = Γ\ and Γ(8ί2,F) = {{RzRλR2)

2, {RJR^f}. The
intersection of the cyclic groups {{RzRJi2Y Π {(i^i^i^)2} = (1) for any
element in this intersection fixes each point of the orthogonal C-lines
containing Δzn and J321 respectively and therefore fixes all the points
of B. Thus Γ{Sl2>F) — Zr x Zs in Case 3 does not divide the order of
d, or equivalently the order of d = (̂ %>3, fjiψ). This proves (iia).
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If 3 divides the order of d, then 3 divides the order of a so
that a is not in E. Hence E is of index 3 in Γ{8l2,F), proving (iib).

Proof of (iii). Write Γ 1 for Γ{Sl2,F)t J^"1 for J^ 1 2 , F . We know
from the proof of (i) that

G(s12, F) = Γ\{1] U F[s12])F .

Clearly

(xt3/12^1^2) (^1^2^:1)" — Rz

Consequently, G(s12, F ) = ΓX{1, ΛΓ1, ̂ 2~
1, Λ8, ^ 3 ^ , i23^2}. For any two

distinct elements 7l9 72 of the six elements Q = {1, ΛΓ1, ̂ Γ1, #3, HA,
RZR2} one can order them so that YITCΓ1 is either in Q or is one of
{R^R2f R^tRsRlRsR&RsR^RsRβ^Rϊ1}. From §13 we have the
diagrams

(S23> S2ί) (S32> ^12/

^RzRz R^Iti/ \.RzRz

and also

From these relations it is easy to verify that for any yu τ 2 e Q,

TiΎί"1^ ^ si2 For example

RzRftΛsn) - #3#i(s23) Φ s12

since (R^-%2 = s31 ̂  s23. Hence G(β12f ί
7) has exactly six Γ(Sl2,F)

orbits.

Proof of (iv). The set Γ(Sl2>F)\^Sl2)F is the space of double cosets
si2, F)/ΓF. It remains therefore to find which pairs of ele-
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ments gx and g2 of Q are in the same double coset; this is the case
if and only if

Clearly if ΓF — {1}, then ^i^F is represented by the six elements
of G(s12, F). If ΓF Φ {1}, then either SJfp or ZJfσ.

Case 1. ZJfp. Then

Ji-1 6 Γ

R3R2 J 1 = -R3-

= (RzR&γvRsRzRβz € Γ 1

RBJRj = RB(R1R2R^)2μR1R2Ri — {RsRiR2)
2μR5R1R2Rί 6 Z^1

RZJ~1R2 = i28[(i22i23-B1)
2'£-B2 j

= (RJtiRtf* e Γ1 .

Case 2. 3 | t f

RsRi' J~ι' 1 = Rs(R2RiR3)
 VR1R2R1 = (RBR2Rι) i'RsR1R2R1 β i

RSR2J 1 = RtRH(RlRtR1yRJlt\~1 e Γ1

RJR, = RίiR^R.rR.R^R, = [Rι(RtRlB1T']-1RιeΓ1

RSJR2 — R5i\R2RιRs)
 ι'R2R1\R2 = (R$R2Rι) vRsR2RχR2 € /

Thus if either 3|<o or 3|ί7, the space of double cosets has at most
2 distinct elements represented by 1 and # 3 . It is easily verified
that RzJ

±xs12 Φ 812. Proof of (iv) is now complete.

PROPOSITION 18.2.4. Lef p = order ηiφ3, σ = order ^"î "3, r =
r ^ i ? ^ ) 2 , s = o r d e r ^ ^ ^ ) 2 .
( i ) If S)(pσ, then Γ ( ί l 3,F ) - {{R2, (R.R.R,)2}} = Zp x Zr and

ΓiHvF) - {{R2, (R&RJ2}} = ZP x Zs, and r = p,σ = s.
( i i ) (a) If S\σ but 2>\ρ, then

Γih3,F) - {{R2f (R&Rs)2}} = ZpxZr, r = p

and

ι}} = Zp x Z3 8, σ - 3s

where Zμ + 1 = O(modr).
(b) If S\ρ but Z)fσ9 then

K (ΛA«i)2}} = Zpx Zs, s = σ

and

Γ{h3>F) = {{R2, (RJt&yRtR&Rt)} = Zpx Z3r, p =
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where 3v + 1 = O(mods).
(iii) // 31 p and 31 σ, then

3 {RΆRzf}} = Zpx Zr9 p = Zr

1.*> - {{R2, {RARd2}} = ZpxZs, σ - 3s .

(iv) /\t13,F)V- 1̂3,F has ^ elements represented by F, (R2RB)~1F9

(R1R2)F if ΓF — {1}, and has only one element if ΓF Φ {1}.

Proof. From §13, we have RiRjtkj — tik for any distinct i, j , k.
Thus we get the diagrams

•Λ1Λ2/ \jΠ/2-fίί3 ΐt^ϊtx/ \Λ3Xt2

/ \ 7 \
^32 < ^ " " ^ ^21 ^23 ^ΓTi > ^12

Let J be the element in Aut F permuting (1, 2, 3) into (2, 3, 1).
From §16 we know that if 3 | p,

J = (RJRJttfrRJti - {RJR

where 3μ + 1 =
Similarly, if 3 | σ ,

= (R2R1R3)

where 3V + 1 Ξ O(modσ).
For every product of the form 7 = (R1R2)(R2R^)(R5R1) •• , ί 1 3

and thus every such 7 which fixes t13 is in ΓUl^F). A similar assertion
holds for any permutation of (1, 2, 3).

If 3 does not divide p, we infer from JR2Rλ{tz^) = J(ί23) = ί81 that
JR2Rt e Γih2,F). Moreover, (JRJEttf = {{RJtJt^RJtJRJRd^ = (RJtλR^
(RJRJtJRΪf since by Proposition 18.2.3 (i), RJR1R2R1 commutes with
(R.R.R,)2. As before, set a - RzRJtJRl9 b = R^RZRXR2, c = R^R.R.R,.
Then α3 = α2 α = α2fo = α6 αc = {RzRxR2)\RzR2Rλ)\ Therefore

(R3R1R2)
6μ(R3R1R2RiY = (R3R1R2)~2'(R3R1R2)

2(R3R2R1)
2 — (R3R2Rj)2 .

Similarly, if 3 1 (7, then we infer from J~ιR2Rz{tιz) — J~\t21) = ί18 that
J~λR2R3 e ΓUί3,F) Moreover,

(e/~~ R2R3) — {R2R1R3) "RJίJRJRz *«/ ^ \R2R1R3)
 i'\R2R1R2R3)

since R2RλR2R3 commutes with (RJRJttf by the cited result.
As before
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If 31 p, then {{JRΆ}} = {{(JR&Y}} = {{(R&Rd*}}, and similarly, if
31 σ, then {{J-^Λ,}} = {{(R.RAY)}. Set

-i2y {R^RJR^R^JR^R^} if 3 \ σ
= ~\ {RJtJRzY}} if 3|σ

if 3\p.

We have ΓιaΓ{tΓo,F) and Γ 1 c Γ { ί 3 1 , / 0 . By Proposition 18.2.3(i),
{R2R1R^fvR2R1R2R^ fixes the point s12 as well as ί13, hence each point
of the C-line through zf123, and hence commutes with R2. Each element
in {{R2}} Π {{{R2R1R^λvR2R1R2R3}} fixes each point of two C-lines and
therefore is the identity. Hence the order of Γ1 is pp. Similarly,
the order of Γ1 = pσ. Thus assertions (i), (ii), (iii) of the proposition
is equivalent to: Γ 1 = Γ{tlZtF) and Γ 1 = ΓihvF). Making use of the
isomorphism Γ{φ) —> Γ(φ) given by complex conjugation, which sends
tu(φ) to ί18(<p), it suffices to prove only that Γ1 = Γ{hz,F).

To prove this equality, we apply Proposition 6.6, arguing as in
the proof of the preceding proposition. By Lemma 13.4 the 3-faces
of F containing t13 are

Thus the cells in ̂ 7 l o > i ? adjacent to Fu- are of the form yF with 7
l3in the set

F[tld\: R2

ι, R2, Cfi^s)~\ ^i^2? {RJRzR^1, R2RXR2 -

First we verify

(1) ^ % ^ ( F ί l 3 ) ) c Γ\^(FtJ U Fh?) .

We must show that for each yeF[tL3] and δ e F[7-%B]

(Γ) y8e

For 7 = Rt\ we have 7 e Γ1 and the assertion is obvious. If 7 =

(R2R3)~\ 7~%s = i?2^i3 = t21; we have for

1]: Rs\ Rz, {R,Rd~\ RA, {RΆR*)-\ R^A

t^FiUk R^Rϊ'Rϊ1, R^R^R*, Rϊ'R^R^R?, 1, {RJΆJRJRJt^y1,

(RAR,)-1 G F[ί18], R^R^Rs - RJR?R? -

Rϊ'R^Rϊ'Rϊ1 - (ΛΛiί,)-2

and
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Thus (RzR^Fit^aΓ'iFlt^lJl). In a similar way we verify the
remaining claims in (Γ). For example,

iR2)~1t1s\ = R2RJR2F\tZ2\

— R2R1R2{Rϊ1, Rlf (RJΪ2)~ι, RzRχ ,{RιR2R^)"1, RXRZR^\

= {R1R2f R2RχR2Rlf R2f R2R1R2RzRl9 1, R2R1R2R1RZR1} .

We have R2RλR2RzRx = R2{RλR2Rzf {R2Rz)-χ and R.R.R.R
Rz, and R^R2

XRZ = RJR^Rς1. Therefore

R2R1R2R1RZR1 = R^RiRtiRz) R2R% R2 — R2\R^R2RZ) {R2R3)~1 ,

In this way we see that R2RiR2F[(R2R1R2)-%z]c:Γ1(F[tls][Jl)^ So
much for the proof of (1).

From Proposition 6.6, it follows that

where S = {7 e (F[ί18] U {1})Γ ;̂ 7ί18 - ««}. Set Γ1 - F[tn] U {1}. For
any subset S'aT1 such that Γ1?71 = ΓλS\ we have H S T / Π Γ ^ , ) =
Γ{hz,F) by Remark 1 following Proposition 6.6. The images of tn under

^ are seen from

Inasmuch as Γ\R2Rz)~ι contains (R2RZR2)~\ we can ignore the con-
tribution of (R2R2R2)-\ That is, set S1 = {1, (R2R3)~\ R,R2}. Then

ΓΉ /({l} u
ί13 = {R2Rz)~λJtlz = (R

Consequently

\ 1 , \JX2±ίz) J, \Jtί1JX2)J ) II J *z 1 F

"11 if J£ΓF.

All the assertions of the proposition follow from (**) and (*).

REMARK 18.2.5. The number of polyhedra in the polyhedral space
Ϊ"ί<i8, ̂ ~) surrounding tiz is

Similarly,

From Proposition 18.2.3, we have
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PROPOSITION 18.2.6. The stabilizer in Γ of eeEk(F)(k = 1, 2, 3)
is given by the following lists

V(βf F) Λ C F ) order

Pi2<82 or p12t2Z {{R,}} p

p12s12(via s*2 or s21) {1} 1

[{{J-'RΆ}} [p if JeΓ

r if JeΓ

, ... . ... o if JeΓ
^31^23

iβJ-'-RJRt, RsRA}} (2p if JeΓ
J2r if JtΓ
2s

eί Π F {{R,}} p

\J Xt1jtί2 p I I e/ C 1

({{(x21x?2χ23)}} r if «/ ί i

fJKJKs fa- if JeΓ

i?x Π RiR2, R2 Π RχR2, Ri Π RχR2Rl9 R2 Π RιR2R1 1
TΓ> 7̂ > |̂-s T > TΓ> T > 7~> TΓ> s~\ 7 3 TΓ> TT> "1

J?!, RXR2, R2RU R1R2R1 1

Proof. One verifies that RzRxR2slz = s12 and RzRJR2sl2 = siz. Thus
the stabilizer of the 1-face s13s12 contains the cyclic group {{R^R^}.
Similar for s21s31. By reasoning as in the preceding propositions, one
proves the asserted results for s13s12 and s21s31. For Rx Π RιR2, the
stabilizer leaves fixed each of its vertices pl2i s32, s12 and its stabilizer is
in the intersection of the stabilizer of its vertices; hence the stabilizer
fixes each point of the smallest geodesic subspace containing the faces.

18.3. Riemannian manifold structure on Y.

Assume that |arg<p3| < π/2 — π/p and that (l/ττ)arg^3eQ. Then
the space Y(φ) has been defined as well as the canonical map π of
Y onto Ch2. At any point of Y which is not in the Γ orbit of a
point in one of the six Ai5h1 the map π is a local homeomorphism.
At faces lying in some Jijh, the neighborhood of the faces are given
by the results in §18.2. The hypotheses of Proposition 6.4.1 are
satisfied by the abutted family ΓΩ. Indeed one can give 7 a complex
analytic structure so that π: Y-^Ch2 is holomorphic (cf. Proposition
6.4.2). Thus we conclude (cf. §19 for details).
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LEMMA 18.3. For | arg φ* | < π/2 — π/p and (1/ττ) arg φz e Q, the
space Y(φ) has the structure of a Riemannian manifold such that
π:Y-+Ch2 is differentiable.

The infinitesimal Riemannian metric in Ch2 pulls back to a metric
on Y which may be degenerate at points at which π is not a local
homeomorphism. However, it is not difficult to define a Riemannian
metric on Y(φ) that is preserved by Γ. For example, let ΓQ be a
torsion-free normal subgroup of Γ of finite index — such a subgroup
exists in any finitely generated metric group by a result of Selberg.
Then choose a Riemannian metric on the manifold ΓQ\ Y. Averaging
over the finite group Γ/Γo, we can assume that the metric d on Γ0\Y
is Γ-stable. The pull-back of d to Y gives a Γ-stable metric on Y.

18.4. AutΓ Ω, | arg φ" | < τr/2 - π/p, 31 gcά(ρ, σ).

We take up the question of the order of AutΓ Ω that was
mentioned in Remark 3 of §16.

LEMMA 18.5. Assume |arg^ 3 | < π/2 — π/p. Let p = order ηiφ\
σ — order rjiψ* and assume that 3igcd(/>, σ). Then # AutΓ42 = 1.

Proof. Let Y denote the manifold Y(φ), let Y* denote the simply
connected covering space of Y, and let Γ* denote the lift of Γ to
Y. Then Γ*lπx{Y) — Γ and Γ* operates discontinuously as a group
of isometries on the Riemannian manifold Y*. Let i2* denote a lift
of the polyhedron Ω; inasmuch as Ω is a topological cell (by Lemma
3.3.2) i2* is a cell mapping homeomorphically onto Ω. The space F*
is the joined Γ*-space of the abutted family of polyhedron Γ*Ω*.
The group Γ* operates discontinuously on Y* and satisfies both (CD1)
and (CD2) of Theorem 6.3.3. It follows that AutΓ* Ω* is generated
by Rί, the set of words corresponding to shortest circuits in Y*
around 2-faces of Ω*. From this in turn it follows that AutΓi2 is
generated by &29 the set of words corresponding to shortest circuits
in Y around 2-faces of Ω. Inasmuch as the circuits around 2-faces
of Ω which do not contain an apex correspond to trivial words, we
need only consider the circuits around Aίjh for permutations (ijh) of
(123). By symmetry, it suffices to consider only circuits around Jm,

Given such a circuit Ω, R,R2f RJt2-RzRJ), RXR2 RZRX-R2Rβ, .
with RJti-RJti- - Ω = Ω, then set y = RJt^RzRx . We have
7 e AutΓ Ω. We can assume that φ Φ 1, otherwise 31 p and 31 cr, imply
p — 3 and Ω(φ) satisfies (CD2); in that case the lemma is known (cf.
Remark 2 of §16). Hence KutΓ Ω = Zz and y = 1, J, or J~\ Thus
7 sends into J123 either Δm, dzl2, or Λmι. Accordingly, y has the form
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We wish to prove 7 = 1. Hence we need only dismiss the possibilities
7 = (R&R^RA or (R1RJl9)*»RιR2It9R1.

Consider the canonical map π:Y->Ch2. The circuit in Ch2 cor-
responding to 7 places side by side 3m + l(resp. 3m + 2) images of
Ω bounded by spinal surfaces meeting in a common slice containing
Δm. Each of the 3m + l(resp. 3m + 2) angles formed equals Ĉ(i2i-B2)~"S
R2R3 = argηiφ* (cf. §15). Hence ( ^ 8 ) 8 m + e = 1 e = 1 or 2. Conse-
quently, pi3m + ε(ε = 1, 2). This contradicts 3\ρ. It follows that
AutΓΩ = 1.

19* Complex analytic structure on Y(φ)f |arg<£>3| < π/2 — π/p,
π'1 arg φeQ.

We continue the notation of § 18, writing Γ = Γ(φ), Δ = Δ(φ),
F = Ω(φ), Y = Y(φ), p — order r/iφp, σ — order ηiφ3. Assume that p
and σ are finite. Then

ίπ_ _ _π_
\2 p

where gcd(m, p) = 1 = gcd(w, σ). Set

I = exp(2πί/p) , f = exp(2πi/σ)

Then ίm =
The canonical map π of Y onto the ball 1? is clearly a homeo-

morphism in the neighborhood of any point p of thecell 37(7, F) of IT
if p does not lie on 97(7, Δijk)(i, j , k any permutation of 1, 2, 3); in the
neighborhood of such p, one chooses as coordinates the pull-back of
a standard coordinate system on the ball B.

We next describe the choice of a coordinate system in the neigh-
borhood of a point in 77(7, Δijk). By symmetry, we can take 7 = 1
and peη(l, Δm) We shall cover a neighborhood of η(l, Δm) in Fby
pull-backs of three balls in B centered at the vertices of Δm.

We first consider the case p = s12. Recall that (cf. (12.1))s12 =
Ix Π Γ2 and that the C-lines Ilf Iϊ are orthogonal at s12 (cf. Remark
2 following Lemma 12.3). Therefore we can choose a standard non-
homogeneous coordinate system centered at s12 with u = 0 on I[ and
v = 0 on /j. Since u and v are unique up to a scalar factor of
modulus one, (each line has a unique holomorphic structure induced
from C3!) we can make the choice unique by the additional conditions
^(Si3) > 0, v(sZ2) > 0. Let a be a positive number such that the ball
B<χ(s12) with center at s12 and radius d meet no face of F other than
those containing s12. Let C12 denote the subset of BaxCxCdefined by
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C12 = {(», u, υ); um = u(x), vn = v(α)} .

Let ψ: C12 —> JBβ(812) denote the projection on the first factor. We can
define an operation of Γ{Sl2,F) on C12 so that f i s a Γ(8l2tF) map. We
see this as follows.

By (9.1.6) the eigenvalue of R2RλR2Rz corresponding to its fixed
point s in 5 is — η2 and on standard nonhomogeneous coordinates
centered at s its eigenvalues are (ηHφ3/ — η2, τfiφ*(—τf))\ that is,
(ζ*, ξm)> The same is true for RZR2RXR2 (for it has the same charac-
teristic polynomial) which fixes s12. Hence

u{RzR2RxR2x) = lnu{x)

v{R,R2R,R2x) = ξmv{x)

for all xeB. Similarly by (9.1.1) and (9.1.2)

u{(RJtJttfx) = u(x), v{{R,RxR2)
2x) = ξmv(x)

u{{RzR2Rx)
2x) = Znu{x), v&RJliRtfx) = v(x)

for all xeB.
Thus we define for all y = (xf u, v) e C12,

= «(») , v&RJRJRtfv) -

Holomorphically, take C12 ̂  {(«, v) 6 C2; | ί? | 2 w + |v |2ίl < r2}. It is clear
now that ψ: C12-+ Ba(s12) is a Γ(Sl2,F) map and also holomorphic. The
canonical map π: ^Sl2>jP —> 5 branches over Br(s12) in exactly the same
way that C12 does. Hence the projection ψ: C12 —> J? factors through
YH2tF and there is a unique Γ{Sl2>F) homeomorphism f12: C12 -* y,12>ί. Π
π - 1 ^ ) such that πof12 =: ψf u > 0 on /^(^([βw, s13], ί 1)), and v > 0 on
/il^^tβw, s13], ί 7)). We sometimes denote /12 as /,12.

In exactly the same way, one defines a space (^(resp. C^ ) for
each vertex s£ i(resp. «ς.), i ^ i, i, i = 1, 2, 3; this yields six space.
Given any 7 6 G(s12, F) (cf. § 6.6 for definition), y-%2 e 6^ = {sίd, sty,

2, it i = l , 2, 3}, and for each seS^ we get a commutative diagram

C8 > C 1 2

i w n ΐ ' ~τι'n"™
Ba(s) > Ba(sί2) .

We next prove that:

7: Cs > C12 is holomorphic for all 7 e G(s12, F) where s = 7"xs
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Inasmuch as fs is a Γ{SfF) map, it suffices to prove that 7 is holo-
morphic for a set of representatives of Γ(sn,F)G(sl2jF); by Proposition
18.2.3(iii), {1, Rϊ\ R2\ R%1 R5RU RZR2) is a set of representatives. We
shall give the argument only for the cases 7 = -B3, 7 = Rϊ1 and 7
R3RL, the other cases following by symmetry.

Returning to Figure 14.1, we see that

(19.3) Rs[s21, s23] = [s 1 2 , s 1 3 ] .

Thus R3I2 — Iu and in the C-line Iι the geodesic triangle RzΔm abuts
Δzl2 along the geodesic line segment [s12, s13]. Similarly

^3L^21? $31J ~ l^L2t ^32j 9 -^S-* 1 ~ ^2

and the geodesic triangle j?3 Δ2YZ abuts J321 along the geodesic line
segment [s12, s32]. Inasmuch as R3 is an isometry of the ball, it carries
any standard nonhomogeneous coordinate on the (7-line I2 (resp. I[)
centered at s21 to a standard nonhomogeneous coordinate on the C-
line /x (resp. Γ2) centered at s12. We next compute the transformation
of the coordinates of C21 induced by J?3.

By definition Ca has coordinates u, v; i6m(resp. vn) is the unique
standard nonhomogeneous coordinates on I2 (resp. I[) centered at s21

with u > 0 on fΓι(7j([s2l9 s23], F))(resp. v > 0) on M(η([sil9 «31], F)). By
(19.3), i23 sends the defining data of the u, v coordinates of C2l to
the defining data for the u, v coordinates of C12. Consequently, the
map Rz C21 —> C12 is the map (u, v) —> (u, v). Thus Rz is holomorphic.

Consider next the map Rΐ1: C% —> C12. We have (cf. (13.1))

Rl L§13> ^32J ~ L^l2j ^32j

The second relation implies that R^1 sends the v coordinates of C^
to the v coordinates of C12, by the same argument that was used
above. The first relation yields the diagram
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This shows that the image JRΓ^SΊS, S23] is the geodesic line segment
from s12 to Rϊxsι2, which forms with [s12, s13] an angle equal to 2 <£
^ ^ i s = ττ/2 — τc/p — arg φz by Lemma 15.2. Thus transformation of
coordinates induced by Rrlm C?3 —> C12 is

(«, v) (ζu, v)

it too is holomorphic.
Finally, consider the map R3Rλ: Cs —> C2 where s =

by (13.1)

The first relation implies by the argument used above that R5R1

transforms the u coordinate of C31 to the u coodinate of C12. The
implication of the second relation becomes clear upon observing that

ΛΛs = i28( β2-BΛi) by Lemma 13.3(i)

and RsRzRfin, s32] = [s32, s12]. Consequently RzR2Rι rotates zf321 about
the midpoint of [s12, s32] 180° and the image of A2ιz under R2>Rι is
given (cf. the diagram)

by rotating [s12, s32] towards the direction of Im u < 0 through an
angle 2 <^ £31s12s32; that is — (π/2 — π/p + arg φd) by Lemma 15.2. Thus
the transformation of coordinates induced by RZR£ C31 —> C12 is

(uf v) 9 ξv)

which is holomorphic.
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Analogously, we can consider balls Bβ(ta2) centered at ts2 of radius
β and meeting no edge of Δzn other than those containing £32. We
can select α and β so that

4i2 c Bα(sί2) U Bα(sίZ) U Bβ(fin) .

Define for any integer i mod 3,

where tt = ίt_i,t+i, w is the unique standard nonhomogeneous coord-
inates on Ii centered at tt and positive on the geodesic lin segment

Then define the homeomorphism

with properties analogous to (19.1). By the same type of reasoning
as above, one proves:

(19.4) For all 7 e G(ti9 F) the map induced by 7 from Cό to C* is
holomorphic, where 7~% = tά(i = 1, 2, 3).

The coordinate system on y that we have selected above has the
property:

(19.5) For any two overlapping coordinate neighborhoods, the coord-
inates are biholomorphically related.

The proof is quite simple. For by choice of coordinates, the
intersection of two coordinate neighborhoods either

( i ) projects by π biholomorphically onto a neighborhood in the
ball; or

(ii) has one of the forms
(a) YSίF ΓΊ Y,tF n π-\BM n Ba(s))9 s, s' e Aijk

(b) YS,F n Yt>F n π~\BM n Bβ{t))9 s91 e ΔiSh.
In Case (i), assertion (19.5) is obvious. In Case ii(a) the two coord-
inate systems are related by RiRόRk which belongs to G(s9 F). In
case s = s129 this is assured by (19.2); for any other s, the analogue
of (19.2) is valid by symmetry. Thus it remains only to consider
Case (iib). By symmetry, we may take s = s129 t = ί82. In the
overlap (iib), the coordinate function v of C12 has no branch locus
on Bβ(t). Moreover, the um of C12 and wm of Cx are related by the
fractional linear transformation of the Poincare disc Ix which relates
the two standard nonhomogeneous coordinates centered at s12 and tz2

respectively. Hence

u = v
v bwm + a
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where neither numerator nor denominator vanish on Ba(s12) |Ί Bβ(t).
From this assertion (19.5) follows.

From (19.2) and (19.4) we can conclude that the group Γ acts
holomorphically on Y. We summarize our conclusions in the following
theorem.

THEOREM 19.1. Let φ be any complex number of modulus 1 with
arg φz I < π/2 — π/p and (l/π)a,rgφ a rational number. Let Γ(φ)

denote the group generated by C-reflections with Coxeter diagram

V = 3, 4, 5

and phase shift φ12 = φ1% — φZί = φ. Let Y(φ) denote the joined
Γ(φ)-space on which Γ{φ) operates discontinuously (cf. §6.5), and
π: Y(φ) —> Ch2 the canonical Γ(φ)-map of Y(φ) to the ball. Then Y{φ)
has the structure of a complex analytic manifold satisfying

(1) π is holomorphic.
(2) Each jeΓ(φ) acts biholomorphically on Y(φ).

REMARK 1. If π/2 —π/p<aτgφz <Z(π/2 — π/p) and (1/τzτ) argφe
Q, the abutted smooth family of polyhedra ΓΩ(φ) satisfies conditions
BR of §6.4 but not hypothesis (2) of Proposition 6.4.2. For arg<p3>
π/2 — π/p, Am Π 4m = s21 = s31 and Δm Π Λ12 = s25 = s18, the C-reflec-
tions (RJRJϊJf, (R2RzR^f may not be an admissible pair (cf. § 2).
The subgroup of Γ(φ) that fixes the point s81 may not be finite.
Thus hypothesis (3) of Proposition 6.4.2 is generally violated.

REMARK 2. The proof of Theorem 19.1 is so much longer than
the proof of Proposition 6.4.2 because it proves the added assertion:
Γ operates holomorphically on Y.

REMARK 3. By a well-known theorem of Selberg (cf. [9]) any
finitely generated matrix group Γ has a subgroup of finite index Γo

that has no elements of finite order. It follows readily that if jp =
p,yeΓ0 and peB, then 7 = 1. A fortiori, Γo operates freely on
Y. Therefore Y/Γo is a complex analytic manifold and compact for
I arg φz I < π/2 — π/p and (1/ττ) arg φz e Q. In order to prove that
Y/ΓQ is an algebraic manifold, it suffices by Kodaira's fundamental
theorem to construct a Kaehler metric on Y/Γo admitting a positive
line bundle. 3uch a metric can be constructed with the help of the
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Bergman kernel function for the domain \u\2m + \v\2n < 1 in C\ The
canonical line bundle turns out to be positive (cf. [8]). In [8], it is
shown that if m = 1, the Kaehler metric can be selected so as to
have everywhere negative sectional curvature.

20* Presentation for Γ.

Let φ be a complex number with \φ\ — 1, φN = 1, and |argφ8] <
ττ/2 - ττ/p. Let Γ = Γ(φ), Y - F(φ), and TΓ: Γ-> Ch2 the canonical F
map. Let Y* denote the simply connected covering space of Y, let
n denote the lift of Γ to Y\ and let σ: Y* -» Γ denote the covering
map. Thus for each T^ 6 Γ* we have the commutative diagram

Γ — Y .

The cell decomposition Y = Γi3 lifts to a cell decomposition F* =
Γ*Ω* with σ: Ω*—> Ω a homeomorphism. By the result in § 18.3, Y
has a Riemannian matrix which is preserved by Γ. The pull-back
of this metric to Y* gives a metric preserved by Γ*. The hypo-
theses of Theorem 6.3.2 are satisfied by (Ω\ Γ\ Y*).

THEOREM 20.1. Let φ be a complex number of modulus 1 with
| a rgφ | <π/2 — π/p. Let η = exp (πi/p). Set

P =
r =

Choose μ, v so that

order
p if 3

pβ if

3^ + 1

Zv + 1

\p,
Z\p

= 0

= 0

>

mod

mod

σ

s

P
σ

= order
= σ if 3

= (7/3 if

if 3,

if 3J

| ( 7

3|α .

Lei ^denote the free group with generators {i^ ί = 1, 2, 3}.
^ ' denote the normal subgroup of ^generated by the words

{Rϊ, R^R.RΫR^Rj1, {RJtJttT, {RART, h 3 - 1, 2, 3} .

Set

ft - (Λ iΛ ί + 1Λ i + 2) 2^<J?< + 1 if 31/)

^ - {RtR^Jt^RJti-i if 31 (7 .

Lei ,^?" denote the normal subgroup of J^ generated by the words
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{pi = Pi, ox = σ2) if SJfpσf |arg<p3| <JL -JL

if ΛJ
2 p

{1} if 3l/o and Z\σ, \argφ\ <JL --Z-
2 p

{Pι = p2) ifZJίp,JL-JL< arg φ*
2 p

K = σ2} if 3 | Λ argφ 3 < - ( J L - J L ) .

Lei Γ1 denote the action of Γ(φ) on Ch2.
( i ) //, m addition \ arg <£>31 < ττ/2 — π/p, then

(ii) If \a,rgφ\ < π/2 - π/p and Ω(φ) satisfies (CD1) and (CD2)
(cf. §6.3), then

Γ -

Proof. We first observe that the relations &' and ^ ? " are
symmetric in 1, 2, 3. ^ ? ' is symmetric since Rτ\RiR3-Rkyiii =
{R5RkR%)2 for any ΐ, jf, &. As for ^ " , given ^ = p2, we have on
the one hand

R^p, = (RJRJtt^R^RJti (cf. Proof of Lemma 14.1 (i)) .

From RJtJti = RzR1R2f we get R^RXR2 = RJtJt^K Hence iZa"1^ =
/Oijβjf1. On the other hand

Hence /Oiiίf1 = ft^Γ1 and ^ = pz. Similarly σ1 = ί72 implies σ2 = ί73.
The relations &' U ̂ " coincide with the relations obtained around
the codimension-2 circuits of the region Ω(φ) by (10.1.2) and the
results in § 17.1 and § 18.4. Theorem 20.1 now follows directly
from Theorem 6.3.2.

REMARK 1. From the relations &' one can infer

(20.2) psp2pi = 1 o)σ1σz = 1 .

Proof.
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The isomorphism J'V(p)—> Vip) yields σxσ2σz = 1. The added rela-
tion PJ. = p2 therefore implies pl=l. The independence of &" from
&' is assured by the existence of the 3-fold branched Γ-cover F*
of § 6.5. Similarly σx = σ2 implies that σ\ = 1. The group &~\&'
is the group operating on the lift of Γ to the simply connected
covering space of F # (which is not a manifold!).

REMARK 2. For those <£> for which Ωip) satisfies condition
(CD1) and (CD2) (cf. § 17.1) Theorem 20 gives a presentation for the
image of the lattice subgroup Γ(φ) in PU (H) — or equivalently, for
Γ(φ)/Z, where Z is the set of scalar multiplies of the identity matrix
in the matrix group Γ(φ). In general, one may possibly have a
nontrivial extension

1 >N >Γ >Γ , i

where N = πx{Y)> the fundamental group of the space Y(φ). I do
not know whether there exist any values of φ with N(φ) Φ {1};
equivalently, can Yip) fail to be simply connected?

21* Some examples of isomorphisms among Γip).

Let c< = (RtRi+iRi+zTf regarded as an element of PU (H) for any
integer ί mod 3.

LEMMA 21.1. Let Γ denote the group Γip) action on Ch2 with
diagram

and φz = V—1. Then
( i ) Γ is an arithmetic lattice in PU (if),
(ii) Γ is generated by {cl9 c2, c3}.

Proof of ( i ) . Let k = Q[ΎτAdΓ]. Then k = Q[cos 2ττ/5] by
Lemma 17.2.1. Direct calculation shows that σJ>0 for 1 Φ σeGalfc,
Δ denoting the determinant of the matrix (βiy e^} (i, j = 1, 2, 3).
Hence Γ is an arithmetic lattice (cf. § 4).
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Proof of ( i i) . By Lemma 16.1, the order of the transformation
Cj equals the order of yjiφ*, which is the order of — rf. Thus c3- is
of order 5 for j — 1, 2, 3. Inasmuch as arg<p3 > — (ττ/2 — π/5), we
have <>123, v12Λ} > 0 (by (9.1.4)') and Ii+1 = < < + M + 2 Π V~ is not empty.
By Lemma 13.3 (ii), ct fixes each point of Ii+ί and is thus a
C-reflection. Moreover, by Lemma 12.3

Ii n Ii+1 = ί<,<+i (ΐ integer mod 3)

and thus each of Ilf I2, Iz meets the other two. Thus clf c2 fix the
point t2Z. Direct calculation shows that for φ3 — i,

(21.1) <*»" *"i>- - -gg> (1 - 7 - 2gQ. = _ - 2

i ^ 1 i ^ i l + ̂  + ) 7 2

yΔL.Δ) \riz£i1ii2) fc23 = pι2 .

The first equation implies that {{clf c2}} e& F12. The second equa-
tion states that the stabilizer ΓPl2 of the point p12 contains {c^c^,
cΐxc2c^. Since Γ is a discrete group, ΓPl2 is a finite group. Since

© (5) is a maximal subgroup of PU (2) generated by C-reflec-
tions, it follows that {{c^c^, c^c^}} = Γ12. Hence {{clf c2, c3}} 3 {JR^
β j . By symmetry {{cί9 c2, cs}}z){Rlf R2, i?3}. This implies (ii).

EXAMPLE 1. Equation (21.1) has an interesting interpretation.
(φψ)s = φsη6 = —ηi. Thus there is an isomorphism A of Γ to Γ{ψ)
with arg ψ3 = — 7ττ/10 given by

The reason for not sending cx to i?! is that ct rotates about its
fixed point set via ηiφ* by (9.1.1), i.e., by —fjt Thus c\ should
map to Rx(φ). The isomorphism A is induced by the automorphism
of C3

Vi,i+i,i+2. > #i (i integer mod 3) .

An alternative description is to say that A is induced by the isometry
of the Ch2 formed from V(φ) to the Ch2 formed from V(ψ) which
takes

If we compose A with J ' : V(ψ) —> V(ψ), we get that JΌA induces

This example provides us with a fundamental domain for the
arithmetic lattice Γ(φ). For Ω(φ) does not satisfy condition (CD2)
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and is therefore not a fundamental domain modAutΓi2. However,
Ω(ψ) is a fundamental domain mod AutΓi2(^) (={1, J, J2}).

The next example will provide a geometric isomorphism between
two arithmetic lattices generated by C-reflections having different
Coxeter diagrams.

EXAMPLE 2. Let Γ' denote the group generated by reflections
with diagram

Inasmuch as there are no closed loops in the diagram, the phase
shifts can be arbitrary. Here {{R[, R'2}} and {{R'2, R'3}} are isomorphic
groups of Γf where as R[R[ = R[R[. It is easily verified that Γ' is
discrete by the arithmeticity test of § 4. Let φ = exp πί/6 as in
Example 1. Then there is an isomorphism of Γr to Γ(φ) given by

A': Ri —

Rί —

Let Pij = eϊ Π ef (i, j = 1, 2, 3, i Φ j). The isomorphism A' is induced
by the isometry of Ch2 which takes

pis > tufa), p[2 > Pi8(9>), Pis > *8i(?>)

It should be noted that the image of A' is all of Γ(φ) since it

c o n t a i n s ^/V3χί1iί'2y), v^2^3-^'iy — •K'2\-K3-K'iit2) JX2 , a n u ^xvχ t̂2- ŝ/

22* Nonstandard homomorphisms*

Given a nonarithmetic lattice Γ in PU(2,1), there is a field auto-
morphism σ of C such that "Γ is not a bounded set of matrices and
σ is nontrivial on the field QfTrAdΓ] (cf. Lemma 4.1). Such a
monomorphism σ of Γ cannot be extended to a rational representation
of PU(2, 1) — for such a representation p would satisfy Tr Ad ^(7) =
TrAdv for all yeΓ. This is in sharp contrast to the remarkable
"super-rigidity" theorem proved by Margulis for semi-simple groups
of jR-rank > 1.

There is however, another kind of violation of super-rigidity:
There is a homomorphism p of Γ{φ^) onto Γ(φ2) which is not a
composition of a rational homomorphism and a field automorphism;
this will follow once we show that Ker^o is infinite. Moreover, in
our example Γ(φ^ and Γ(φ2) are arithmetic lattices.
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Let Γ1 = Γ(φ^ and Γ2 = Γ{φ2) be the groups generated by C-
reflections with Coxeter diagrams

with a,rgφl= — τr/10, arg <p\ - 7π/10. By Theorem 20.1, we know
that the relations in the presentation for Γx and Γ2 are {R\ = 1,
RiRjRi = RjRiRj i, j = 1, 2, 3} and in addition for Γ,

and for Γ2

KΛΛB,)' = 1

Moreover, in Γ2 we have {{RJRJtJ'R^R^^iRJRJR^RJt^ by Lemma
16.1 and (R^R,)10 = 1 by (9.1.2). Thus the map p: Rtfa)-+Rt((p2)
(1 = 1, 2, 3) is a homomorphism. Its kernel is a normal subgroup
N of ΓOPJ containing (RJtJttf, {R2R2RX)\ (RJRJttf, whose common
fixed point set is Iλ Π /2 Π i"3 which is empty. Since every finite
subgroup of Γx fixes a point in the ball, N is not finite. Conse-
quently p is not a composition of the stated type. Consulting Table
3 of § 17.3, we see that both Γ(φt) and Γ(φ2) are arithmetic lattices.
Both these lattices are cocompact.
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