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The Selberg, Piatetsky-Shapiro conjecture, now establi-
shed by Margoulis, asserts that an irreducible lattice in a
semi-simple group G is arithmetic if the real rank of G
is greater than ome. Arithmetic lattices are known to
exist in the real-rank one group SO(zn,1), the motion group
of real hyperbolic n-space, for # =<5. These examples due
to Makarov for #» =38 and Vinberg for n =5 are defined by
reflecting certain finite volume polyhedra in real hyperbolic
n-space through their faces. The purpose of the present
paper is to show that there are also nonarithmetic lattices
in the real-rank one group PU(2, 1), the group of motions of
complex hyperbolic 2-space which can be defined algebraically
and leads to remarkable polyhedra. This serves to help
determine the limits of the Selberg, Piatetsky-Shapiro con-
jecture. The analysis of these polyhedra also leads to the first
known example of a compact negatively curved Riemannian
space which is not diffeomorphic to a locally symmetric space.

This paper arose out of an attempt to determine the limits of
validity of the Selberg, Piatetsky-Shapiro conjecture on the arith-
meticity of lattice subgroups. In 1960 A. Selberg conjectured that
apart from some exceptional G, an irreducible noncocompact lattice
subgroup I' of a semi-simple group G is arithmetic (“irreducible” in
the sense that I' is not commensurable with a direet product of its
intersections with factors of G). Later Piatetsky-Shapiro conjec-
tured: An irreducible lattice of a semi-simple group G is arithmetic
if R-rank G > 1.

The Selberg, Piatetsky-Shapiro conjecture was settled affirma-
tively by G. A. Margoulis in the striking paper that he submitted
to the 1974 International Congress of Mathematicians in Vancouver.

The simple groups of R-rank 1 are (up to a local isomorphism)

S0O(n, 1), SU(n, 1), SP(n, 1), F,
which act as isometries on the hyperbolic space
Rh", Ch™, Hh", Oh*

over the real numbers R, the complex numbers C, the quaternions
(or Hamiltonians) H, the octonians (or Cayley numbers) O respec-
tively. Nonarithmetic lattices in SO(2, 1)(=SL,(R)/31) have been
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known for a long time. Nonarithmetic lattices in SO(n, 1) for n = 3
where first found by V. S. Makarov (in 1965) and shortly there-
after E. B. Vinberg initiated an extensive investigation which
turned up nonarithmetic lattices in SO(n, 1) for n < 5. Both the
Makarov and Vinberg examples are defined by reflecting a polyhedron
F of finite volume in RA" in its (n — 1)-dimensional faces, which
are pointwise fixed under the reflections. The (n — 1)-dimensional
faces thus must lie on geodesic subspaces of codimensioni 1. The
group I' generated by the reflections in the codimension-1 faces of
F' is a discrete group of isometries on RA" and has F as a funda-
mental domain if and only if all the dihedral angles of F' are of
the form =x/integer.

Straightforward generalization of this method for finding lattice
subgroups of isometries on the other hyperbolic spaces is blocked by
the fact that only in R-hyperbolic spaces do there exist codimension
1 geodesic subspaces. Thus it is not a priori clear what to take as
the bounding surfaces of a polyhedron F out of which we are to
construct a group I' of isometries with F' as fundamental domain.

The principal result of this paper is the construction of a eclass
of such polyhedra F' in Ch®. The guiding principle in the discovery
of F' is the exploitation of symmetry. The polyhedron F' depends
on two parameters, (p, ) where p = 3,4, 5, and |t| < 3(1/2 — 1/p).
To each F(p, t), there corresponds an infinite subgroup I" of U(2, 1)
generated by three C-reflections of order ». For some values of the
parameter, the polyhedron F is stabilized by a subgroup of I of
order 3. For only a finite number of values of the parameters is the
group I discrete. Whenever I' is discrete, it is a lattice subgroup.

The main theorems proved in this paper are:

THEOREM A (cf. §17.3). There exist in PU(2, 1) nonarithmetic
lattices generated by C-reflections of order 8,4, or 5. Up to an
isometry, any such lattice with Coxeter diagram

and phase shift @, P* = exp wit, is given by the seven values
(p, 1) = (3, 5/42), (3, 1/12), (3, 1/30)
(4, 3/20), (4, 1/12)
(5, 1/5), (5, 11/30) .
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The noncocompact lattices I'(p, t) are arithmetic.

THEOREM (cf. §19). For every rational value of t, with |t]| <
1/2 — 1/p, there is a complex analytic manifold Y(p, t) and a canon-
ical ['(p, t) map 7: Y(p, t) — Ch* such that I'(p,t) operates disconti-
nuously and holomorphically on Y(p, t).

The quotient of Y by a torsion-free subgroup of I" leads to the
first known example of a compact negatively curved Riemannian
space M which is not diffeomorphic to a locally symmetric space (cf.
[8]). M is in fact an algebraic surface and is negatively curved
with respect to a Kaehler metric.

The major effort in proving Theorem A once the groups I'(p, t)
have been defined, is to decide when [I'(p, t) is discrete. Apart from
§ 4 which gives a criterion for the arithmeticity of a lattice, most
of §3 to §17 is aimed at the discreteness question. The choice of
the complex analytic structure in Theorem B with respect to which
I’ operates discontinuously and holomorphically depends on the
results in §6 (though not on §6.5) and §18. In particular, explicit
information (ef. §18.2) about the star of each vertex in the poly-
hedral space Y is exploited.

In anticipation of generalizing the construction given here to
n = 3 and 4, the results in §3 on spinal surfaces are presented for
general n.

Part of the results contained in this paper were announced in
[7].

A large part of this paper is devoted to computations. At an
early stage of the investigation of discreteness, I profited greatly
from computer exploration. Without the computer it would have
been very difficult to recognize how much more complicated is the
fundamental domain of the group of order 72 generated by two
C-reflections with Coxeter diagram

O—06

than the fundamental domain for the group of order 24(p/6 — p)*
generated by two C-reflections with Coxeter diagram

Thus the discovery of the family F(p, t) owes much to the vastly
wider exploration which the computer permits. Once the target
began to be discerned, it became possible to verify all the remark-
able properties of the family F'(p, t) by a combination of geometric
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and algebraic methods. The account here is in the strictly logical
(rather than psychological) sense totally independent of the computer.

I take pleasure in acknowledging my debt and gratitude to my
associate and students at Yale who programmed the algorithms
described in §7, 8 and other related capabilities. In chronological
order of their assistance, I was enormously helped by Dr. Sidnie
Feit, Alex Feingold, James Cogdell, Daniel Bar-Yacov, and Edna
Bar-Yacov.

2. Algebraic preliminaries.
2.1. C-reflections.

Let V be an n-dimensional vector space over C. A C-reflection
in Vis a linear map R: V — V of finite order with n — 1 eigenvalues
equal to 1. A C-reflection can be expressed in the form x — x + B(x)e
where 3 is a linear function and 1 + B(e) is a root of unity other
than 1.

Let H be a nondegenerate hermitian form on V and denote
Hw, w) by <{v, wy for all v, we V. Given ec V with {¢,e¢) =1 and
a positive integer p, we denote by R, , the C-reflection

x——x + (£ — 1){w, ede, &=exp2rV/ —1/p.

R, , fixes each point in ¢' = {xe V;<{x,e¢) =0} and has order p.
Clearly R,,, preserves H.

Suppose {e,, - -+, e,} is a linearly independent set of unit vectors
and let R, =R, ,,. Set I'={{R, R, ---, R,}}, the group generated
by the set {R, ---, R,}. Then I' C U(H), the unitary group of the
hermitian form H.

The hermitian form H need not be positive definite. However
if I' is finite and irreducible, then H must be positive definite. For
by Schur’s lemma, an irreducible group stabilizes a unique hermitian
form up to scalar factor; on the other hand, a finite group preserves
a definite hermitian form. Since H(e, ¢;) = 1, H is positive definite
if I is irreducible. We will see in §2.3 how to drop this last
hypothesis.

2.2. Finite groups generated by two C-reflections.

Let {e, ¢,} be a base of the C-vector space V and let H be a
hermitian form on V. The condition that {R, ,, R.,,} generate a
finite group I' may be determined as follows.

Consider the 1 dimensional projective space CP!' of one-dimen-
sional subspaces of V; let #n: V — {0} —» CP* denote the canonical
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projection. Let R, denote the action of R, , on CP', and denote
m(et) by *ei(i =1, 2).

CP! may be identified with the standard 2-sphere S? and I
operates on S? by rotations. Thus I" is finite if and only if the
group {R,, R,} generated by rotations of angle 2x/p, at *e; is finite.
This is the case if and only if there is a v in I such that the
geodesic trizngle with base v(*ei)*e; and base angles n/p,, 7/p, has
as third angle 27/q¢ where

(2.2.1) 1,1 +%g 1 and ¢ is even if p, # p, .

D, D

From spherical trigonometry the length of the base
geodesic triangle with angles 7/p, /v, 27/q is given by

*eif*es in a

COS T/p, - €os T/p, + cos 2x/q

cos d(*ef, Teit) = 4 .
sin 7t/p,-sin 7/p,

On the other hand, the inner-product on V is related to the metric
on S® by the formulae

[{ey, €5y | = cos g, d(*ei, *e,)) = 20 .

Therefore, by the half-angle formula

[ cos (x|, — T/p,) + cos 2m/q \*
(2.2.2) e e | = < 2 sin 7/p, -sin /p, ) '

Let @ be any complex number with |@| = 1 and let H(®) denote
the hermitian form on C? given by
<eir ei> = 1’ (,’: = 1, 2)
<e1, 92> = ap
where « is given by (2.2.2). Let 4(®) denote the determinant of
the matrix ({e,;, ¢;»). Then
Ap) =1 — a®> = sin’c > 0
if H is nondegenerate. We note that 4(@) is independent of o.
Let I'(p) denote the group {{R.,,, R.,,)} corresponding to H,. Re-
placing e, by e, does not change E, , and provides an isometry of
H(1) to H(®). Thus I'(p) is independent of o.
Set R, =R, ,(i=1,2). Suppose that H satisfies (2.2.1) and
(2.2.2). Then the group I" = {{R, R,}} has the relations
R =1, (Rz)p2
(1’31R2)q/2 = (RzR1)q72v .

If ¢ is odd, the second relation signifies
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RR,---R, = R,R,---R,
(cf. [4]). Moreover, the center of the group I" is cyclic and gener-
ated by
(R,R,)* if ¢ is odd
(R,R)" if q is even

(this corresponds to the fact that on S? R.R, rotates about the
vertex e, opposite *

(2.2.3)

*e;*e; through an angle of 4x/q).

Let s denote the reciprocal of the spherical excess of the
geodesic triangle efefes ie., s™' = p;* + p;* + 2¢7' — 1 then the order
of the center is (cf. [4])

25 4 o0dd
q

(2.2.4)
s , ¢ even

and the order of I' is given by

(2.2.5) g = 88

2.8. Cozxeter diagrams, phase shifts.

To each finite group generated by C-reflections, Coxeter has
associated a diagram. In the case of a group generated by two
reflections {R,, ,, R.,,,} with

(e, &) = ap

with a given by (2.2.2) and (2.2.1) satisfied, the Coxeter diagram
congists of two nodes and a line

(e)——)
if ¢ > 2; if ¢ = 2, no line is drawn joining the nodes. This diagram
determines {R.,,, R.,,} uniquely up to an isomorphism.

To a group generated by mn-reflections every two of which
generate a finite group, one associates a diagram made up of =
nodes, attaching p, the order of the reflection R, to the ¢th node;
the nodes i, j are joined by a line labeled ¢,; if R, =R, ,, R; =
R,,,; and the g¢;; (resp. ¢;;/2) is the lowest power p of R,E; which
is in the center of I';; = {{R,, R;}} if p is odd (resp. even). Con-
versely, to any diagram <&

%ii @

with n nodes, satisfying (2.2.1), one associates a family of groups
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I' generated by n-reflections as follows:
In C*, let e, e, ---, e, be the standard base. Define the hermi-
tian form H:

(e, ;) = —QyPy; 1#£ ]

232 (e, e =1

where

o — <cos (z/p, — m[p,) + cos 27:/(11.,)1"2 P, =1
v 2sin ﬂ/pl -sin 71'/2)2 , Y

and define R, =R, ,(i=1, ---,n). For any 4, j, the group I',; =
{{R;, R;}} is finite and independent of the choice of ¢, up to an
isomorphism. More generally, if the graph of & is a tree, then
one can replace ¢; by @, (i=1,---,n)|®;] =1, so as to get an
isomorphism between any two groups I in the above family. For
any loop %%;---1, in the graph, the product @, -9, - @, is in-
variant under such changes, and indeed two groups I” with the
same diagram need not be isomorphic. The set {®@;;; i # 7, 1%, 7 =
1, ---, n} is called the phase shift of the hermitian form H. Two
phase shifts define isomorphic groups I' if the products of phase
shifts over all closed loops are equal. A phase shift is called rational
if it is a root of unity.

The data (&, phase shifts) determines a unique hermitian form
H and a unique group I' generated by C-reflections; we sometimes
denote I' by I'(<Z, H).

(2.8.8) If the Coxeter diagram of a group I’ is conmected and
the hermitian form H 1is mondegenerate, then the group operates
wrreducibly on the wnderlying wvector space.

The proof is essentially the same as for Coxeter groups of R-
reflections. (See Bourbaki, Groupes---Lie, Ch. 5, §4.7.)

Unlike the case of R-reflection groups, groups with different
Coxeter diagrams may be isomorphic.

As a consequence of (2.3.3), if the hermitian form H of the
data, (&2, H) is nondegenerate and the group I' is finite, then H is
positive definite. For I' is a direct sum of irreducible groups cor-
responding to the connected components on the diagram .

On the summand corresponding to each component, H is positive
definite by the result in §2.1. Hence H is positive definite.

2.4. Finite groups generated by C-reflections.

Finite subgroups of PGL(n, C) generated by C-reflections were
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classified near the turn of the century (ef. G. Bagnera, I gruppi finiti
di tranzformazioni lineari dello spazio che contegono omologie, Rend.
Cire. Mat. Palermo, 19 (1905), pp. 1-56; C-reflections on projective
space were named homologies in those days). Subsequently the
classification was redone by G. L. Shephard and J. A. Todd in 1953
(see [10]) and then by Coxeter in 1966 (see [4]). Coxeter has listed
the group diagrams.

Finite linear groups I" in m-variables generated by C-reflections
are characterized by the property:

I" possesses a set of n algebraically independent invariant
forms I, I, ---,I, of degrees m,+1,m,+1,---,m, +1
such that

(2.4.1)

==

(m; + 1) = &I’

i=1

(see [10] or (Bourbaki, Groupes--:Lie, Ch. V §5.5) for
this and other properties).

If I is a finite linear group generated by C-reflections
(2.4.2) (R, ---, R,}, then any C-reflection ReI" is conjugate to a
power of some R,(i=1, ---, n): (See [3], Lemma 4.11 (iii).)

Given complex reflections R, , and R,,, on a vector space V,
they generate a group I” which stabilizes W = Ce, + Ce, and fixes
each point of ef Ney. If

ey €y <oy, )
det <<€2, ey <e, e

the restriction of the hermitian form H to W is positive definite.
Hence I is faithfully represented in the compact unitary group of
the restriction of H to W. Thus I is discrete if and only if it is
finite.

One can use this observation to determine that some groups
are not discrete. For this purpose, one needs a list of all possible
admissible values of |{e, e,| if R, , and R, , are to lie in a com-
pact group and be diserete. Such reflections lie in groups I' gener-
ated by two C-reflections, such that |{e, e,y | is given by the number
a on the right hand side of (2.2.2). For a finite linear group I
generated by C-reflections, any reflection is conjugate to a power of
a generator (cf. (2.4.2)). Thus the admissible values can be read
off from the list of {|{e, ve,y|; 7Y€ '} corresponding to Coxeter dia-
grams with two nodes. We list only the connected diagrams with
», =, and values of |{e, ve,y| # 0, 1.

)=1—1<e1,e2>|2>o
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-@‘ |<ew, Ve |
oL@ cos krlg
®——® 577
(2.4.3) o—>-® 707
®>-6 851, .526
@3 .816, .5717
®——® .934, .356, .951, .309

2.5. Lattice subgroups.

Let G be a locally compact group. A lattice I" in G is a discrete
subgroup such that G/I" has finite Haar measure. Two subgroups I’
and I'" of G are called commensurable if I'NI"' is of finite index in
both I" and I".

If G is a semi-simple matrix group having no compact normal
subgroup of positive dimension and I' is a lattice in G, then ' is
dense in the Zariski-topology of G; that is, any polynomial in the
matrix entries of G which vanishes on I' vanishes on G ([1], cf. [9]).
In particular, if G acts irreducibly on the underlying vector space,
so does I'. This last remark holds equally well if G is reductive
(i.e., G is a product of a semi-simple group and a commuting abelian
subgroup), and G acts (absolutely) irreducibly on the underlying
complex vector space.

If G is a Lie group, we denote by Ad G the representation of
@ on its Lie algebra G induced by z — gxg™.

Suppose now that G is a reductive Lie group of matrices and
I' a lattice subgroup such that Ad I is Zariski-dense in Ad G. Let
k denote the field generated over the field @ of rational numbers
by Tr AdI'={Tr Ad~v;veI'}. Let T denote the function g —TrAdg
on G. Let & denote the C-linear span of the funections

x— T(x7), xe@ vel .

The group G acts on the space .# of all, polynomial functions
on G via the translations:

f—9f, JFeF,9eG

where we define (g-f)(x) = f(xg). Clearly ¥ c & and I'- ¥ C .
Since T(xy) = Tr (Adavy) = Tr (Adx Ad~v) and Ad " is Zariski-dense
in G, it follows that G- & < . The set of functions {v-T;vel}
span & and from among them we select a base B= {v,-T, ---, v.,- T}
(note: n < (dim G)* and is therefore finite).
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In the represemtation p of G on ¥, the matrix of o(v) with
respect to the base B is k-valued.

Proof. (cf. [5]). For any ceG, let ¢ denote the evaluation
map . — C given by f— f(¢). ¢é is linear. Since Ad " is Zariski
dense in Ad G, {7;vel'} is a separating family of linear functions
on . Hence we can select g3, -+, 8, in I' so that By -, 3,,}
separates . For any yelI and for fixed 7,

Bur-1,T) = BuS ¢i7;+ T)
T(Bk'Y'Y«;) = Z.lcijT(Bk'yj) k= 17 e, M

This gives a system of n equations for the » unknownseg,, ---,
Cim, With all coefficients in k. Hence the solutions are in k. Since
o(v) = (¢;;), our assertion is proved.

The representation p provides a faithful representation of Ad G.
The Zariski-closure G* of p(G) in the full »* X »* matrix algebra
coincides with the Zariski-closure of p(I"). Let I denote the ideal
of polynomial functions on Hom (%", &) which vanish on G*. Since
o(I") is Zariski-dense in G* and the matrix entries of po(I") are in k&,
the ideal I has a base of polynomial functions with coefficients in
k. Thus (strictly by definition),

(2.5.1)  The algebraic group G* is defined over the field k.
3. Geometric preliminaries.
3.1. The ball B and its isometries.

Let V be an n + 1-dimensional vector space over C on which we
fix a hermitian form H of signature (n, 1) i.e., % plus signs and 1
minus sign. The unitary group of H operates on the projective
space P, of one-dimensional C-subspaces of V; we denote the resulting
group on P, by PUH). Set {p, q> = H(p, q) and

Vo={peV;<{p, p) <0}
Ve={peV;{p, p)=0}
V= {peV;{p,p)>0}.
Let w denote the canonical map of V — {{0}} onto P,. Set
B = n(V~), Aut B = the restriction of PU(H) to B.

On B one can define a Riemannian positive definite infinitesimal
metric invariant under Aut B by the formula (cf. [6])

1 [Kdp, dp)y {dp, p)

. . d * = T p ol
(3.1.1) § {p, 2 (p, dp) {p, D)
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Although there are many choices for » which map to the same 7 (p),
the formula above yields a well-defined metric. The angle between
two tangent vectors to B at a point w(p) is defined by the usual
associated real-valued inner product formula

(@, y) = —Re 1 [ 9 <@ 0|
’ (o, 2* (o, ¥) (D, D
thus
(3.1.2) cos {(x’ y) —_ (x’ y)

[(, 2)(y, ¥)]**

In particular, if # and y are nonzero tangent vectors to B at a
point z(p) with ¥y = ax, ¢ € C, then {(#, y) = arg «a.

The distance between two points 7(p) and n(q) in B is given by
the formula (cf. [6])

_ {p, ©|
3.1. hd = y :
( 3) cosh d(n(p), 7(q)) K, pX<a, )"

For any vector C-subspace W of V with dim¢W =% + 1 on which
the signature of the restriction of H to W is (%, 1), the intersection
WnN V™ is nonempty. w(Wn V) is called a C-k-plane in B; and
W is called its preimage in V. In case k=1, 7(Wn V™) is called
a C-line in B. A C-k-plane is clearly a geodesic subspace of B for
k=0,1,---, n.

By the principal axis theorem, there is a base of C-linear func-
tions on V such that

Ho= —|af+ ol + o+ o,

Such a base @ is called a standardizing coordinate system; it is not
unique, any other differing from it by a unitary transformation of
H. The associated nonhomogeneous coordinate system {x,/z, ---,
x./%,} on the complement of x, =0 in P, is called a standard non-
homogeneous system. In the nonhomogeneous coordinates x,/z, ---,
x,/x, of B, B becomes the open unit ball in C™:

(%>2+ +<%)2<1.

0

The point o of B defined by the n equations
O=x,=0,=:-=2,

is called the center of the standardizing and of the standard non-
homogeneous coordinates. Every point of B is the center of some
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standardizing g.
The stabilizer (Aut B), of the center o of g is the image in
Aut B of the subgroup of PU(H) given in any standardizing coordi-

nates by

Ty = ax,
@ &,
l=U
X, Ly

where ‘U = U™. The group U(H) is transitive on (V") and the
subgroup (Aut B), is transitive on the set of all C-lines through o.
It follows at once that Aut B is transitive on all pointed lines i.e.,
pairs (p, L) with p a point on the C-line L of B.

The geodesic subspaces of B having constant negative curvature
are of two distinet kinds. On the one hand by a direct computa-
tion one finds that all C-lines have constant curvature —2. On the
other hand, given in V any C-linearly independent vectors f,, - - -, f
such that {f, f;>€R{,j=0,---,k), the subspace w([Rf, + --- +
Rf,JN V™) is called an R-k-plane if it is nonempty; its sectional
curvature is —1/2. If k =1, we call the R-1-plane an R-line.

REMARK 1. The ratio of 4 between the curvatures of C-lines
and R-planes arises from the existence of a restricted R-root 2a.
Any C-line is isometric to real hyperbolic 2-space i.e., the Poincare
disc.

REMARK 2. With respect to any nonhomogeneous coordinate
system on B, a C-k-plane is the intersection with B of a k-plane;
or as we shall say for short, a C-k-plane is linear with respect to
any nonhomogeneous coordinate system. By contrast, an R-k-plane
z([Rf, + --- + Rfi] N V) is the intersection with B of a k-dimen-
sional R-linear subspace of C" relative to nonhomogeneous coordinates
X, [To +++, X,./2, Provided that f, ---, f, lies in the R-linear span of
the dual base to x, ---, x,. Thus, with respect to a standard non-
homogeneous coordinate system, an R-k-plane need not be linear;
for example, a general R-line is a circular arc meeting the boundary
of A orthogonally, where A is the unique C-line containing it.

REMARK 3. Any geodesic line P in B is an R-line. For let
Do, D, be vectors in V'~ such that n(p,) and w(p,) are distinet points
of P. Set M=Cp,+ Cp, and L =zn(M N V™). Then L is the unique
C-line containing P. Set ¢, = {(p,, Py ‘v, and e, &€ M N (Ce,)* where
1 denotes the orthogonal subspace of V with respect to H. Then
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P = 7((e, + Re,) N V) and is thus an R-line. We note that {p,, p,>*
0 since the restriction of the hermitian form H to M is of signature
(1, 1). Since 7(p,) = w({Py, P Do), We find that P = n(<{p, pp Do+
Rp,) is the geodesic line through #n(p,) and z(p,).

One can say that with respect to a standard nonhomogeneous
coordinate z on a C-line, an R-line is linear with respect to Rez
and Im z if and only if it passes through the origin.

REMARK 4. Inasmuch as U(n) is transitive on all points of
{ze C™;|z| = 1}, it follows that Aut B is transitive on all pairs (p, P)
with pe B and P an R-line through p.

3.2. Properties of an equidistant surface.

Given two points w(p,) and 7(p,) in B, the equidistant surface
S of n(p,), ©(p.) is by definition

S = {z(x) € B; d(z(»), () = d(=(x), ©(p.))} .
The equation of S is easily obtained:

cosh d(z(x), ©(p,)) = cosh d(z(x), ©(p,))

[{z, p| _ | <z, P | _
((z, 2){p,, P)'* (&, )Py D)

If moreover we normalize the points of V representing w(p,)
and 7(p,) so that {(p,, p,> = {p,, P.», the equation of S becomes simply

|z, p1>' = |<:12, p2>; .

The locus of this equation is easy to describe. Let M denote
the 2 dimensional C-linear subspace Cp, + Cp. of V. Let A denote
the orthogonal complement to M in V with respect to H. We have
AN M = (0) since the restriction of H to M has signature (1, 1) and
thus H on A must be positive definite. z#(M N V) is a C-line in B
and P=SNa(MnN V) is the perpendicular bisector in the Poincare
dise #(M N V™) of the points 7#(p,) and 7(p,). Now for any z in V,
if x satisfies |<{x, p.)|=|<{x, »,»| so also do the points = + A. Hence
S contains U:.wep 7(Cx + A) N B.

Let x,, ---, x, be standardizing coordinates with z, =2, = --- =
2,=0on M and z,=2, =0 on A. With respect to nonhomogeneous
coordinates x,/x,, - - -, x,/x, on C" each of the planes 7(Cx + A) is paral-

lel to #(Cy + A) (i.e., they meet only in the line at infinity x, = 0).
Thus we see that S contains the R-(2n — 1)-dimensional cylinder
erected on the geodesic line P.

Consider now the orthogonal projection st (with respect to the
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Riemannian metric) of B onto the geodesic C-line #(M N V). If
w(x)e S it is easy to verify that in the Riemannian metrie the C-
(n — D-plane n(Cx + A) N B is orthogonal to the C-line n(M) N B.
Hence p(n(x))e P. Thus n(Cx + A)N B = p'p(n(x)) for all xe S,

S = pLeJP#‘l(p)

and S is indeed the (2n — 1)-dimensional cylinder elected on P with
respect to both the Riemannian metric as well as nonhomogeneous
standard coordinates on B. We call P the spine of S; for any
w(x) € S, we call each subset p'u(z(x)) = n(Cx + A) N B the slice of
S through =w(x) and it is denoted A.,. An S-function is any func-

tion ¢, + ¢y, + -+ + ¢,¥, which is constant on all slices of S, where
Yy, ** Y. 1S @ nonhomogeneous coordinate system on B.

The spine P of an equidistant surface S satisfies the two pro-
perties

(P1) P is a geodesic line contained in S.

(P2) Let L denote the unique C-line of B containing P, and let
/.. B— L denote the orthogonal projection of B onto L. Then S=
U,er 2 (D).

The following simple lemma will be useful in showing that the
spine of an equidistant surface is uniquely characterized by proper-
ties (P1) and (P2).

LEMMA 3.2.1. Let C be a C-linear subspace of V which contains
an open (in the Euclidean topology) subset 0 such that #(V~N0) is
a nonempty subset of the equidistant surface S. Let P be a subset
of S satisfying properties (P1) and (P2), and let L be the C-line of
B containing P. Then p, (V™ N C) consists of a single point.

Proof. Let M denote the preimage of L, i.e., the C-linear span
of #7(L). Then dimcM = 2. It is easy to verify that orthogonal
projection g, of B onto L can be described as the map w(v)—nm(\(v)),
ve V™ where M V— M is the orthogonal projection of V onto M
with respect to the hermitian form H. In particular, g, is a holo-
morphic map. On the other hand, the geodesic line P is an R-line
and by hypothesis p,7z(V- N0)cpy,(S)c P. Consequently g,z is
constant on a nonempty open subset of C and therefore is constant
on V™ nC.

Let P be a geodesic line in an equidistant surface S satisfying
property (P2) and let z, be as in (P2). For any p <€ P, we call ¢;'(p)
the slice at p with respect to P.

LEMMA 3.2.2. Let P and P’ be lines in the equidistant surface
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S satisfying (P1) and (P2). Then P = P’.

Proof. Let p and g be distinet points of P and let A4, A, be
the slices at p, ¢ respectively with respect to P. Let C, denote the
C-linear span of 7' (A4,). Let g, denote the orthogonal projection
of B onto the unique C-line L’ containing P’. By Lemma 3.2.1, one
sees that p;.(A4,) =y, n(C,N V™) =9, a single point of P’. Con-
sequently p' = A, N P’ and A4, = A,, the slice at p’ with respect to
P’. Similarly, ¢ = A, N P’ and 4, = A,, the slice at ¢ with respect
to P and the slice at ¢’ with respect to P’.

Consider now the quadrilateral p, g, ¢/, »’. Since each slice meets
P and P’ at right angles, the sum of the four angles of the quadri-
lateral is 360°. Hence it lies in a flat subspace of B (cf. [6]). But
B has rank 1; that is, the maximal flat geodesic subspaces have R-
dimension 1. Hence P = P’.

Terminology. An equidistant surface is hereafter called a
spinal surface.

REMARK. It is clear that the coordinate system in (iii) can be
selected to be standardizing.

Let AutS denote the subgroup of B stabilizing the spinal sur-
face S. Then AutS stabilizes the spine P and indeed operates
transitively on P. Thus S is the orbit of any of its slices under
Aut S, and AutS is the direct product Aut,4 x Aut P where A
denotes the slice through a point p€ P and Aut,A the subgroup of
Aut B stabilizing A and fixing each point of the normal to A at p
(i.e., the C-line L containing P), and Aut P is the one parameter
subgroup of Aut B which operates transitively on P and moves each
tangent vector to B at a point of P parallel to itself. Explicitly,

if P is the R-line Ima,/x, =0, 2, = -+ = x, = 0 with respect to a
standardizing coordinate system «, ---, x, then Aut P is given by
the maps

x, = ax, + bx, a,bER, 0’ — b’ =1
2 = bx, + ax,
x::xz (’i=2,"',’n).

In purely algebraic terms, Aut S is the centralizer in PU(H) of
T where T is a maximal R-split torus in PU(H), i.e., Tr is a one-
parameter diagonalizable subgroup with positive real eigenvalues.
In the terminology of transformation groups, a slice of S is a slice
for Aut S operating on S.
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LemMMA 3.2.8. Let S be a spinal surface, P the spine of S, A
a slice of S, p = PN A, L the unigque C-line containing P, and let
M, C denote the preimage subspaces in V of L, A respectively. Then

(i) M=MnC)+C*+and C=MnC)+ M*.

(ii) Let x, and x, be independent linear functions on V vanish-
ing on M* and let y, = x,/x,. Then y, is an S-function.

(iii) If moreover x, vanishes on (MNC) and 2,(MNC)=0
then the equation of S is argy, = 6, where 6 is a constant and the
equations of P are:

argy, =0,y =Y = --- =9y, =0

where y; = x;/r, and x, ---,x, 18 a base for the anmmihilator of
Mi=2,---, n).

Proof. (i) and (ii) are essentially a reformulation of previous
remarks (cf. proof of Lemma 3.2.1). As for (iii), let ¢, be a nonzero
element in M NC and e, a nonzero element in C* such that
(e, +e)eP. Then P = n(le, + Re,) N V™) and y,(w(e, + te)) = x,(e,+
te)/mo(e, + te,) = tw,(e)/x(e,) = ta,(e,+e.)/xo(e,+e,) = ty,(m(e,+e,)). Thus
on P, argy, = 8, where 0 = arg y,(w(e, + ¢,)). Since ¥, is an S-fune-
tion, argy, = 6 is the equation of S. The coneclusion in (iii) is now
evident.

LeMmMA 3.2.4. Let S, and S, each be spinal surfaces whose
~ spines lie in the same C-line and intersect. Then S, and S, meet
at a constant Riemannian angle at all points of S, N S,.

Proof. Let P, denote the spine of S; and let L denote the C-
line containing P,(+ = 1, 2). Since the geodesic joining two distinet
points of B is unique, either P, = P, or P, N P, consists of a single
point. We need only consider the latter case. Set {7} = P,N P,
Then S,N S, = ¢z%(¢”), a common slice. Set 4= S,NS, Since
Aut B acts transitively on (point, line) pairs, we can assume with
no loss of generality that the spine of S, is given by the line 0 =
X, =% =+ =o,,Imx,/r,=0 with respect to a standardizing
coordinate system «,, ---, x, and that the common slice A is at
x,/z, = 0. Then by Lemma 3.2.3, both S, and S, are R-linear in
X./Tg, * - ¢, Xa/%, coordinates.

Let C denote the preimage subspace of A in V and let H, denote
the restriction of the hermitian form H to C. For any n(x)c A
there is a g,€ U(H;) such that g, = w(x). Then g, is given by
equations
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x’.’» = auu/"vo + a’lel + Tt _’_ a—(n——l)xn~—1

Xy = Q@ T *** F Qo ime L -
We complete these equations to get an element g of U(H) by
setting

X, = ax,, where a = a,la,|™" .

With respect to the nonhomogeneous coordinates x.,/x, -- -,/
on B, g acts affinely on L. Indeed the element g sends any p with
p € L into the point g(”) + ap/(a, + 0) = g() + |a,|™*P. Thus ¢
sends vectors <P with pe€ L into vectors ¢(<)g(p) parallel with
respect to the coordinate system z,/x,, ---, x,/x,. Henece g(p) € S, for
peS,NL since S, is R-limear (i =1, 2). Consequently, g sends
(S\NL,S,nL) to (S,Ng(L),S Ng(L)). Inasmuch as L is the normal
to A at ¢© with respect to the Riemannian metrie, ¢g(L) is the
normal to A at ¢g(<”), and hence by definition (S, N g(L), S. N g(L))
is the Riemannian angle formed by S, S, at g(¢”). Since ¢ induces
an isometry on B, it preserves Riemannian angles. The proof of
Lemma 3.2.4 is now complete.

LeMMA 3.2.5. Let S be a spinal surface and let I be a C-line.
If 1 is orthogonal to a slice of S, then I NS is a geodesic line.

Proof. Let A be a slice of S such that I is orthogonal to A
at a point ¢ of A. Let P denote the spine of A and set &/=A4nNP.
Let v, ¥, -+, ¥, be a standard nonhomogeneous coordinate system
centered at ¢« with ¥, =9, = --- =v9,.,=0on P and y, =0 on A.
The proof of Lemma 3.2.4 shows that the C-line I orthogonal to 4

at q is given by the equations
= %), Yo = Yuil@)

and moreover, the geodesic lines in I through the point ¢ are given
by the additional equation

arg 9, = constant.

In particular, I N S is a geodesic line by Remark 3 of 3.1.
The common Riemannian angle between S, and S, along S, N S,
is denoted as (S, S.); it is called the angle formed by S, S..

LemMMA 3.2.6. Let S,(i=1,2) be a spinal surface in B, and
assume that z is both an S-function and an S,-function. Then the
Riemannian angle between S, and S, 1s given by the euclidean angle
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in the complex z-plame of the image sets z(S,) and z(S,).

Proof. By definition, z is nonzero polynomial of degree 1 in
nonhomogeneous coordinates on B which is constant on all slices.
Let L be a C-line containing the spine of S,. Then L is orthogonal
to S, NS, at the point L N A. By definition, as Riemannian angles,
LS, S,) =L, NL, S;,NL). As a Riemannian space L has con-
stant curvature and the Riemannian angle coincides with the eucli-
dean. The function z restricted to L is a complex analytic map of
a C-line and is therefore conformal. Consequently

LS NL, SN L) = (28, N L), (S, N L)) .

Since z is an S;-function, 2z(S,N L) = 2(S,)(= = 1, 2). Consequently,
L (8, Sy) = J(Z(S)), 2(Sy)-

LEMMA 3.2.7. Let S be a spinal surface, and let I be a C-line,
and let (¢ denote the projection of S onto its spine.

(i) With respect to any monhomogeneous coordinate system,
INS is an (Riemannian-unbounded circular arc in the disc I or
18 empty.

(ii) If I meets the spine of S, then INS 1s a geodesic sub-
space.

(iili) INS is a geodesic line if and only if for any peln S,
the line pp(p) and IN S span an R-k-plane k < 2.

@iv) If INS is a geodesic line, then IN S and the spine of S
span an R-k-plane with k < inf (8, n).

(v) Let v, v, v, be elements in V such that w(v,) and w(v,)
are distinct points of INS and w(v,) = w(v,)). Then INS is a
geodesic lime if and only if (v, v,)<{v, V.0<{v, v,y € R.

Proof. Let P denote the spine of S. Let y, ---, ¥, be any
standard nonhomogeneous coordinate system centered at a point
& € P with y, = 0 on the slice through <. By Lemma 3.2.3, the
surface S is R-linear in Rey, Imy, (¢=1, ---, n), and for any C-
line I the same is also true. Hence IN S is R-linear. With respect
to any other standard nonhomogeneous coordinate system, I is a
disc and IN S is the transform of a straight line by a fractional
linear transformation. Hence I N S is an unbounded circular arec.

Assertion (ii) follows from the fact that any straight line in
the y, ---, ¥, coordinate which passes through £ is a geodesic line.

To prove (iii), suppose first that IN S is a geodesic line. Let
», ' be distinct points on IN S, and let £, &’ be the orthogonal
projections of p, p" on P. We can choose ¢, v, v in V which are
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mapped by 7 onto <7, p, p’ respectively and standardizing coordinates
Xy, - ¢+, %, With dual base e¢,e, ---, ¢, so that y, =0 on the slice
through ¢, y,(v) e R,

v=oe, +ae,v =e + be, +be, + f

where a, e R, b, e R, and f=be, + --- + b,_¢,_,. We have IN SC
z(v + Rv’'). Since INS is a geodesic line, (v, v')e R. Clearly
{e,, vy = e, vy = e, ¢,y € R. Consequently z((Re, + Rv+ Rv' )N V")
is an R-k-plane spanned by INS and p” of dimension 2 or 1
according as p #= & or p = . Set ¢ =¢, + b,e,. Then n(e) = &
and (¢, vy, (e, V'), (¢, ¢,y are all in R. Hence n((Re, + Rv + RV +
Re')N V™) is an R-k-plane with £k =<3 and A =<2 if n = 2.
Conversely, if 1N S and pu(p) span an R-2-plane, then I NS is
the intersection of two geodesic subspaces and is therefore geodesic.
Assertion (v) is clearly a restatement of (iii)

LEMMA 3.2.8. Let A and B be orthogonal C-planes in Ch" with
dimcA =k and dimeB=n — k. Let G be a geodesic R-j-plane. If
ANBCG and dim,ANG =k, then dim;BN G = j — k.

Proof. Let p denote the unique point .in.A N B, let T denote
the tangent space to Ch"” at p, and let A, B, ¢ denote the tangent
space at p to A, B, G respectively. It suffices to prove that

dim,BNG =k — j. Clearly we can choose €,y €, e, €, an
orthonormal base of 7 with e, ---, ¢; a base for G, and ¢, - -, €, a
base for A. Then e, ---, e, is a base for B. Hence BN G has a
base €y, +--, ¢;. Thus dim,BNG =35 — k.

LEMMA 3.2.9. Let S, be a spinal surface with spine P, and let
L, be the C-line containing P, (1 = 1, 2). Assume that L, N L, con-
tains a point p, which is not on P, or on P,. (i) Let €S, N S..
Then the tangent space to S, and S, at & are distinct. (ii) If S,
and S, have a common slice, then L, = L, and P, N P, is not empty.

Proof. Suppose not. Let A, denote the slice of S; through <
(i=1,2). Let 4, and S, denote the tangent space to 4, and S, at
¢ respectively (1 =1, 2). Then A, is the maximum C-linear sub-
space of S, (2 =1,2). To prove (i), suppose that S, = S,. Hence
A, = A,. This implies that A4, = A, since A, is a C-linear subspace
(1t =1,2). Let g, denote the orthogonal projection of the ball onto
L; 1=12). Then p(c)=A4,NL; (i=1,2). Consequently the
geodesic line pt,(¢”) forms a right angle with the geodesic line
(A (7). Similarly, p(2)(2”) forms a right angle with p,.(27)
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at ¢,(#”). Inasmuch as the sum of the three angles in the geodesic
triangle p,t.()(7) is less than or equal to two right angles with
equality only if the triangle is degenerate, either », = ¢#(&) (i =1
or 2) or p(2)=p(7). The first possibility is excluded since ¢,(2”) €
P, (1=1,2). Consequently () = p()e P,N P,. In particular,
L, N L, contains the two distinet points p, and g,(c”). Therefore
L, = L, since a C-line is uniquely determined by two points. Apply-
ing Lemma 3.2.4, one infers that ( (S, S,) = 0 at (<) as well as
at ©&. Hence P,= P, and S, = S,.

To prove (ii), let A denote a common slice of S, and S,. Choose
& €A, and consider the geodesic triangle p,ut,(2)u(”). By the
argument above, ¢,(&) = () P,N P, and L, = L,.

LemMMA 3.2.10. If the spines of two spinal surfaces S, and S,
have two distinct common perpendicular lines which meet one spine
wn two distinct points, then S, = S,. In particular, if two spinal
surfaces have two common slices, they coincide.

Proof. Let P, denote the spine of S; (¢ =1, 2) and let ¢* and
9? be distinct geodesic lines orthogonal to both P, and P,. Then
the quadrilateral formed by g%, P, ¢% P, has four right angles. Con-
sequently, it must be degenerate and P, = P,. Hence S, = S,.

3.8. Intersections of half-spaces.

LEMMA 3.3.1. Let S, be a spinal surface with spine P, (1=1, 2).
Let L, denote the C-line containing P, (1 =1, 2) and assume that
L, N L, contains a point p,. Let S; denote the half-space bounded
by S, and containing p,, then

(i) for any slice A, of S, SN A, is convex (with respect to
geodesics in Ch™);

(ii) S.NnS, is an unbounded connected (2n — 2) manifold or is
empty.

Proof. To prove (i) it suffices to prove 4;N S;" is convex for any
C-line A} in A,. Choose a standard nonhomogeneous coordinate system
Yy Yoy -+, Y, centered at p, so that L, has the equation y,= --- =
Y, = 0. Then the ball B is given by |9, >+ --- + |¥.]* <1, the
spinal surface S, is given by the equation |y, — a| = b where |a|>b,
and S is given by |y, — a| > b. Moreover the slice A, is a disc
orthogonal to the C-line L,. Consider now the orthogonal projection
Y, of the ball B onto L,. The restriction of g, to A; is holomorphic
and hence a conformal map if L, # L,; if L, = L,, ¢, maps 4, onto
a point. In the former case, £,(A4;) is a circular disc lying in the
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dise L;:ly,| <1; and g,(A4)) N S/ is therefore a convex subset of
(A} with respeet to the induced metrics, (which coincides with
the Poincaré metric). The inverse image of £4,(A4;NS/) in A, is
therefore also convex, because conformal maps of Poincaré discs are
isometries. If L, = L, then [¢,(4,) NS = 1,(A4,) or is empty, and
correspondingly, 4, N S;" = A, or is empty. This proves (i).

To prove (ii) for » = 2, consider the projection p, of the spinal
surface S, onto its spine P,. By Lemma 3.2.7 (i), for each slice A,
of S, A, N S, is either an unbounded circular arc in A, or is empty.
From this (ii) follows. For larger », a similar inductive argument
can be given. Proof of the lemma is now complete.

LEMMA 8.3.2. Let 4 be a finite subset of isometries of Ch*. Let
p,€Ch*. For any Y€ 4, set

v+ = {x € Ch"; d(z, p)) = d(vx, o)}
7 = {z e Ch*; d(x, D) = d(7z, p,)}
Fay=nN~.
7€4
Then F(4) and each of its k-dimensional faces is topologically a
cell, k=0,1,2, -+, 2n.

Proof. We prove the result for » = 2. For larger n, an induc-
tive argument based on similar considerations can be given.

The region F' is clearly star-shaped with respect to geodesics
originating at p,. Inasmuch as the boundary of F is made up of
a finite number of piecewise smooth 3-surfaces, F is a 4-cell.

Let ¢® be a 3-face of F; that is, e, is a connected component of
'7A’o N n7e_1 vt

Let gt denote the projection of the spinal surface ¥, onto its
spine P. By Lemma 3.3.1, each slice of 7, meets v+ in a convex set
and consequently each fiber of the map ¢ is a cell. Since ¢® is con-
nected, p(e®) is an interval. It follows that e¢® is a cell. The proofs
for 2-cells and 1 cells are similar.

4. Arithmeticity of groups generated by C-reflections.

Let @G be a semi-simple real Lie group and let I" be a lattice
subgroup of G.

DEFINITION. I is an arithmetic lattice in G if and only if there
is an algebraic matrix group A defined over the field @ of rational
numbers and containing Ad G, the adjoint group of G such that

(i) Ar = AdG x K (direct) with K compact.
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(ii) Ad[I is commensurable with the projection of A, into G
i.e.,, AdI'N(4,K N G) is of finite index in both /" and A.K N G.

REMARK. Let G* denote the Zariski-closure of Ad G in the full
matrix algebra & over complex numbers and let & denote the field
generated by Q[Tr AdI']l. Let ¢ denote the ring of algebraic
integers of k£ and let Galk denote the set of all monomorphisms of
k into C. It is known (cf. (2.5.1)) that the algebraic group G* can
be defined over the field k. Let I denote the ideal of polynomial
functions (in the entries of matrices in &) with coefficients in k&
which vanish on G* and let °I denote the image of I under o€
Galk. One denotes by °G* the algebraic matrix group on which the
ideal °I vanishes; °G* is defined over the field %.

In this paper, the group Ad G will usually be PU(n, 1) and G*=
PGL (n + 1, C) which is a simple group. Whenever G* is a simple
group, the groups A and K in the definition of arithmetic group
are easy to identify. Set & = Galk, and

&, ={0eGalk; s = g}
C_ = {0 € Zy; (°G*)r is compact} .

For e & — &, °G* X °G* is defined over R, and, as is easy to see,
(°G* X ‘G)r = (°G*)¢. It is well-known (and easy to prove) that a
connected compact complex group is abelian. Thus ce ¥ — Zx
implies that (°G* x °G*)g is not compact. Consequently if we form
A =T[°G*
0EY
and set
(4.1.1) K= 11 G*)y, B= TI °G*

oceY __ e¥F—-Z

then B is defined over R and the algebraic group A is defined over
Q; it is the group obtained from G* by “restriction from %k to Q.
Moreover, By is the product of all the noncompact factors of Ag.
By definition, the subgroup A;K N B is an arithmetic lattice in By,
the fact that it is a lattice following from the theorem of Borel-
Harish Chandra that Ap/A, has finite measure (ef. [2]).

If G* is simple and & = Q[Tr Ad I'], then B, = AdG, ¥_ = & —
{identity} and thus 4 c R for all ¢ +# identity. Since G is a real
Lie group, k¥ C R, thus k is a totally real field with °(G*)r compact
for all ceZ_.

The following lemma provides us with a test for arithmeticity
of a lattice generated by complex reflections.

LEMMA 4.1. Let H be a nondegenerate hermitian form Za,z27Z;
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on C*, let h = Q{ay};1,7=1, ---,n} and let G = U(H), the unitary
group of H. Let I' be a lattice subgroup of G, let k= Q[Tr Ad I']
and let & be the ring of algebraic integers in k. Let E denote
the composite field of h and k. Assume

(1) The field k is totally real.

(2) For all xeh and oeGalh, 0&) = o(x).

(3) TrlAdI'c 2.
Then AATI is arithmetic in Ad G if and only if:

For all 0 GalE with 0 + 1 on k, "H s definite.

Proof. Let G* denote the Zariski-closure of AdG. Then G*=
PGL (n, C), a simple group. Let A = R, ,,G, the group defined over
Q by restricting the ground field from % to Q. Then

A=1T1] °G*
where < = Galk. For any o< Gal E which is not the identity on
k, °G* is defined over R by hypothesis (1) and °H is a hermitian
form by (2), (G*)x = PU (H) and (°G*)rx = PU (°H).

Assume °H is definite for ¢ = 1 on k. Then °(G*)r is compact
for all 0 ¢ Galk with ¢ %= 1. Let I denote the projection of 4, into
the o = 1 factor. Since ]],., (“G*)r is compact, /" is a discrete sub-
group. The @Q-structure on A arises from the @Q-structure on the
field % regarded as a Q-vector space, embedded into

]e__I T~k ? C
via the diagonal embedding = — [],..-°2. Hence I’ = (G*).. By
hypothesis (8), /" I”’. To prove that I' is arithmetic, it remains
only to prove that I/I" is a finite set. By hypothesis, G/I" has
finite Haar measure. Hence Ad G/AdI" has finite Haar measure.
We have Gi = Ad G, and (Ad G)/I" has finite measure. Moreover

AL G- (I [T7) = ((Ad G/T)

where /¢ denotes Haar measure. It follows that I”/I" is finite.
Hence I" is arithmetic.

Conversely, assume that Ad /[’ is arithmetic in AdG. Then
"Ad I is bounded for all 0eGalk with ¢ = 1. Since the map of
GL (n, C) to PGL (n, C) has compact kernel and since “Ad v = Ad g7,
the matrices °I" are bounded in PU (°H) for any o€ Gal ¥ with o+
1 on k. Hence the topological closure °I" is a compact group and
as is well-known stabilizes a positive definite hermitian form on C~.
But °I" is irreducible on C™ (ef. (2.3.3)) and therefore stabilizes aunique
hermitian form up to a scalar factor. Consequently °H is definite.
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REMARK 1. The proof of Lemma 4.1 shows that the group Ad I”
is commensurable to G% if G* is simple and £ is the ring of inte-
gers in Q[Tr Ad I'].

By the same argument one can prove:

Let G be a semi-simple matrixz group defined over a field k, let
& denote the ring of algebraic integers in k. If

(1) k s totally real

(2) °Tr AdTI is bounded for all oceGalk with o + 1, then G,
18 discrete (and an arithmetic lattice in G).

REMARK 2. Let k& be a subfield of R and # the ring of inte-
gers of k. Let G be an algebraic matrix group defined over k. If
G, is discrete, it is an arithmetic lattice in Gz. The proof involves
“weak approximation” i.e., a generalization of the Chinese remainder

theorem to algebraic groups.

LEMMA 4.3. Let =& be a Coxeter diagram, let H be a non-
degenerate hermitian form associated to =, and let I' be the group
generated by C-reflections associated to (&2, H) and rational phase-
shifts. Then for all velI', Tr is an algebraic integer, and more-
over, it 18 a sum of roots of unity if p, = P, = +--.

Proof. Let n be the number of nodes of =, let e, ---, e,
denote the canonical base of C, and let {p,, q,;, 4,7 =1, ---, n, 1]}
denote the data of &7. Then

(e, ;) = Hle, €;) = 0;;P,;, [Pyl = 1

and
a, =1 @,=1
Q5 = — '91" 1+ ]
85
where

oy — (208 Elp. = B+ cos 2gy )
iy T 2

s;; = (sin7/p, sin w/p;)"* .
By definition, the C-reflection R; in e} is:
Rx=x+ (9 — 1)<{w, e;)e,

that is, B; =1 + ¢, ® B;, where B, is the linear map x — (3 — 1){x,
e;>, and e ® B denote the endomorphism of C™: (¢ Q B)(v) = B(w)e. In
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this notation, (¢ @ B)(f ® @) = B(f)e ® a. Thus

Tr R“Rzu_,’ . ’Rim = g. ) ’;mBijl(eijz)Bijz(eijs) . 'Bijl(eij!) .

1154, < < <y

Thus Trv is a sum of terms of the type

*+ (7]f1 - 1) o '(771,, 1)“7.1% gty " ‘aipilq)iliz' : '@ipil

or
k4 N 1 P
= H (77‘1 - 1) ) H Cijigyy
= sin-%_ 7
Di;
Now
5 - D —L = g — 9 2L
sin % J 7
D;
= 277,1/—:—]—. .

Hence Trv is a sum of terms of the form 4™ []}., Niy IG=1 (26415, ,)-
Since 2¢;; is an algebraic integer and moreover, a sum of roots of
unity, if p, =0, = -.-- = p, (by the cos (6/2) formula) the same is
true of Tr~ provided [[%-, ®;;;,, is a root of unity.

This last condition is assured by the hypothesis of rational
phase shifts. Proof of the lemma is now complete.

LEMMA 4.4. Let I" be a group generated by C-reflections asso-
ciated to a Coxeter diagram <Z with n + 1 nodes and Hermitian
form H. Assume

(1) H is of type (n plus, 1 minus).

(2) Thegroup I'* generated by the n-reflections R,,- - -, ﬁ., R
of the reflections R, ---, R, has a connected diagram and is finite.

(3) H has rational phase shifts.

(4) Dy =D =+ = Pyt1-

Then Ad I is arithmetic in PU (H) if and only if: For all auto-
morphisms of C which are not the identity on the field Q[Ad ],
°H has positive determinant.

Proof. Let W=0Ce + ---Ce; + ---Ce,.,. By (2.83.3) and hy-
pothesis (2), I is irreducible on W. Consequently I stabilizes a
unique hermitian form on W modulo a scalar factor. Since I is a
finite group, it stabilizes a positive definite hermitian form on W.
Hence any hermitian form on W stabilized by I is definite. Then
the restriction of “H to W is definite for each automorphism o of
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C. Inasmuch as {e¢,e;> =1 for all 7, °H is positive definite on W
and is of type (» plus, 1 minus) or else positive definite for each
automorphism ¢ of C; these two possibilities correspond to ‘4 <0
and °4 > 0 respectively, where 4 denotes the determinant of the
(n + 1) X (n + 1) matrix H(e,, ¢;).

Let k= Q[Tr AdI']. By Lemma 4.2, k = Q[|TrI"|)l. By hypo-
thesis (4) and Lemma 4.3, k& consists of sums of real parts of roots
of unity. Hence k is totally real. By hypothesis (3) and (4) He,, ¢;)
lies in a field generated by roots of unity for ¢, 57=1, .-, n+1;
let & denote the field generated by k;;. Then for all c€Galh and
xeh, o) = o(x). Thus hypotheses (1), (2), and (8) of Lemma 4.1
are satisfied. Let E denote the field generated by % and k. We
have seen that for all 0 € Gal E, "H is either of type (n,1) or posi-
tive definite according as °4 < 0 or °4 > 0. The conclusion of the
lemma follows from Lemma 4.1.

5. Verification of discreteness.

In the search for nonarithmetic lattices among groups I” gener-
ated by C-reflections, we can test a lattice for arithmeticity by the
criterion of Lemma 4.4. But how do we test whether I is a lattice?
Most particularly, is there a test for I" to be discrete?

It may be of interest to describe an algorithm applicable to a
wide class of I which is finite if and only if I" is discrete.

It is based on the following general simple lemma.

LEMMA. Let X be a connected simply conmected metric space
and I' a group of isometries of X. Let F be a closed subset of X
and 4 a finite subset of I' satisfying

(1) F lies in the interior of 4F = U;.,vF.

(2) If v, v,ed and v.F N 7.F # ¢, then vi'v, € 4.

(38) The induced metric on F modulo 4 is complete.*

Then 4 generates I' and I' is discrete.

Proof. On the space I' X F' define the equivalence relation (v,
x,) = (7, x,) if and only if v, = 7.2, and v7'v,e€4. Let Y denote
the quotient space mod= of I'X F and let »: "X F —Y the quotient
map. Let @ denote the map of Y to X induced by (v, ) — 7.

I" acts on Y in the obvious way and « is a I" map. It is easy
to see that I'F' is open and by (3) is closed in X. Hence I'F = X.

Moreover, the map 7 is a covering map. To prove this, it
suffices to prove it is an even covering at each interior point of F
in view of hypothesis (1) and I'F' = F'.

1 T am indebted to Bernard Maskit for pointing out the necessity of this hypothesis.
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On 7(4 X F'), the map m is a homeomorphism by definition of
the quotient topology. Given 7(v, ) en (2') with vye I and %, 2’ € F,
then vz = 2’ and hence 7(v4, F') maps homeomorphically onto v4F.
The latter contains vF in its interior. Indeed U = ;. 74F is a

neighborhood of x'; since I' C Isom X, U contains a ball centered at
2’ of radius d(F, 2’ — 4F). Then = maps each connected component
of 773 U’) homeomorphically onto U’.

Since X is simply connected, 7= is 2 homeomorphism. Clearly I’
is discontinuous on Y. Hence it is discontinuous on X.

Suppose next that I' is a group of isometries on X = Ch". Let
F be a compact region in X and let 4, be a finite subset of I"

’

satisfying
(1) F lies in the interior of 4,F.
(2) 4, =4

Set 4; = {vY';v, v e4}.
E ={vedi— 4; vFNF =+ g}
Inductively set

divy = 4; U E;
Ei+1 = {’Ye-/-’g+1 - A@;’YFOF# ¢} .

PropoSITION. [ is discrete if and only if E, is empty for
some 1, (t =1,2, --).

Proof. («—). This assertion follows immediately from the lemma.
(—). This assertion follows immediately from the de-
finition of discontinuous group.
This algorithm for proving discreteness is impractical because
if the group I' is not discrete, the algorithm never comes to a
conclusion. However, a refinement of the lemma on which it is
based leads under the added hypotheses of §6, to a criterion which
is more effective i.e., it implies discreteness in some cases, and
enables us to prove nondiscreteness in others by suggesting where
to look for pairs of C-reflections with nonadmissible values.

6. Joined spaces and a discreteness criterion.
6.1. Abutted families of polyhedra.

For any m-dimensional polyhedron F' we denote by E,(F') the set
of its k-condimensional faces. We counsider only finite polyhedra F
which are cells minus faces and whose faces are also of this type.
In particular, each ec E,(F') lies on exactly two elements of E,(F).
Write E,.,(F) for the empty set @ and set E(F) = F.
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DEFINITION. Let X be a topological space. An abutted family
Z of polyhedra in X is a family & of polyhedra together with
a distinguished subset _#~ of & x & satisfying;

(1) If (F,F'Ye_4; then F =+ F' and (F', F)e _+-

(2) If (F,FYe._v; then FNF'e E(F)N E(F").

(8) If (F,F')e.+" and (F, F'")e 4 and FNF' = FNF", then
F'=F".

(4) For each e¢c E,(F), there is an F'eZ with FNF' =¢
and (F, F)e ¢+~
The F' in (4) is necessarily unique and is denoted e(F'). n is called
the adjacency of & ; two elements of &# are called adjacent if
and only if (F, F')e _+~

For any F, and F in # and ec E,(F,) N E.(F), we say that F,
and F are e-connected, if there if a sequence F, F, ---, F, = F
with (F, Firn)e 4~ (1=1,2,---,n — 1) andec E(F)N --- N E(F)N
E/(F,); in case k =n + 1, we say simply that F, and F are con-
nected. We called the abutted family & connected if every two of
its elements are connected.

We set for any Fe &

A (F) = {e(F); e € B(F)} .
For any subset . ¢ .&, we write
N(&) ={)(F); Fe.&}.

A subfamily & . is called open if #°(&) = .. Clearly
any open subfamily of & which contains F contains any connected
subfamily & with Fe%.

6.2. The joined F -space.

Let &% Dbe an abutted family of polyhedra in a topological -
manifold X. Let X X & denote the topological direct product of
the spaces X and .&# where % is given the discrete topology. Set

D= U Fa(F} =@, F)weF, Fe.5} .

On the topological space D consider the relation = which is gener-
ated by the equivalences

(x, F)=(«', F") if x = 2" and x ¢ E(F) N E(F") .
Set Y= Dmod =. Let » denote the canonical map of D to Y.

DEFINITION. The space Y is called the joined & -space.
The projection X X # — X induces a well-defined continuous
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map 7 of Y into X. We call = the canonical map of the joined & -
space into X.

For any face ¢ of an Fe %, let F, denote the union of the
interiors (of F' and) of all faces of F which contain e. Set

F,={F,;Fe & ,eCF}.

Then .7, is an abutted family of polyhedra on the space X, which
is the union of {n(F,); F,c.&,}, when we restrict adjacency in &,
from & .

For any ec E(F), let ., , denote the maximum connected sub-
family of .#, which contains F,. Clearly .#,, = ., for all F'e¢
“,. Let Y(e, F) denote the joined .#,, space. It is easy to see
that Y(e, F') is a neighborhood in Y of {n(x, F'); x € interior of e}.

Suppose that X is a topological manifold. Let Fe &, ec Ey(F),
and let ¢* be a closed small (topological) k& ball transversal to e. Set
S, =0et. S, is a (k — 1)-sphere. Set

FL8) ={FNnS,;FeF.};
%,F(Se) = {Fn Se; Fet%,l«' .

DEFINITION. The abutted family & on X is called smooth if
it satisfies the following conditions:

(1) The polyhedra of .# are “nice” in the sense that for any
Fe s ,ecE(F), and “nicely” embedded small transversal %k ball
e, FN S, is a polyhedron.

(2) .8, is an abutted family of polyhedra on the (b — 1)-
sphere S,, and combinatorially, this family is independent of the
choice of the nicely embedded small transversal &k ball e*.

(3) Let S(e, F') denote the joined .7, ,(S,) space. Then Y(e, F)
is homeomorphic to the direct product Inte x S(e, F), where Int
denotes interior.

6.3. A criterion for discreteness.

THEOREM 6.3.1. Let Z be a connected abutted smooth family
of compact polyhedra in the (connected) simply connected topological
n-manifold X. Assume that X has a metric and that there exists
a positive number r such that each F e F contains a ball of radius
». Assume also that F satisfies the condition

(CD2) For any Fye F and ec E(F,), and any sequence F,, F,,
F, .-, F, of successively adjacent polyhedra with e c E,(F,)NE,(F)N
- NE(F,), of FoNF, has a nonempty interior, them F,=F,.

Let Y denote the jointed F# -space. 'Then the camonical map
7: Y — X 1is a homeomorphism of Y onto X.
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Proof. We use induction on #n = dim X. If dim X =1, then X
is homeomorphiec to the real line, and the hypotheses imply that &
is a locally finite covering of the line by intervals which meet only
at their end points.

Now assume the result for spaces of dimension less than n. If
k = 2, then by hypothesis (CD2) any maximal connected subfamily
of Z, gives a cell decomposition with disjoint interiors of the circle
S.. For k=2 and ec E,, it is clear that the family .&,(S,) inherits
property (CD2) from .&# . Thus any maximal connected subfamily
of Z/8,) yields a finite cell decomposition with disjoint interiors of
the (& — 1)-sphere S,.

It follows, using the smoothness, that for any F e &, ec E,(F),
and p an interior point of the k-polyhedron e, that the space Y{e, F)
is an n-manifold. Moreover the canonical mapz: Y — X is a homeo-
morphism of Y(e¢, F') onto a neighborhood of Inte.

Consider now the canonical mapz: Y— X. The hypothesis that
each F e & contains an 7r-ball easily implies that the z= image of
each connected component of Y can contain no limit points and that
it must be all of X. It follows at once that 7 is a covering map.
Since X is simply connected, 7 is univalent on each connected com-
ponent. Since . is a connected family, Y is connected and = is a
homeomorphism of Y onto X.

THEOREM 6.3.2. (I) Let F be a smooth polyhedron in the
Riemannian manifold X. Let 4 be a finite subset of the isometry
group Isom X and let I’ denote the subgroup of Isom X genmerated
by 4. Assume

(1) 4=4

(2) There is a bijective map v — e(y) of 4 onto E(F') satisfy-
wng Y(F) N F = e(v) for all ve 4.

Set " ={(vF, voF);ve D}, & =I'F. Then Z is a connected abutted
family of polyhedra with adjacency 4. Moreover I' operates dis-
continuously on the joined F -space Y.

(1) If, in addition, F satisfies the codimension 2 condition,
(CD2) and X is simply connected, then

(1) I is a discrete subgroup of Isom X.

(2) Let Aut F denote the stabilizer of F in I'. Then a
Sundamental domain for Aut F in F is a fundamental domain for
I' in X (i.e., F is a fundamental domain mod Aut F').

Proof. That & is a connected abutted smooth family of poly-
hedra with adjacency ) follows directly from definitions. Clearly
& yields a decomposition of the space Y into polyhedra with
disjoint interiors. Consider the action of I" on Y. It follows at
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once that I" operates discontinuously on Y, since it permutes the
interiors of the polyhedra of .# . Under the additional hypotheses
in (II), we can apply Theorem 6.3.1 to conclude that 7z: Y —> X is a
homeomorphism. Hence I" is discontinuous on X.

REMARK. Let I' be a discontinuous group of isometries on a
Riemannian space such as Ch". Let p,€ X, and set

F ={reX;d=, p) = dx, I'n,)} .

Then clearly X = I'F. Also, for all v eI with vp,+ p,, the interiors
of vF and F are disjoint. F' is called a “Dirichlet' fundamental
domain” for I'. For any k, let E,(F') denote the set of codimension
k faces of F. For each ec E,(F'), let T(¢) denote an element v of
I' such that

e C{xe X; d(z, p,) = d(vz, py)} -

Set 4 = T(E,(F)). Then T: E(F)— 4 is a bijective map and 4=47".
Moreover, F' satisfies the condition

(CD1): Te)FNF =e for all ec E\(F),

and also the codimension-two condition (CD2). Thus the converse
of Theorem 6.2 is valid, so that (CD1) and (CD2) are necessary
conditions for a Dirichlet fundamental domain.

THEOREM 6.3.3. We continue the motation and hypotheses of
Theorem 6.3.2 1 and II. A presentation for the group I’ is given
by the generators 4 with the following relations:

For each e € E,(F'), choose e, € E,(F') with e Ce, and let r, denote
the word of shortest positive length v,v, - -7,.(v; € 4) such that

(1) ecremFOYY Y FeB (V-7 F) (i =1, ---, n—1).

(ii) FnvF =e,.

(iil) F N 7. 7. F has a nonempty interior.

Set R, = {r.;ec E,(F)}. (By condition (CD2), the words of R, yield
elements of AutpF. Set Ry = {relations among words of R, as
elements of Aut F'}. Then

(a) R, generates Aut F.

(b) (4, Ry) is a presentation for I.

Proof. Let Z denote the free group generated by the elements
of 4, let R denote the kernel of the canonical homomorphism of &
onto I and let R’ denote the preimage in & of Aut, F. One defines
a homomorphism of R’ into the fundamental group of X — I'E,(F)

1 (Also known as Poincaré or normal fundamental domain.)
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as follows. Choose a base point P, interior to F' and a point p; e
vF for each vyeI'. For each ve4, choose a path in F U~F from
», to p, which does not meet any codimension 2-face of F or vF.
To each element in w in & there corresponds a path @(w) in
I'F —T'E(F) =X — 'E,(F) with initial point p,; the path @(w) is a
closed path if and only if weR'. Moreover @(w,w,) = @(w,) P(w,).
The resulting map 6: R’ — 7 (X — I'E,(F')) is a homomorphism.

Inasmuch as X is simply connected, n,(X — I'E,(F")) is generated
by I'-conjugates of closed paths linking E,(F'), and therefore {6(r,);
ec E(F)} generates n,(X — I'E,(F')). It is easy to see that for we
R’, any homotopy of 6(w) in X — I'E,(F) leads to a path 8(w’) where
w’ is obtained from w by successive substitution of subwords xz for
xyy ‘z(x, y, z € 4), and vice-versa. It follows at once that the kernel
of ¢ is (1) and @ is an isomorphism. In particular, R, = {r,;ec
E,(F)} generates R’. This proves (a).

Let R, denote the normal subgroup of R’ generated by words
in R, that represent 1 in Aut;F. Then R, represents 1 in I" and
it is clear that R, = R. Hence (4, R;) is a presentation of I.

6.4. Branching and complex analytic joined spaces.

The foregoing results provide a criterion for deciding which of
the subgroups of U(2,1) presented in §9 are discrete. We shall
require a generalization of the above discussion in order to treat
the action of some nondiscrete subgroups of U(2,1). The results
of the rest of this section will not be required until §18.3.

PROPOSITION 6.4.1. Let & be a connected abutted smooth family
of compact polyhedra in the topological m-manifold X. Assume
also that for any F e and ec E(F) the joined 7,8, space is
an (k — 1)-sphere (k =1, ---, n) (which is a finite branched over of
S,). Then the joined Z -space Y is a topological n-manifold and
F gives a polyhedral decomposition with disjoint interiors of Y.

Proof. This proposition follows directly from definitions. As
asserted above, Y(e, F') is a neighborhood of 7(Inte, F') in Y. By
the hypothesis on .&.(S,) and the smoothness of &, Int Y{(e, F) is
an nw-manifold for every k-face ¢ (k=1,2, ---,n). It follows at
once that Y is an n-manifold. That & gives a polyhedral decom-
position of Y with disjoint interiors is obvious.

DEFINITION. Let % be an abutted smooth family on a space
X. We say that & satisfies condition BR if
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for all Fe.v and ecE, (%), Sle, F'), the joined .7 (S,

(BR) space is a circle.

If & satisfies condition BR, then the canonical map of S(e, F)
onto S, is an even covering map for every codimension 2-face e; we
denote the degree of this map by B(e). We call g(e) the branching
order of % around e. We call a codimension, 2-face e branching
if 8(e) > 1. Set

B(F") ={e; Ble) > 1} .

For any face ec K, (F), where Fe. .7, set B¥e) = {¢/; ¢’ € E,(F') with
F'e 7, ,, B)>1}. Thus B*e)C B.(% ) and eCe¢’ for all ¢ € B*(e).

PRrROPOSITION 6.4.2. Let X be a complex analytic manifold of n
complex dimensions. Let 7 be an abutted smooth family of poly-
hedra on X, which satisfies condition BR. Assume:

(1) FEach codimensiong 2-face e such that B(e) > 1 lies on a
hypersurface of C-codimension 1.

(2) For any s branching codimension, 2-faces {e, - - -, e,} whose
hypersurfaces are distinct, e, - - - Ne, is either empty or has dimen-
sion 2n — 2s.

(8) Let ec B (F) with FeZ , and let e, ---, e, be the distinct
elements of B*e) (thus k = 2s). Then for any compact subset K C
e, lhere exists an admissible complex analytic coordinate system
2= (2, -+, %,) 1M a neighborhood U in X and a neighborhood W
of 7K, F) in Y(e, F') so that UNe,C{z;2, =0}, Kc U=n(W), and
the restriction to W of the canonical map of Y(e, F') into X 1s
equivalent to the map (w,, ---, w,) —> (2, -, &,) given by

2, = wi (i=1---,9)

2, = W; t=s+1 ---,1n).

Then the joined .7 -space has the structure of a complex ana-
lytic n-manifold such that the canonical map into X is holomorphic.

Proof. For any face e such that B(¢’) =1 for all codimension
2-faces ¢ containing e, the (codim 2) condition of Theorem 6.3.1 is
satisfied, and we can argue just as we did there that the canonical
map of Y(e, F') into X is a homeomorphism onto a neighborhood in
X; we endow such Y(e, F') with the structure pulled back from X.

For faces ¢ lying in s branching codimension 2-faces with
branching orders m,, m,, - - -, m, the hypotheses give us the structure
of a2 complex analytic manifold on Y(e, F'), such that the canonical
map of Y{(e, F') into X has degree mm, --- m,. Putting together
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these complex analytic structures from the various Y(e, F'), it can
be verified directly that we get the desired complex analytic
structure on Y.

REMARK. Let X be a complex analytic manifold. Let & be
an abutted smooth family of compact polyhedra on X which satisfy
condition BR. Hypothesis (8) of Proposition 6.5 follows from the
apparently weaker hypotheses in which we restrict the face ee
E,(F) to satisfy the condition: B?*e) is a maximal subset among
{B%); all faces e¢'}. The verification of this observation comes from
straightforwardly studying the situation of Y(¢/, &) in Y(e, &)
when eCé'.

6.5. Polyhedral I'-spaces Y and the I'-cover Y?*.

A polyhedral I'-space Y is a topological space which is covered
by a family &% of polyhedra with disjoint interiors, together with
a group I' of transformations of Y which permute the polyhedra
of # . The polyhedral I'-space is called a joined I'-space if
(1) I aets transitively on & i.e.. & = I'F where Fes .
(2) There is an injective map E,(F') — I' satisfying
(1) 4= 47" where 4 = T(E.(F)),
(2) TEFNF =e for all ec B (F).
(3) 4 generates the group I

We define the subset of & x & :

N ={(vF,¥oF),vel,decd}.

Then .&# 1is clearly an abutted family of polyhedra on Y with
adjacency .7, and the joined & -space may be identified with Y.

Let I'; denote the stabilizer in I of the polyhedron F. We can
define a joined I'-space Y* covered by a family & * of polyhedra
and a I-map zn* Y*— Y such that n*¥ * =% and I';, = (1) for
F*e 7% Namely, fix Fe. s, let I' operate on the topological
space I' X F via left multiplication on the first factor. Set

F*=(1, F)
and define the I'-stable equivalence relation on I" X F' generated by
1, y) = (8, 87(y)) for all yee, § = T(e)

where ¢ varies over E,(F'). Let Y* denote the quotient topological
space I' X Fmod = and & ¢ = {vyF*% vel'}. The map=z* (v, y) — vy
of I' Xx F— Y induces a well-defined continuous I" map of Y* to Y.
Moreover the stabilizer I",, = (1); for if (1, y) is an interior point of
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F* and vel';., then v(1, y) = (1, ') with y, ¥’ interior points of F.
Since the only identifications on interior points of (1, F') come from
equality, we conclude that v(1, y) = (1, 9'). Consequently (v, y) =
1, %) and v = 1.

DEFINITION. Y?* is called the I'-cover of the joined I'-space Y.

On the associated family of polydedra .&# *, I operates simply
transitively, since I';; = (1).

Warning. Even if Y is a manifold, Y* need not be. However,
Y*# is connected, locally connected, and locally simply connected if
Y is a manifold.

6.6. The stabilizer of a face in a joined I'-space.

Let Y be a joined I'-space, let .# denote the associated abutted
family of polyhedra on which I' operates transitively, and let H
denote its adjacency. Let Fe.# and ec E,(F). In keeping with
previous notation, set

F,=U{Intf; feE(F)k=0,1,2 ---) and eC f}

F,={F,; Fe & and eC F}

., » = the maximum connected subfamily of .#, containing F,
Gle, F) ={vel'; vF). € F,,r}

I, = stabilizer of ¢ and of &, in I'.

Clearly I\, CGle, F'), ', »G(e, F)=G(e, F'), and {G(e, F)F,}=.5",,,,.
Tracing back definitions, one sees that

Gle, I') ={vel; v =7 Vm Vs €4, e € B (VY5 - -7, F) ,
=12 ---,m;ym=1,2}.

REMARK 1. If the underlying topological space Y is a n-mani-
fold as it is in the cases of interest here, then &, ,=.%,. Theorem
6.8.2 (I) describes the situation out of which our joined I'-spaces

will arise.
The family &, is an abutted family of polyhedra and we denote
N N(F, X F,) by ..+~ also; it is the adjacency of .&#,.

PROPOSITION 6.6. Let ec E(F) (k=0,1,2, ---,n) and let I’ be
a subgroup of I'(e, F). If
A (N (F) T (AN (F,)U F,)

then F#,,=1T"(4V"F)UF,) and I, =I'S where S ={yel';vFe
N(F), ve = e}.
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Proof.
AL'OF) U F) = I'(A (A (F) U A (F)))
cl'( 4/ (F)UI'F,)
clI'(4+(F,)UF,.

Hence I''(_4"(F, U F,)) is an open subfamily of .#, ,; since it contains
F, it contains the e-connected family .5, .. This proves the first
assertion.

As mentioned above, 7, ,=G(e, F)F, and I',,,,G(e, F)= G(e, F').
Let I'={yel';vF,e 4 (F,,UF,}). Then we have G(e, F')=1"T.
Hence I'(w=I"(TNT,,.). Clearly TNl =S. Consequently
I rn=1"S.

REMARK 2. Set Fle]l ={ved;vF,eh(F,)}, T' ={1}U Fle], and
let S’ be any subset of 7' such that I'S'=I"T'. Then S=T'I", N
I and therefore I"'S=I"(T'T; N (,p))="T'T N (e;y=0I"S'T N
I'iw = I'S'ryN F(e,F))-

REMARK 3. Set S* = (Fle]N e, U{l}. In the I'-cover Y* of
the joined I'-space Y, let .# * and _#"* denote the associated abutted
family and adjacency. For Fe. & and ecE/(F), set F*=(1, F)
and ¢ = (1, ¢). Then G(¢f, F*) = G(e, F) and I'(e, F)G(¢*, F'*) = G(¢,
F*) and I = I'(S*U{1}).

7. Fundamental domains for finite groups generated by C-
reflections.

7.1. An algorithm for finding the faces of a fundamental
domain in Ch?

Let I',, be a finite group generated by two C-reflections {R, ,,
R, ,} in C® and preserving a hermitian form H of type (2,1). We
follow the notation of §38 writing V(H) or V for C® with H as inner
product:

{p, ) = H(p,q9) »,qeV
Vo ={peV;<{p, p) <0}
Ch:=n(V"), X=Ch*.

Fix a point p, € Ch* fixed by no vyel'y,, v+ 1. For any vel,, set
7t = {re X; dx, p,) = d(vz, D))

(7.1.1) 7 = {r e X; d(=, p) = d(vx, po)}
F12 = n 7.

ielgg
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It is easy to see that

(1) I'yFp,=X

(2) vF,NF, has empty interior if v # 1.
These two properties define a fundamental domain.

In order to determine whether the domains we encounter in §9
satisfy condition (CD1), we must explicitly know the faces of the
fundamental domain F,,. Some of the groups under consideration
have order 600, and thus the explicit computation of (7.1.1) would
be lengthy, even if we were merely seeking a fundamental domain
for the action of F, in C*.

Despite the length of the computation, it is eclearly finite.
Therefore a computing machine can be used to settle the question.

Let p,, = mw(et Nef), then p, is the point in #(V) fixed under
R, , and R, ,. Inasmuch as 0= |[{e,e)| <1, e Ne;fcC V™ U{0}
and thus p,en(V~") = Ch’. We call p,, the apex of F, since vyp,, =
P, for all vyerlI', and thus p,€?9 for all yerl',. Let S, denote the
boundary of the ball in Ch* with center at p,, and radius ». Then
S, is I'-stable. A machine can best be used to compute numbers.
Thus, the machine can be programmed to compute the coordinates
of the vertices of S, N F, for any given value of ». If we select
r = d(Dy, D), then p,eS, and S, N F,, is a Dirichlet fundamental
domain for I', acting on S, (with distance on S, defined by the
ambient Ch?).

A machine can be programmed to find the vertices of S, N F,,
as follows.

Set

d = inf {d(vp, Do); 7 € [}
Do = {7 € F12; d('ypo, po) < 2d} .
(The 2 is merely a good empirical choice.) Let T, denote the set

of distinet triplets of elements of D,. In each distinet triplet ¢ =
(1, Y2, 7s) of elements in I”, set

VtZ’?’lﬂ’?gﬂ’?aﬂS,--

Set V,= U{V;teT, V, is finite}. For any x€X, and for any
subset DcC X, set

D¥x) = {v e D; d(vz, p,) = d(=, p,)}
E(@) = {v e I'y; d(vz, p) < d (z, Dy)}
and let o(x) denote an element of I',, such that

d(o(x)x, p,) = inf {d(vw, p,); ¥ € E(2)} .
Set
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Vi={xeV,;d p) < d(vzx, p,) for all ve D}
Di = U{Di(x); x € Vi}
S, = {x € V§; E(x) is not empty}
E, = {ox); xS}
D, = D{U E,.
Recursively, define
Di+1 = Df U E;
T;+, = the set of distinet triplets of elements of D,.,
Vi = U{V;te Ty, V, is finite}
Vii={xe Vi dz, p) < d(vz, p,) for all ze D, }
Diii = U{Di(2); e Vi)
S+, = {x e V&,; E(x) is not empty}
E. = {o),zeS;}.

fl

Each element of V7 is a vertex of
N{y+;ve D} .

Each ze V} with E(x) not empty is cut off by ¥ for ve E(x) (o(x)
makes a deepest cut) and disappears from V{,. After a finite
number of cuts, the process stops. At the final stage, no more
vertices of V7 can be cut off and V; is the set of vertices of F,N
S,. Let 4,, denote the set of all vye D! such that ¥ contains at
least three points of V:. Then {¥;ve€4,} yield the 3-faces of F,
which meet the sphere S..

REMARK. It turns out in most cases that 4, D,.

7.2. Enumeration of I',.

In programming the algorithm of §7.1 for the computation of
the faces of F, N S,, it is convenient to have a simple way of enu-
merating the finite group I',,, for repeatedly one has to compute

{d(vz, po); v €} .

In §2.1, we remarked that the canonical map of C*— 0 to the
complex projective line gives a representation p of 7', in SO (3, R)
the group of notations of the standard 2-sphere S® The kernel of
o is the center Z of I',, whose generator and order is given by
(2.2.3) and (2.2.4). )

For the groups [, with Coxeter diagram
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the group po(/',,) is the group of rotational symmetries of the regular
tetahedron, cube, and duodecahedron respectively according as p =
3, 4, and 5. Each generating C-reflection R, corresponds to a rota-
tion of a face of the regular polyhedron “#(p). Let I, = {{R}},
the subgroup generated by R,.

Each element of I',, can be expressed as a product v-R’2™ where
v is a representative of a coset of I',/I",Z, and z is a generator of
Z. In turn I',Z is the stabilizer in I” of the face of .<Z(p) stabilized
by I',. Hence #I'./I'\Z = 4, 6,12 according as p = 3, 4, 5. Explicit
representatives are indicated in Figures 7.2 a, b, c: the face labeled
1 is stabilized by R, and the face labeled v is the image of the
face 1 under v. Thus the computer runs through 7", by running

R,

FIGURE 7.2a. p=3: Representatives for I'12/I"1Z
The bottom face represents the coset-R:R.I";Z.

R,

R, 1 RR,

RIR,

FIGURE 7.2b. p=4: Representatives for I’/ Z
The bottom face represents the coset R[';Z.
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FIGURE 7.2¢c. p=5: Representatives for I/ Z
The bottom face represents the coset R;'RIRII\Z.

through the 3-fold produect (I',/I",Z, ', Z) of orders

12 X p X 2p =24< p )2 ie.,

6—p 6—p 6—1p
24, 96, 600 according as p = 3, 4, 5.

Similarly, if I"" has the Coxeter diagram
then the representatives of I’/I',Z can be read off the faces of
the regular octohedron. Note that #I"" = 72 by (2.2.5).

In §10.1, we give an explicit description of the Dirichlet funda-

mental domain F), for I',, on Ch% its 3-dimensional faces lie in {¥;
v € 4,,}, where

4y = {R&, (BR)*, (RR;R)*, i # j, 1,5 =1,2,3},

a set of 10 elements. By contrast the group I’ has as Dirichlet
fundamental domain a much more complicated region having 24
faces.
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8. Solving a system of four equations of degree 2.

In §7.1, we described an algorithm for finding a fundamental
domain for a finite group generated by two C-reflections in Ch®:. That
algorithm can be executed readily by a computer, provided that there
is a program for computing the intersection of surfaces such as
7:.N9%.N%NS,. In §9, one deals with intersections 7,N9. N9, N7, If
we introduce nonhomogeneous coordinates ¥,, ¥, on Ch® and express the
equation of 7 or of S, in terms of Rey,, Im ¥,, Re ¥,, Im ¢, the equa-
tions turn out to be real polynomial equations of degree 2. Strange
to say, as of 1978 there seemed to be no reliable program in the
computation centers’ bibliography which could provide all solutions
of four such simultaneous equations. Accordingly the implementa-
tion of the algorithm necessitates elimination of variables and redue-
tion to a polynomial equation of degree six in a single variable.
We sketeh the solution.

For any v € U(H), the surface 7 is by definition {x € Ch*; d(vz, p,)=
d(x, v,)}. For convenience, we denote a point x e C® — {0} and w(x) €
Cp* by the same letter x. Thus the preimage of ¥ in C® satisfies
(in view of {(vz, vz = {x, 2)):

(81) I<7$, po>| = I<x, po>|
where 7ve; = >} V€5,
T = X0 + 2,0, + X0, and p,

is selected so that (e, p,) = (e, P> = {es, Doy = h and {(p,, p,> < 0.
Thus (8.1) is equivalent to

|(v@), + (v), + (v2)s| = 2y + @, + 2]

X, .
Yy =—7"— - (t=1,23).
L, + Xy + X ( )

(8.2)

Then v, + v, + ¥, = 1 and ¥,, ¥, form a nonhomogeneous coordinate
system on CP? Thus (8.2) is equivalent to

lay, + oy, + ay,| =1, a, =7, + Y + Vu
or

(o, — a)y, + (@, — Ay, + o] =1

8.3
8.8) lay, + by, + ¢l =1.

The equation of a sphere with center at a point »p
S, = {x € Ch* d(x, p) = 7}

and radius 7 is given by
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PRI R/ )2
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[{z, p> [* = (cosh »)* {p, )<=, ) = k{x, 2y, k <0

3
|, + ., + axs|* =k > hied; .

%,5=1

Dividing both sides by |z, + x, + 2,|* and collecting terms, one gets

8.4) 2Re (9.%: + 95Y, + 0¥, Y.) + Y Y, + 9Y:Y, + g = 0

where g¢,, g,, g5 are real.
Given two distinct surfaces of type (8.3):

‘a1y1 + b1y2 + 61[ =1

8.5)
}a2y1 + by, + 02} =1.
Set
1= WY, b1 2
(8.5) U= GOy

v, = @Y + by, .

If v, = ¢w,, then (8.5) is equivalent to |v, + ¢,| = 1, |v, + ¢)/e| =
1/|¢|, and these can be solved in the v,-plane to give 2 solutions for
v,; only one solution is in Ch® by Lemma 3.4.1. The solution of a
system of 3 equations of type (8.3) with a fourth of type (8.3) or
(8.4) then reduces to intersecting these surfaces with the C-line
v, = constant. The problem reduces to solving a quadratic equation
in one real variable. Suppose therefore that », and v, are independ-
ent. Then (8.5) is equivalent to

(8.6) [v| =1, I”zlzl-

Expressing a third equation of type (8.3) in terms of v, v,
yields

[@gv, + 0w, + ¢ = 1.
Squaring both sides, we get using (8.6)
(8.7 2Re v,(byv, + ¢;) + dv, + e =0

with e real.
Thus we need only solve the system

['”xl =1

v, =1
(0,7, + €,) + 70w, + ¢) + dw, +dF, +e, =0
0,(b,7, + &) + 0,0y, + &) + dyw, + d,7, + e, = 0
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with e, e, real.
Elimination of 7, from these last two equations® yields

»(Gw, — G, +G) — Fv, — Fw, — Fg, — F, =0,

and solving for v,

_Fv+ Fo, + Fyo, + F,
le?_ - G1772 + Gs '

(8.8) (4

Since |v,] = 1, we get
\Fw; + Fo, + Fo, + F,| = |Gw, — G7, + G, .
Squaring both sides yields an equation
2Re (P, + P,v; + Pw,) + P, =0

with P, real. Multiplying the above equation by 2Re (P} + P +
P, + P,, one obtains an equation of the form

(8.9) 2Re (@) + @) + Qv + -+ + Qw, + @) =0
with Q,eR for 1 =1, ---,7. Set
v, =%+ 1w .
Since |v,] = 1, Rev" is a polynomial in z and thus (8.8) becomes
(8.10) Rz + R2 + Rz* + Rz2*+ Rz*+ Rz + R, =0

with R, real, 1 =1, ---, 7.

One can use a packaged program to solve (8.9) to any desired
degree of accuracy for z. Thereafter one gets, in turn, w, v, v,
(from (8.8)), and ¥, ¥, (from (8.5)"). One admits only common solu-
tions which lie in #(V 7).

9., [I'(®) and its antomorphisms.

9.1. I'(p) and some of its elements.

Let I'(®) denote the group generated by C-reflections corresponding
to the diagram

2 The solution presented here is an improvement of the original solution. I am
indebted to Dr. Sidnie Feit for this solution.
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where the corresponding hermitian form H, is given by

1
(e, &) = (e, ey =<, 6)=— ———-@,
2sin -~

p

peC, |p| =1. Select p sothat 1/p + 1/p + 2/3>1,i.e., p < 6. Set
a = 1/(2sin/p),
V = Ce, + Ce, + Ce,
4 = det (e, e;)) ,7=12,3)
1 —ap —ap
=det|—-ap 1 —ap
—ap —ap 1
=1-3a*— @ + &°) .
Set @ = ¢ . Then 4 =1 — 8a®> — 2a®cos 3. Recalling that cos 30 =
4 cos*d — 3cosd, we find that for cos 4 = 1/2a,

4=1—3a — 2a3<4-—1——3-—1—>:0,

8a’ 20
4 < 0 if and only if cos19>i ;
2a

that is, cos @ > sinzw/p or |0| < /2 — w/p. Thus the hermitian form
H has signature (two -+, one —) only for p > 2. Therefore for
»=3,4,5 and

5 T T
arg (7)) < 3<—2— 7>
the group I'(p), which preserves the hermitian form H, is embedded
in U2, 1). Hereafter we impose these conditions on p and . We
write V(@) for the vector space V with H, as inner product; when
there is no ambiguity, we write V for V(o).
Set 7 =exp @V —1/p), R(x) =x + (1 — L){x, ee, (i =1,2, 3).
The C-reflection R, depends on @ and we sometimes write it as
R(p). Since (* — La = (x* — 1)i/(n — p~") = nt we find

N =P —NIP 1 0 0 1 0 0
0 0 1 0 o0 1 —MP —nip 7

RRE,=l—nip 7 — NP

0 —7p —7729‘32—77%'?’)
0 0 1
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773,59—)3_772 . 7)29)2 —7]452——7)3’5@

RRR, = | —nmp—0¢ 0 — NP
—7ip —7ip s
~ PP =PIP N+ )P 0 =P P =7+ 7 i)
(RR.R) = | =P+ +7'ip 99" P (=1+7P + 7if)
P NP AP 0 —7-71
7 =7 0 79— -7ip
(R.R.R))* = ( PN (=1+ 7P +7iP°) PP — 7P’ + P+ 7P
—Pripe =+’ 0 =P =i+ P
TP —n =Pt —nP(HP +1)
R.R.R.R, = | —7'¢* P 1) —7POP +1)
—7ip -

The characteristic polynomial of R R,R, is:
=N NP =My = (P + 1) + (1P =" — (i@ = )|+ 7
and its roots satisfy
N MiE] — M) — 70 = 0
which factors
W = 7P ) — 7P = 0

vielding as eigenvalues A = 7°t®° and the roots of N = 7*®’. Simi-
larly, the eigenvalues of R,R,R, satisfy

N = M7’ = M7i@’] — 7" = 0

this yields A = 7%i®’ and the roots of N = 7p*ip~*.
The eigenvalues of (R R,R,)? are therefore

(9.1.1) —17°0°, n*9°, i
and the eigenvalues of (R,R.R,)* are
(9.1.2) — ', VP, PPt .
We next compute the image of (RR,R,) — 7*9* X 1, where 1,
denotes the identity 3 x 3 matrix.
(9.1.3) (R.R.R) — 7tip*-1,
—pni 0 —Pnr-pNi
= (=pwp i+t 1 0 1 -eni
PNt 0 PYi-pi
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— i 2D 1

(2% :( 1 ) Vosy = ( _(7)77":) Vae = ( PN )
o7 1 —p7i
PN —pni 1

Vg1 = < 1 ) Visy = ( @777’ ) Vo = (_‘77777:) .
—oni 1 PN

v;;, 18 the normal in V(@) to the multiplicity-two eigenspace of
(R;R;R,)* where 1, j, k denotes a permutation of 1, 2, 3.

Set

(Vyggy Viag) = <-—957]’i61 + e + ?777:@3, - 95777:31 + e, + @77":33>

=3 - ;7{—77—[—@'5@—@v@)ﬂqﬁié—ffmi@)+¢77i(¢77z'¢+<7>)]

=3 — ' [ i@+ Ti—ni— P T
T T P i i g T 7]

=3

1 _[—i()—7)-2— @ — T 3p?
T =) 2= 7]

=1+ L @T+77)
=7 7
cos(gr— — 30>

(9.1.4) 14— - , 30 =argg®.

sin -~
p

<?)321, 1)321> =1+ _‘%———(53772 + @° 2)
N—79 7

cos <2% + 30)

(9.1.5) =1+ S
Db
We have
{Vygy Vyosy > 0 if and only if
@14 ~(F-L)<eme <s(f-L)
and

{Vyy, Vapy > 0 if and only if
(9.1.5) 3 3< - -
2 D
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Similar computation shows that the characteristic polynomial of
R.R.R,R, is
=N+ M7 + 7" — 7] = M7 — " — 9MP] + 7 =0
so that its eigenvalues are
(9.1.6) 1P, NP, —1° .
9.2. Awutomorphisms of I'(®).

Let J and J’ denote the linear maps of V onto itself given by:

J:xe + @8, + Tl — T,0, + X,0, + g8y

J'iwe, + Xy, + T8, —— X0y + X080, + Tae; .
Then J is an isometry of V(@) to V(e), and J' is an isometry of
Vip) to V(®) with J’' of order two. Since Hye, ¢,) = —ap =

Hf(ezy el) = Ha(elir 62)'
Define

3 3
KD a.e; > >, Te; .
=1 im1

Then £ is a semi-linear map of V(@) to V(®) which is an isometry
since,
H;;(/c(zl, x.8,), x(Zi xe) = H; O\ Tieq, >, Ti8,)
= ;,‘ z.x;Hz (e, e;)
= % xZ;H(e,, e;)
= H,3 w.e;, >, x:8;) -

Regarding the index as an integer modulo 3, we have

J(R(P)) = Riri(P)
J'(R(P)) = B,_(P)
E(R(P) = RBi(p) = B(P)™ 1=1,2,8.
Set a, = J'k. Then a, is a semi-linear isometry of V() to V(p)
with
st R(p) —— R,_,(p)! 1=1,23.
Set ay, = Ja,J ™, a, = J lad.
The group of isometries of V() generated by a,, and J is of
order 6 — these are the isometries which permute e, e, ¢;. (For

@ = 1, there is the additional isometry £.) The subgroup of linear
isometries is of order 3. All these isometries induce automorphisms
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of I'(p).
10. The region F(p).
10.1. A fundamential domain for I';;.

Set p, = e, + ¢, + e,. Then
<po; e1> = <p0y 62> = <po; e3> =1- a(@ + @) .

As in §3, we take as our model of hermitian hyperbolic space Ch?
the image in projective space CP? under the map z: V — {0} — CP?
of the negative cone

V-=1{2eV;<{z 2 <0} ( = the ball in C?

with metric

d(z,, z,) = cosh™ <%L—z}i%2’_j§>y

Since {(p,, Py = 31 — a(® + P)), (P, P,y < 0 for |arg @| < 7/2 — «/p.
We denote by p, also, the image of p, in Ch®>. For any @cr,
set

vt = {x e Ch*; d(x, p,) = d(vx, Do)}
7 = {x e Ch% d(x, Do) = d(vx, Do)} -

Set I';;={{R,;, R;}} (i#7;1, 7€, 2, 3)) where {{a, b}} denotes the group
generated by {a, b}. I',; is a finite group. Since [';; is irreducible
on Ce, + Ce,, Yp, *# D, if vel',;, v+ 1. Set
F iy = ﬂ,.“/+ .
YR
Then F;; is a fundamental domain for I';;. Set ¢; ={ze V; (2, ¢)>=
0} and denote also by e the subset w(e;! N V") of Ch* i =1, 2, 3.
Then e is the fixed point set of R, whether in V or in Ch2.
Set p,; = w(ei Nel). The equation of ¢} is given by:

e 0 = <{xe, + 20, + Ts85, €,) = X, — APT, — AP,

e;: 0 = (xe, + T0, + X0, €,) = —QAPX, + T, — AP,
e : 0 = (xe, + 2.0, + X408, €;) = —aPx, — aPx, + x,
(10.1.1) ap —ap
ap 1 ap + @@ ap + a’p’
Pt = o Tl T i

—ap 1
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Thus p,, = w(pal + ad’), pal + ap?), 1 - a?). Set & = pa(l + ad®).
Then (P, Py = 1 — a4 <0, pp, =7, &, 1 — a), p,; = w(l—0a? &, §),
vy = 7w, 1 — 2. We also write p, = (5, &, 1 — a® and similarly
for ., Du.

For any ve /', the equation of ¥ is given by

[<x, pop | = [{vax, P |

since {x, ) = {vx, vx). Since R p, = p,, = R,p., we have vp, = p,
for all yel', and thus p,€7¥ for all vel',. F, is a curvilinear
solid angle with apex at »,. We must know the 3-faces of F,. In
principle, the 3-faces of F, in some neighborhood of the apex p,
can be computed by hand thanks to Lemma 3.2.9. For by that
lemma, the tangent planes to each ¥ at p, are distinet for all ve
F,. Hence the fundamental domain F, for /', acting on the
tangent space to Ch® at p,, determines the faces of F,, near p,..
The computation of the faces of F', involves the solution of a system
of 24(p/6 — p)* linear inequalities (p = 3, 4, 5) and in principal this
can be done by hand.
For any » > 0, set

S, ={zeCh’ d=, p.) = 1}.

Then S, is stable under /,. A fundamental domain F% for /', on
S. can be calculated (for any fixed @) via computer.

In Figure 1, we exhibit the domain F\i with » = d(p,,, p,). The
faces of F* correspond to the 10 elements

Rt R (BB, (R.R)S, (RE.R)*

of the finite group /'.. In Figures 2, 3, and 4, we show the 3-faces

of F, which lie on the surfaces Rl, Rﬁ%% and RR,R,. The defini-
tion of the vertices s,;, t,, are given in §11.

From the remark following Theorem 6.3.2, we know that F,,
satisfies condition

(CD1): vOTNF) =70 Fy,

for all ve{RF, R, (RR,)*, (R,R)*, (R.R,R)*} and also condition
(CD2). This last condition yields for each two faces of F,. an
identity eorresponding to the circuit F\v,F, v,7.F, --- where

e = ﬂ?o ﬂ '?J»-l ﬁ Fl:}, ’\/;](e) == /\/)1 ﬂ F?é ! ﬂ Fl‘z; 72‘17]”[6 = /?2 m ’?I_ﬁ—l m FIZy ]
and v,%.---7.F.. N F., has a nonempty interior; namely

VYot Y = 1.
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FicURE 10.1. The intersection F'¥ of F; with a 3-sphere S, centered at pj;. of
radius r=d(piz, Do).

FIGURE 10.2. FpNnR,

N\
FIGURE 10.3. Fy 2N (RiRy)
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From Figure 1, one can read off the elements of E,(F,,) which
contain p,; they correspond to the twenty edges of F,,NS,. For
any v such that ¥ N F, € E\(F,), set

*Y¥=9NF;.

Then along with the knowledge of E\(F),) one can determine the
circuits around each ¢ ¢ E,(F,) and the corresponding identity. For
*R; N *R;*, the circuit yields the identity R? =1 (¢ =1, 2). The
remaining eighteen 2-faces of F', occur in circuits of three terms
each

*R, N *(R.R)
(Rlei/' \R1 (Rle)_lR2R1 =1

*(R2Rl)—l n *Ré—l(_'g?_ *RZ n *R-l—l

*R, N *(R.R,)
(Rle)—l/ \Rz (RtRz)_lRle =1

(RR)™ N VR R0 R

*R, N *(R.R,R,)
(R1R2R1)_1/' \R1 (R1R2R1)_1R1R2R1 =1

“(RRR)™ N *BR) PR R R, 0 *R

*R, N *(R,\R,R,)
(R1R2R1)—1/' N\ R: (RR,R)"'R,R.R, = 1

“RRR)™ N (BB B +(R,R) 0 *R;
“(R,R,) ( *(R.R,R,)
(R1R2R1)/"1/‘ \Rsz (RLRZRl)_RZRIR?. =1
HRRR)™ O *Ry %R, 0 *(RR)™
“(R,R) ( *(R.R,R,)
(R1R2R1)_1/‘ \RzR1 (R1R2R1)—1R1R2R1 = 1 .

*(RR,R)™ N *Ri* < *R, ( *(R,R.)"

REMARK. In §13, we shall show the eighteen mappings of
(10.1.2) can be verified easily. Thus these circuits yield the pres-
entation

R =1=R? RR,R, = R,R,R,
of the finite group I,,.
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The isometry a,, corresponding to the automorphism R, — R;?,
R,— R' of I', permutes the elements of E.(F,) sending *(R.R, to
*(R'RY="(R,R,)™", *(R,R,) to *(R,;R)™, and *(RE,R.R,) to *(R,R,R)™".

The isometry a,, sends E(F,) to E,(F,) and thus we get two
additional isometries

*RBy N *(BRR)) = *(BR,R)™ N (BB, = *(RuRy) N*(RELR))

10.1.3
( : *R, N *(BR.R) = *(RR.R)™ N *(BR) ™ =*(RoR) N *(RRR,)

10.2. The domain F(), |arg ¢| < w/2 — /p.
We continue the preceding notation. Set

F(@)zFlszzamFal-

When there is no ambiguity, we write F' for F(p). In §12, we
shall determine certain vertices of F. For the present we note
that for all @ with |arg@| < #/2 — z/p, F is stable under the
isometries J and {a,;; (¢ # 4,14, 7 =1, 2, 3)} and that J’ and K' are
isometries of F(®) to F(®). We denote by Isom F the group of six
isometries of V(@) generated by J and a,,.

It will turn out that the combinatorial scheme of F' and its
faces remains unchanged for |arg (9%)| < #/2 — #/p, is unbounded for
arg (9*) = r/2 — x/p, and becomes bounded, and combinatorially con-
stant for 1/3(x/2 — n/p) < |arg | < ®/2 — 7/2; but it is combinator-
ially different than the case |(arg (#°)| < 7/2 — &/p.

11. 2-faces of F(®) not containing an apex.

For any permutation (4, 7, k) of (1, 2, 8), set
A\ A\
L, = (B:R;))7 N R;R,
and using indices modulo 8
Ij = Ij~1,f,j+1
Ii = Iins,j,-1 -

LEMMA 11.1. I, is the common slice of (B.R,)" and ER.

Proof. Let J and J’ denote the isometries defined in §9.2
Then clearly

JI,=1LJ I, =1, .
Moreover, J'R,(®) = R,_,(®) so that
(11-1) J,Ius(@) = 321(@) .



ON A REMARKABLE CLASS OF POLYHEDRA 223

Consequently, it suffices to prove that I, is a common slice of
N A\
(R.R,)™* and R,R,, We have

1 0 0 7 i _igv)

(R\R,)™" = R;'R;* = (777;90 N: Nip 0 1 0
0 0 1 0 0 1
7t NP 71
—(77%'73 0 —7'P+7ip
0 0 1
1 0 0 1 0 0
R.R, = | —nip 7* ——m’é‘)) < 0 1 0
0 0 1 —ip —MP N
1 0 0

— _vigp_)?zq—)z 0 _7]3@5
—nip  —7ip 7
In the homogeneous coordinates dual to e, e, ¢;, we get the equa-
tions

(BR)™: (T + DYip)a, + i, + (L + Tip — 79 + 7iP)a| = 1
R.Ry: |(1 — 9ip — 9@ — nip)a, — pipe, + (7 — pPid)a,| = 1
multiplying the equation of (1‘51\1‘32)‘1 by —7%® it takes the form
(RB)™ |(L — 9id)e, + 5, + (0 — 7% + 1ip + 7),| = 1
or
|1 — 9P — P, + (9 — 79D + PiP)xs + NP (w + @ + @) = 1.
Similarly
BRy (L — 50 — '3, + (1 — 1745 + i), — i, + @, + @) = 1.
Therefore, set

(L= 9iF — 7P, + O — i + pipa,
T+ 2+

to obtain as equations

(BR) |2 + 75| =1

11.2 ~
( ) R,R;: |z —nmp|=1.

These equations have 2 solutions (see figure):



224 G. D. MOSTOW

nie

o

2-2
n e

FiGure 11.1
2 =0 and z = Pip — PP .
We note that 1 — 9ip — 9’®* = —0iP(n* — 9*P + 7ip) and thus

2= — %P + ,L-q,\(——ﬁ'i(ﬁxl—l—xs) )
@ =7 LS e

The above two solutions yield two possibilities for the preimage of
I, and by Lemma 3.4.1, exactly one of two possibilities.

Case a: —7ipx, + 2, =0

(11.32) Case b: —7ipz; + 2, = — 7]’5‘P3: TP (x, + 2, + ) -
7 — 7P + 9ip

Case b is equivalent to
A — 7P — PP, + (O — PP + NiP)rs = (PP — PPN @ + @, + @)
or
1 — 9ip — piP)x, — (ip — PP)x, + (P — 9P + P2, = 0
or

1 — e — piP)x;, — Niel + PiP’)x,

(11.36) =
+ 7L — 9iP + P, =0 .

Applying J, the equation for the preimage of I; is exactly one of
the two possibilities

(11.8a) Case a: —7ipx, + 2, =0
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(11.3b)" Case b: (1 — pip)x, — NP1 — NiP* )z, + P*A — Pip)x, = 0 .

The next lemma determines the values of @ for which Cases a
and b apply.

LEMMA 11.2. Let v;; be the point in V defined in §9.1.
(, J, k) being a permutation of (1,2, 3)

(1) The equation of w'(l,) is given by —7NiPx, + 2, =0 and
Vs 18 the normal in V to =1, for

T _ % n<3(E_T).
(E ;><arg(¢)<3(2 p>7
and 7w (I,) is given by (11.3b) for —38(w/2 — w/p) < arg ¢* < —(w/2—
/D).

(2) The equation of m*(I}) is given by =z, — Nipx, =0 and
Ve 18 the mormal im V to w (1)) for

~3(Z-E)<arg(@) <L - Z;
2 p 2 p

and w(1,) is given by (11.8b)" for n/2 — w/p < arg @* < 3(n/2 — 7/p).

Proof. Consider the orthogonal subspace v, to v, in V with
respect to the inner product H. Then z.e + x,e, + x¢;, is in vy, if
and only if

(w18, + 40, + Xses, —7]7:7—731 + e, + 77"'¢> =0

z,[7ip — a(p — PiP*] + @[l — a(P? — )] + @[ —9iP — a(Pip* + $]=0.
Replace a by /(p — 7); we find

o[P(—7% — 9P°] + x[P(—7% + NP°] =0 .
Note that (7% + 7°) = 7i1®@-P(—n* + N®°). Hence we get
Vit —NiPx, + 3 =0 .

By (9.1.4), (s, vy >0 for —(z/2 — w/p) < arg ¢* < 3(x/2 — «/p).
Hence for such @, v, N V-~ is not empty and w(vi; N V) is a C-line
in Ch®. Its equation is precisely that of I,. Hence I, = w(vi. N V).

For the remaining values of @, I, is given by (11.3a). This proves
(1). (2) follows from (1) by applying the isometry J': V(p) — V(®).

REMARK 1. In Case a, the preimage of I, in ¥V~ has an equa-
tion independent of x,. It follows at once that I, is stable under
the C-reflection R,:x— x + (* — 1){=, e,ye,, since x,(e,) = x;(e;) = 0.
Clearly I, is not pointwise fixed under R,. Being stable under R,
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it must be orthogonal to z(e;), the fixed point set of R,. From
this it follows that the C-reflection in the C-line I, commutes with
R,. But by (9.1.3), (R.R.R,)* multiplies each element of vj, by the
scalar 7*9®’. Thus I, is the fixed point set of (R,R,R,)? Conse-
quently R, commutes with (R,R,R,)* in PU (H) the projective unitary
group of H. We shall prove in §14 that they commute in U (H).

REMARK 2. In the projective space (V — {0})/C*, the intersection

of the two 38-surfaces containing (R/J?z)‘1 and J‘i'/z\R3 meet in two
complex lines, one meeting the ball V-/C* and one not. As arg®®
passes through the value —(7/2 — w/p), we get i — 7’¢* = 0 and
the two complex lines coincide. The intersection of I, with the
boundary of the ball is thus a single point of tangency for &°=71.

12. The vertices Dj, S;j, Sijy tore

In this and the next two sections, we verify that a region Q2(p)
related to the region F(@) satisfies the codimension-1 condition (CD1).
In order to achieve this, we need information about certain k-faces
of F(p) for £k =0,1,2, 3. The apexes p;, 1 # j<{l, 2,3}, and the
k-faces containing an apex have been discussed in §10. It remains
to discuss those k-faces which contain no apex. We do this in stages.

First we define points s,;, §;;, tx lying on the intersection of
four spinal surfaces containing 3-faces of F(@). In §13, we calculate
the images of these points under v for the ¥ which contain them.
In §14.3, we define the region 2(¢) and in §14.4 we verify the
(CD1) condition for all its 3-faces.

The shape of F(®) undergoes a change when arg (®°) increases
from values less than 7/2 — z/p to greater values. Accordingly, we
ultimately consider two cases.

Case 1. |arg (Y| < /2 — n/p

Case 2. 7w/2 — 7w/p < |arg ¢*| < 3(w/2 — 7/D).

In point of fact, parts of F(®) remain combinatorially unchanged
for —3(w/2 — w/p) < arg * < w/2 — «/p, while other parts remain
unchanged for arg @—* in the above range. Define for any 4 modulo
3, and for any @

(12.1) Sprr = LN I, 8= LN I, .
By definition therefore
A~ ~ A~ A~
s = (BR)™7' N R.R, N (BR,)™7 N BLR, .

The intersection on the right hand side is symmetric under inter-
change of indices 1 and 2. Thus we can define s, = s, without
contradiction, taking care not to confuse s, with
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~ PN A\ P A\
So1 = (R2R1)—1 n Rle N (Rle)_l n RzRa .
More generally, set
A\ S 2\ S
8:;; = R:R; N R;R, N (BeR,)™ N (R E)™
N A\ A\ N\
§ii = (RiRJ’)—l N (RjRi)—l N RiRk N Rij .
Also, define for any distinct 4, & modulo 3,

(12.2) tik = I,;jk n e:’"L .

LEMMA 12.1. Assume |arg (9°)| < w/2 — w/p. Then

81, = w(Nipe, + NiPe, + e;)

8y = w(—nipe, — NiPe, + e,)

lyy = ﬂ(““(@j&(—@)el + ‘—l_(aez + a(P)e,)
by = w(@a(P)a(Ple, + a(Ple, + a(Pe,)

where a = 1/2sin z/p), a(p) = P(L — pip®). Moreover, all the above
points are im the ball w(V ).

Proof. By §9.2, k(R(p)) = R,(®»)* for 41=1,2 3. Hence
£(s,(®)) = 5.(P) and k(t(P)) = t,(®). Thus it suffices to verify the
lemma for s, and ¢,. By definition s, = I, N I;. By Lemma 11.2,

the equation of the preimage of I,(®) is:
L(p): x,— 7Pz, =0 .
Applying J-!, we get as the equation for I;:
(12.3) L(p): @, — NiPx, =0 .
By (11.2), IJ(p) = J'I,(®). Hence the equation of the preimage of
L(p) is given by
L(p): x, — Nipx, =0 .
Hence a preimage of s,(®) is given by
x, = NiP, x, = Nip, 2, = 1,

verifying the assertion for s,,.
As for t,, by definition

te = Ly, N .
The equation of I,,, is given by (12.1.1):

By (10.1.1), the equation for e is
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el x, — apx, — apx, = 0 .
Solving these two equations simultaneously yields
T (ts) = :(@@(NiP°* + 1), 7ip, 1)
= 2(a(2 + 7iP° — nie’, (L + 7iP°), (1 — 7ip°)
= z(aaa, @, a)
where a = a(p) = $(1 — 9i9p°) and x e C — {0}.
It remains only to verify that the points are in the ball z(V ).

NOTATION. For convenience, we shall denote by s,; and §,,
vectors in V. For example, we write

8, = Nipe, + NiPe, + e, 8, = —NiPe, — NiPe, + e,

and similarly we sometimes denote by ¢, the vector in V represent-
ing it as in the formula of Lemma 12.1. When there is risk of
confusion, we write s;; (in the ball) to indicate z(s;;).

For the vector s,

(S Su) = 3 — in [Fip(—nip-@ + P) + Tid(—0i®-F + P)

+ (=77 — 7ip-P)]
=3 — __[-2i(n — 7) + 7 +
—7 n—7

=1- L—[¢3 + @
n—7 ]

(12.4) —1._ cosarg®’
sin-T
D
Thus (s, 8,y <0 if and only if |arg ¢*|<zw/2—x/p. Since k(sp(P))=
5.(®), we see that (5, §,> = (s, s,y and thus §,en(V~-) for
|arg 9*| < w/2 — «/p.
Before verifying that ¢,€ V-, we note the identity

@P + @p = P — Wip* — 1) + P + 27iF — 7°F)
= =271+ 201 + (1 — P)P* + L — 9P’ .
Hence
1
n—7
= 2 — Nip* + NP
= ad .

a(@'p + ap) =

(2”;’7 + 97 — PP* + N(n — 7)P°)
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Then
{ts, tsy = {ade, + @e, + ae,, aade, + Ge, + ae,)
= aadlaed — apa — apa]
+ ala — a’a@®p — aap]
+ al@ — a’adp — aadP]
= 200 — &’ad — a(a’P + a*p)
= qa(l — a’ad) + ad — a(a’*® + a*p)
= aa(l — a’ad) .

Thus {ty, t,y <0 if and only if 1 — a?a@ < 0; that is, a™® < ad.
This is equivalent to

(@) < (1 — 9ip")(L + TFig)

2 — =<2 — mP + NP
—2cos—g—ﬂ— < 2sin <i+3¢9>, 0 = arg @
D VY

— sin <—7E— — 2i> < sin (L + 30)
2 D

VY
T T
(5 7) <30
Thus t,e V- for —(z/2 — w/p) < arg 9* < 3(xw/2 — =n/p). Applying
tu(P) = £(t(P)), we find that ¢,€ V- for —3(n/2 — n/p) < arg @* <
/2 — w/p.

The next lemma will allow us to determine how the cell complex
F(®) changes as arg @° attains the values 7/2 — w/p.

LEMMA 12.2. For |arg (%) | < 7/2 — w/p, and for any integer 1
modulo 3,
(i) Siit1 = 771/_—1¢97; + 771/:959@'-%1 + e,
Sy, = —771/__1¢ei - 771/35614—1 + e,
L = a(Ple;, + a(Ple;—, + aa(P)a(P)e,
tiirn = a(Ple; + a(Ple;r, + aa(P)a(Pe;_,
where o = (2sin/p)~", a(@) = A — 7i9%), and @(P) = a(P).
(i) si,00 = 850 f and only if arg @* = —(n/2 — «/p)
Si,it1 = Si_r,n 4f and only if arg @* = /2 — w/p
(iii) 85041 = timr,its of and only if arg ¢* = —(%/2 — 7[p)
Sit1,1 = tin,im of and only if arg ¢* = x/2 — «/p.

Proof. By Lemma 12.2

513 = 77'.(_777:?_)61 + 62 - W@Qes)
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and s, = w(Pipe, + NiPe, + e,) = w(N’e, + e, — Nipe;). Thus s, = 3§,
if and only if ¢* = —»i. By applying J and J~', we get the first
assertion of (i), and by applying £ one gets the second.

As for the remaining values of @, the next lemma gives an
explicit formula for the points s,;, §;;, and £, in terms of the vector
v, of V listed in §9.1.

LEMMA 12.3. Assume that 7w/2 — w/p < |arg ¢*| < 3(7/2 — 7/p).
Then for any permutation ijk of (1, 2, 3),

5, = {/Ukiy' if (i, Vs <0
Viji 1L (Opjey Viiy <0
~ {vijk if Vs, Ve <0
v Vi I (W, vy <0
£, = {Uw‘k it {wije, Vi <0
by the formula (12.2) if (v, v.;» > 0 .
That is,

Si = 813 = gy = Uy

A 5 o5 3)

Sy = 83 = oy = Vass

for 3(—727:«——7;—->>arg90323<%——7—;—>.

Proof. The computation of the indicated points in the indicated
range for @ proceeds from equation (11.3.b) for I;, and the veri-
fication entails straightforward solutions of two linear equations.
The condition on @ that v, € V- can be read off (9.1.4) and (9.1.5).

REMARK 1. For |arge|=7n/2 — n/p, §,; = s, if and only if
Wi, Vigiy = 0.

REMARK 2. As a consequence of the given relations in the
group I, we will see in §14 that (v, vy;) = 0 = Vi, V- This
can be verified directly of course. Since H has signature (two posi-
tive, one negative) (v, vy <0 implies Vi, V0> = Vuj, Vaiy > 0.
If (v, vy = 0, then v;;, € Cvy,; + Cvjy.

13. Towards verification of (CD1): images of points.

LEMMA 13.1. For all distinet 1, 5 and all values of ® with
larg @*| < 3(x/2 — =/p)



ON A REMARKABLE CLASS OF POLYHEDRA 231
n(RiSij) = 7(8y) .

Proof. By symmetry, it suffices to prove that
E(RISH) = 7[(513) .

If |arg @*| < n/2—7x/p, then by Lemma 12.1, s, = Jipe, + 71iPe, +
e, and the components of R,s,, are given by

N —NiP —NiP NP P — 0P
0 1 0 ) (77@ = rﬁq‘a) = 7ig| 1
0 0 1 1 1 NP

so that #(R.s,) = 7(8,).

If 7/2 — n/p < arg ' < 3(%/2 — ©/p), then by Lemma 12.3, s, =
Vyo, SINCE Vigy Vso) = Vs, Vorsy < 0. Thus R;s,, is given by (ef. §9.1
for v, and v,,).

n' =P —NiP NiPp —NP* — NP
0 1 0 ) 1 ): 1 ):—mcp 7ifp )
0 0 1 — NP — 7P 1

Thus RS, = —3iPv, = —7iPs,; and again 7w(Rs,) = n(5,). The
result for —3(7/2 — w/p) < arg ¥* < w/2 — w/p can be deduced from
the above by applying the isometry J': V(@) — V(P).

LEMMA 13.2. For all distinet 1, j and for all @ with |arg ¢*| <
3(n/2 — =[p)
T(R,85) = T(s,) -

Proof. It suffices to prove the result for R.5,. If |arg @*| <
T/2 — w/p, the computation is

1 0 0 —NiP — 7P Nip
0 1 0 ) —7iP | = —nip > = ——772<77fi</3
—PP —NiP 1 — 7 1

If 7/2 — n/p < arg @* < 3(w/2 — «/p), then by Lemma 12.3, §, = v,,
and s, = ¥,,. The computation is (cf. §9.1).

1 0 0\ / 1 1 i@ |

( 0 1 O) (—77@'(;7 =|—-7np |=—mp 1 )
—Nip —7iP 7 7P /A — NP

For the remaining values of @, the result can be deduced from the

foregoing by means of the isometry J': V(@) - V(®).
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The information in Lemmas 13.1 and 13.2 yields the hexagonal
diagram

(13.1)

=
Sat ;1 Say

LEMMA 13.3. (i) For each index i modulo 3,

RRiy, =J on I if 8,00 # 810y
Ry R, =J " on I/, if siir # S 1im

(ii) (RR;R,)? fixes each point of L, if
WVijuy Viey > 0

(all permutations (i, j, k) of (1,2, 3) in (i) and (iii)).

Proof. (i) By symmetry, it suffices to consider the case ¢ = 1.
Then by definition (12.1),

Sz = I1nI2’, S, =INI.

By the hypothesis s, # §,;, I, is the unique C-line containing s,, and
§,;. From the hexagonal diagram,

R.R,3,, = 8y, R\R,8,;, = §,, .

Hence R.R,I, = I,, the unique C-line containing s, and §,. Since
the restrictions of R,R, and J to I, are isometries, which coincide
on s, and §,;, the isometry J'R,R, fixes these two points and there-
fore every point of the geodesic line joining them, and therefore
every point of the C-line joining them. It follows that R,R, and J
coincide on I,. That R,R, =J ' on I] comes from applying the
complex conjugation isometry k,: V(@) — V(p):

£(8:(P)) = %.(P), K(8:5(P)) = 83,(P)
E(R\(P)) = RI{(P), k(R(P)) = R {(P)
£(1(P) = L/(®) .
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At o, R R,s,,=s,;, R.R,5,=5,. Applying £, we get at p: B;'R;'S,, =
Sy, RR;'sy = s,,. Hence R,RS;, = §,, R,R.s,, = s,,. It follows that
R.R, coincides with J~* on I]. If (v, v > 0 (resp. (Vay, vy > 0),
we can apply Remark 1 following Lemma 12.3. The information in
(i) then yields the triangular diagrams

I, I
(13.2) RsRl/ \QRZ R1R/3 / \z\e\le
I B RsI I  Rom I

On [, RR,-R,R,-R,, = J° = identity, so that (R .R.R,)? fixes each
point of I, if (v, vy > 0. Similarly (R,R.R,)* fixes each point of
I if (s, v > 0.

(iii) follows at once from the hexagonal diagram.

REMARK. Assertion (ii) of Lemma 13.3 has been pointed out
before in Remark 1 following Lemma 11.2; it comes from the fact
that »,;, is the eigenvector of (R,R;R,)* corresponding to the eigen-
value of multiplicity 1. Thus v#4, N V-~ is not empty if and only
if vy, Vi > 0.

Consequences in another direction of the information in the
hexagonal diagram are given in the next lemma.

LemMMA 13.4. For any distinct , j from {1, 2, 3},

A~

= R,N R, N R,R; mRRnRRRmRklm(RhR) n(RkR)l
R‘leﬂ(RR)l (R;R)~" N (R.R,R)"NR, nRiRmRRh
m_}% nR‘lmRR N (RR)™ N R;R.R; N (R,RR)™.

Proof. The definition of the above points are given in (12.1)
and (12.2), explicit formulae for them being given in Lemmas 12.2
and 12.3.

It is easy to verify that the number |<{p,, s;;>| is invariant under
the cyclic permutation automorphism J and also under the isometries
J’ and £ of V(@) to V(@) and hence under the group Isom F of
the six isometries of V(@) to V(@) generated by J and a,, (ef. §10.2).
Under Isom F, the six points {s;;, §;;;7 # 1} are permuted transi-
tively and the point p, is fixed. Hence for any permutation (ijk)
of (1, 2, 3),

a(p,, 8:7) = Aoy Sur) -

By Lemma 13.1, B;s;; = §,;, (in the ball). Hence d(5,;, p,)=d(s;, po)—
d(R;s;;, v,). By definition therefore, s”eR By symmetry s,; eR
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The proof sijeﬁ,:l is similar. Also
R;Rs; = RS, = s,
so that d(s.;, Do) = d(su, 1) = d(R;Ris,;, p,). Hence s, e RiR,. Also
R.R;R;s,;; = R(sy;) = Ri(sy) = 845
so that d(sy, p) = d., py) = d(RR;R:s.;, p). Hence s, e ERR,.
The remaining assertions for s;; and §,; result from applying Isom

F to the above results:
As for t,,, by definition,

tw =Ly Ne; = R0 By 0 RR N (BLR,) .
Since R; fixes each point of e}, R;R,R;(t,,) = R;iRty. If (v, Vi >

0, then I;, is given by (11.8a) and Lemma 13.3 (i) yields R;R.t; =
tii' ThuS

A(B; R Rty p) = d(tji, Do) = i, Do)
and ¢, eR,-R/,ij. On the other hand, if (v;3, v,y <0, then ¢, =
Vi = S;, and :
RiRt, = R;R.8;;, = R;8; = Sip = Vjps = Ljs «
Thus by the same argument, ¢,, € Rjék\Rj is this case too. That

tzke(RjI?iRj)‘l can be deduced from the foregoing by applying the
isometry a;,. The proof of Lemma 13.4 is now complete.

LEMMA 13.5. For all permutation i3k of (1,2, 3) and for all
® with |arg 9*| < 3(x/2 — w/p)

R,;Rit,, = t;; (in the ball) .
Proof. This was demonstrated in the proof of Lemma 13.4.

14. Some identities in [, some lines in F, and (CD1) for
2p).

14.1. Relations wn I'. We mentioned in Remark 2 following
Lemma 12.3 that (v, v;uy = 0 = {v,, vy;» for all permutations
(25k) of (1,2,3). The group relations proved in the next lemma
explain these orthogonality relations and the relation {¢;, v;;> = 0
as well; they arise from the relation R,R;R;, = R;R,R;.

LEMMA 14.1. For any permutation (ijk) of (1, 2, 8) and for all @,
(i) Ry(R.E;R.) = (E.R;R,)R;.
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(ii) Let a = R,R;R.R;,,b = Rj'R,R;R,, c = R;'R,R.R; and " =
{{a, b}}, the subgroup of I generated by {a, b}. Then [ is abelian.

(iil) (R,R;R,)* and (R,R,R;) commute.

(iv) (RR,R,)* and (R;R;R,)’ commute.

(v) &= (R.E;R,)(R,E.R;)".

PTOOf. RjR,R]'RleRij = RiRjRIRkR‘,Rij
= RiRijRiRkRJ‘Rk
- RleRhRiRijRj.

This proves (i).
By (i) ab = (R,R;R,)* = ba. This proves (ii).

ca = Ri'R.R,R;R.R;R,R,
= Rk_lRIRkRJRIRkR_/,R/.
= (B.R.R))’, by (i).

Moreover b~'a = R,'R;‘R;'R;,R.R;R.R; = R,'R;'R;'- R.R,R.R.R, =
R;'R.R.R; = ¢c. Hence {{a, b}} = {a, ¢} and (R.R.R;)*c”. This and
(i) imply (iii). Applying the isomorphism k:/(®)— I'(p) to the
relation (iii) in [(®) yields that (R;'R;'R;')* and (R7'R;'R;")* com-
mute in I"(¢). This implies (iv).

We have from above

(R;R;R)(RR.R;) = abca = ab(db~'a)a = a® .

This proves (iii).
14.2. Geodesic lines.

LEMMA 14.2.1. Assume —(w/2 — xw/p) <arg P’ < 3(xw/2 — x/p).
For all i, R R
(1) I,NR, and I, R' are geodesic lines.

S S . .
(ii) e N RR,., and e, N (R,_ . R,)™" are geodesic lines.

Proof. I, is a slice of R/;R.L-,H by Lemma 11.1. Clearly e; is a
slice of R,. We have e/ is orthogonal to I, at ¢,_,,.,; for by Lemma
11.2 (i), v I8 the normal to I,, and {e,, v,,,> = 0 as is easily verified.
Hence I, N R, is a geodesic line by Lemma 3.2.5. The same argu-

N
ment applies to I, N R;'. This proves (i).

Since the C-line e; is orthogonal to the slice I, = (R/;]Rl)“' N

R.R,.,, (i) also follows from Lemma 3.2.5.

REMARK 1. For —3(n/2 — n/p) < arg @* < ©/2 — n/p, we get by
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the map J': V@) — V(p), t}AJat:

(i) I'n R and I/ N R;* are geodesic lines.

(ii)Y e nN RiRi _,and I/ N (Rm )~ are geodesic lines.
Assertions (ii) and (ii)’ are in fact valid for |arg @*| < 8(%/2 — =/p).

For el N R/jw?g is real analytic curve in the ball depending analytically
on the parameter ¢ throughout the interval |arg #*| < 3(x/2 — 7/p).
Since it is a geodesic line on an open subinterval of @, and since
the condition of being a geodesic line is real analytic (with respect
to standard nonhomogeneous coordinates centered at p,, it amounts
to being a real line), it follows that e¢f N R.R, is a geodesic line for
all @ with |arg ¢*| < 3(%/2 — 7/p).

FIGURE 14.1. A schematic drawing of 4,; = I;;, N F(®) for
larg @*| < /2 — w/p. As @*— 7i, 4, approaches the point at oo.
For arg o’ > /2 — w/p, 4, becomes a single (finite) point in the
ball so long as arg @° < 3(z/2 — w/p). For —3(x/2 — n/p) < arg P* <
— (/2 — 7|p), 4. is a single point.

LEMMA 14.2.2. Assume vy, iy > 0, then
(i) RkR R.NIL; = R 0 L
(ii) (RiR R)*N I = R“ N L

for all permutation (2, 3, k) of (1, 2, 3).
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Proof. Set l; = ﬁ’j N I;;z. Then for any x,€l,, set x, = Jx,, x,=
J*x,. Then d(x, p,) = d(x, p,) = d(x;, p,) since Jp, = p,. By Lemma
13.3, J=R,R;, on I,. Henge d(R.R,R.x, p,) = d(R,R,R,x,, D) =
d(Ryx,, p,) = d(%;, p,) since x, € R,. Hence d(R,R,Rx,p,) = d(x,, p,). It
follows that I,c R.R,R. NI, By Lemma 3.2.7, RRR, NI, is a
circular are. Consequently I, = Rﬁle N I,,. By symmetry R,RkRj N
L, = R;NI;. Since R;R.R; = R.R;R,, (i) follows. (ii) follows from
(i) by applying the automorphism a.

LEMMA 14.2.3. For all perm'zﬁtations (ijk) of (123) and for all
@ with |arg ¢*| < 3(w/2 — n/p), R;R,R; N e} is a geodesic line.

Proof. Assume first that (v, v, > 0. By Lemmas 14.2 and
14.1, R,-R,,R,- N I;; is a geodesic line [; which contains ¢,,. By Lemma
3.2.7. (iv) l; and the spine of R,fB,,R,- span a geodesic R-2-plane G.
The C-line ¢} is orthogonal to I,; at t,. By Lemma 3.2.8, Rjﬁ,cR,-n
e; is the geodesic line, for it coincides with G N ef.

By the analytic continuation argument of Remark 1 following
Lemma 14.2, Rjﬁ,,R,- Ne} is a geodesic line for all @ with |arg @*| <
(/2 — w[p).

LEMMA 14.2.4. For all permutations (ijk) of (123) and for all
P with |arg ¢*| < 8(n/2 — x/p),

(1) I?;‘ NI is a geodesic line.

(i) B0 Ly = B0 L.

Proof. By Lemma 14.2.1(i), RN I, is a geodesic line. By
Remark 2 following Lemma 12.3, I} is orthogonal to I, at §,4,,. By
the argument above based on LeAmma 3.2.8, R:n I,., is a geodesic line.
By symmetry one infers that E;'N I,;, is a geodesic line as asserted
in (i). By applying the isometry a:V(®) —V(p), one infers that
R.n I;, is a geodesic line. By Lemma 13.4, both Rin I;, and R.n
I;, contain the points s; and §;. Since geodesic lines in Ch" are
unique, (ii) follows.

14.3. The region 2(@).

We have defined in §10.2
Flo)=F,NFyuN Fy .
From the results of §10.1, we have
8;;€Fy, 8,;eF,

for all distinet 4, § (modulo 3). Also



238 G. D. MOSTOW

sy Cosy tary Ln € Fyy
By symmetry it follows that for i#j,
Sy Si; €EFNFyyN Fy
and also
tis i €y N Fy,

and as a matter of fact for all permutations of 7, 7, k, the points
Dij» iy Sijy tu are in F(@).

We would like to assert that the above points make up all the
vertices of the cell F(@). To verify this, we would have to show
that the faces of the region F,, intersect the edges of F(®) in no
points other than the above vertices. Proving this would entail
estimates on the derivatives of (cosh d(x, p,))? — (cosh d(vz, ,))* and
their behavior on the faces of F(@). We circumvent this difficulty
in the following way.

Let 4,; = {R#, (R.R;)*, (R,R;R)*";1#7=1,2, 8}, and let 4 =
4, U dyg U 4y As in §10 set Fyy, = Nres,vt. Let Ey(F),) denote the
set of codimension k-faces of F,,. The set E*(F,) consists of twenty
2-faces; set *e¢f = *R, N *R;* (where *y = 9N F, for ve4,), 1 =1, 2.
Then for

(i) any ecE,(Fy), e+ *ef or *es, the information of §14.2
shows that e F(®) lies in a curvilinear triangle with vertex at p,,
and opposite edge a geodesic line.

(il) ef N F(p) lies in a geodesic quadrilateral p,,t,p,t,, bounded
the geodesic lines

of N RIELR, of N (BB, e N BRR,, e N (BuR)™ .

For each ec E,(F,), define the & as the above curvilinear triangle
if ¢ # ¢f and as the geodesic quadrilateral for ¢ = e;.

By use of the automorphism .J, we define & for ec E,(F,) U
E,(F,) U E(F,). (It is easy to verify that the resulting &3 = J*e}
coincides with the geodesic quadrilateral obtainable from *et € E,(F,).)
For any ve 4, we define ¥ as the region of ¥ that is bounded by
the 2-faces ¢ lying in 7. Finally, we define 2(@) as the 4-dimensional
region which is bounded by {¥; ve 4}. It is clear that F(p) C 2(p).
Computer calculations for certain values of @ of interest to us, shows
that in all such cases F(@) = 2(®).

Indeed, for all cases in which Q2(p) satisfies (CD1) and (CD2), 2(®)
is a fundamental domain mod Aut 2 by Theorem 6.3.2. On the other
hand, if D= )-v", then I'D= X. Therefore 2C(Aut2)DcC
Aut 2-F = F. Consequently F(@)= £2(®) whenever 2() satisfies (CD1)
and (CD2).
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Henceforth we focus attention on 2(¢) rather than F(@). The
3-faces R, RTRZ, R.R,R, in case larg @*| < /2 — 7/p are shown below.
The 8-faces R;?, (R;Rl)‘l, (RlR:lJBl)‘1 can be obtained from the complex

conjugation map V(@) — V(®), and the faces R, R:liz1 can be obtained
by applying to these the isometry a,:V(p)—V(p). The remaining
faces can be obtained from the symmetry J.

FIGURE 14.2. The nine faces of R, (labeled by the intersecting 3-faces) for
larg ©® | <z/2—z/p.
RiRyRi(D1s, 812, t2), szle(Pmy S12, 52;), R4 (pig, Ba, 8a1), (}%;Rﬂ*i(pu, 831, t23)
(R3Ry) (D51, S12, £s2), Rgl(pzl, S12, 832), Ry Ry(Ds1, 832, S31), R?R1Rs(p31, S31, t23)
RTY(p1s, tso, D1, tos)

FI1GURE 14.3. The four faces of R’,\kg for —(z/2—n/p)<arg ¢*<3(x/2—=z/p).
Ry BoRi(p1g, $12, ta2), RN (D12, 3’.3\1/, ts2), Ro(Drs, $12, 513), (R:kx)’l(tsz, S12, 8;)

FiGURE 14.4. The four faces of RIR?R3 for |arg ¢®| <z/2—zx/p.
Ri(pis, s12, ts2), RTRz(pn, Sy9, ts2), Ra(D1s, 819, ta1), R?Rl(pmy 819, t31)

14.4. Condition (CD1) for 2(p).

PROPOSITION. For all @ with |arg @| < n/2 — /v, the region
Q(p) satisfies condition (CD1).
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Proof. It suffices to prove that:
(14.3.1) v B (Y) = BV

for k¥ =0,1,2 and all yed. For this will imply that v maps the
boundary of ¥ onto the boundary of %' and therefore ¥ onto 5.
Actually it suffices to prove (14.3.1) only for those 0, 1, 2-faces which
do not contain the apex p.. For by §9, each F,; is a fundamental
domain for the finite group I';; and therefore satisfies (CD1)(¢ +# 7,
1, 7€1,2,3). The (CD1) condition for F,, together with (14.3.1) for
ec E,(V); ved, with p,¢e, k=0, 1, 2, yield v-7¥ = 7~ for all v 4,;
by symmetry one gets

(CD1) v-§=7", al ved.

From the definition of 2(®), one sees that the only 2-faces of
2(p) which do not contain an apex are for any permutation (¢5%) of
@, 2, 3).

(14.3.2) L for |arg | < _72£ -
VY

(14.3.3) Ly, Ly, Lna  for (_’2‘- - %) < arg @ < 3(12’- - %)

(14.8.4) Ly, Ly, Ly, for —3<—721 - %) <arggls _% - %)

and that each vertex and 1-face not containing an apex lies on the
above 2-faces.
Set

dije = Lip 0 2P) for (i, vy > 0.

From the results of §14 and §10, one sees that every ¢ € E,(2) which
lies in some ¥ e E,(2) but does not lie in any f € E,(F,,) is a geodesic
line segment. Inasmuch as the geodesic joining any two points in
Ch” is unique, to prove (CD1) for £, it suffices to prove (14.8.1) for
k = 0; for reasons of symmetry, we need only consider ve4,,, and
v = R, R\R,, or R.R,R,. The requisite information

Rity = tg, Ri81;, = 8y, Ri85 = 8y, B8y = 8y, Riloy = tyg

R.R.8,, = 83, RiRyty, = by, RiR,S,; = 8

R.R.Rt, = tis, R1R2R1312 = 8y, BRR,Rit; = ty

is given in §13.

N\ N\
15. (R.R;)™, R;R,) and related angles.
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In order to determine for which values of the parameter ¢ the
region 2() satisfies condition (CD2), we compute the angles at which
the 3-faces of 2(¢) meet at those ¢ e E,(2) which do not contain an
apex of 2. Such 2-faces are 4,; corresponding to all permutations
(i7k) of (123) if |arg ¢°| < n/2 — w/p, to the even permutations if
/2 — w/p L arg PP < arg ¢° < 3(w/2 — w/p) and to the odd permutations
if —8(x/2 — xn/p) <arg P < —7x/2 — 7/p.

LEMMA 15.1. (i) For any permutation (ijk) of (1,2, 3)(R.R;)
N
and R;R, meet in I; at a constant angle if (v, vy > 0. Moreover
A\ N

(ii) C(R.R,)™, R.R,) = w2 — w/p + arg 9 for argy’ =
— (/2 — 7/p)

ee e /\ /\

(i) K(RR)™, BB, = /2 — n/p — arg ¢° for arg ¢* = w/2 — w/p.

Proof. By Lemma 11.1, I ;. is a common slice of (R/i\Rj)‘1 and
R/J-\Rk. By Lemma 3.2.9 (ii) the spines of (R/i}%!j)“l and R/J-\Rk lie in the
same C-line. Hence by Lemma 3.2.4, (i) follows. The angle {((R?Rz)—l,
R/j%g) can be computed as {(z((Rl/kz)*l), z(RﬁBs)) for any C-valued

S-function (S = (R.R)-!, B.R) by Lemma 3.2.6. By (11.2), for such
a function z, we get as the images of spinal surfaces

PSS
(RR) ™Mz + 79| =1
RR: |z—7ip|=1.

The angle 6 at which the normals to the two circles at 0 intersect
is clearly

nie/—17P?)
0 = arg(ip = 7"*p) = arg(—7i®") .
Hence the angle at which the two circles intersect is |z# — 0| =
/2 — w/p + arg ¢* for arg @* = —(w/2 — w/p). This proves (ii). (iii)

is obtained from (ii) by applying the isometry J': V(@) — V(®), wnich
interchanges 1 and 3.

LEMMA 15.2(1). In the geodesic triangle 4,;,

%(g — % — arg ¢3> ., Jor even (ijk)
PtusaSs = 1

_<£ T 4 oarg 503> . for odd (ijk)

2\2 Y

where (17k) 1s a permutation of (123).

Proof. By symmetry, it suffices to consider the geodesic triangle
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dy.. The calculation is somewhat analagous to the one used in
proving Lemma 15.1. We shall first determine the equations of the
lines B, N 4y, and R, N 4,,. From the matrices of §9, we get as the
equations of R, and R2

Rl: |772901 + (1 - 777/9_7)372 + (1 - Vi¢)x3| = |x1 + @, + xsl
Rz: I(l - 7]7:@)901 + 7729"2 + (1 - 777*5)373| = le + ®, + (L'3| .

From (11.3a) we get as the equation of I,
Ly, 2y = — iz, .
Substituting for z, and setting z = x,/(x, + x, + x,)
Ls 0 Byt |21 — 9i@)(L — 7ip — 79%) + 7| = 1
L, N Byt |2(=1 + 7ip + 7°9) + 7*| = 1.
Setting b = 1 — nip — P’¢? we get

I, N By: |2 + 761 — 7i@)| = 1/|b(L — 7iP)|
L.N Rz — (1 — nip)/b] = 1/]b] .
The common solution corresponding to the point s,, = Nipe, + Vife, +e,
is
i 2 = NP/ + Ri(@ + P)) -

The map of the C-line I, into C given by the function z is
holomorphic and therefore conformal. It follows from elementary
geometry of circles that one of the two angles between the two
circles is the arc of

799 T L
L _IxTipr ) W@ b
7ip____ 1—pip 1

1+ 7i(P+P) b |b(1 — 7ip)|

After clearing denominators and simplifying numerators we get

w= A+ 7P+ P)A — 7iP)
A + i + P)A — 7iPp)

Note that 1 4+ i@ + & = &*(1 + pi® + »*). Hence

 _ sl = 7P + Tip)
w? =
T o)A — ip)
_ e Tip(L = 1)
1—7ip

= 77 .
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It follows that < ¢,s,8, = (/2 — x/p — arg ¢*)/2. From this the
lemma follows.

REMARK 1. The angles above can be computed by applying the
analogue of Napier’s rule for a right triangle ABC with hypotenuse ¢:

cot A cot B = cosh 2¢

in the constant curvature C-line I;;. The resulting computation is
longer than the one presented here.

REMARK 2. Note that the triangle 4,; is isosceles since R;
carries one side into another by Lemmas 14.2.1(i) and 18.4. Hence

- N 1 A~ PN
L tasiuds = LtuSpsp = ) L (BB R;R))
for |arg ¢*| < /2 — w/p.
LEmMA 15.3. { CisDists = (6 — p)/2p)7r(p = 3’ 4, 5)

Proof. Let 4, = F,,Net(i=1,2). From the description of the
fundamental domain F, in §10.1, we see that F), has only two 2-
dimensional faces fixed under a C-reflection; namely 4, and 4,. Con-
sequently, from X = I',F,, we infer

eir = U vdy vd, Cery Ulvd,; v4, Ces} .

Clearly v4,C et implies ve; = es and therefore v e ZI', where Z is the
center of I', and I', = {{R,})}. We have R,Re, = —7nipe, by §9.1.
Hence R,R.Re' = R,Rei = ef. Inasmuch as Ze; = e¢!(1=1,2) and
(R.R,R.)*c Z, we see that

{vel'y; v4,Ce'} = ZRR,RT, .
Hence
e = Z4, ) ZR.R,R 4, .

Thus ef is a union of 2% Z sectors with disjoint interiors. It follows
at once that

6 —
{ tisDiols = 2w = p T

by (2.2.4).
16. The stabilizer of 2() in I

Let o be order (in the multiplicative group of nonzero complex
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numbers) of 7i¢*, and let o be the order of 7i@*. Let

r = order(R,R,R;)* in PU(H)
s = order(R,R,R,)* in PU)H).

Let Aut, 2 denote the stabilizer in I' of the region 2(¢). From
§9.2, we know that the order #Aut, 2 is at most 3. The following
theorem determines Aut Q.

LEMMA 16.1. Assume that p is finite (or equivalently that o is

finite)

(i) <f 83tpo then (RR,R)*R.R,=4J in Ch®, where 3pt +1=20
mod p

(ii) 4f 3o, then (R,R,R)*R.R, =J " in Ch?, where 3v +1=0
mod o,

(lii> (RleRs)z'uRle = (RstRl)Q#Rst = (R3R1R2)2”R3R1
(B:R,R\)”R,R, = (R,R;R,)*R.R;, = (R,R,R,)"R,R,
(iv) » = order(7i9*?, s = order(7:i®")%.

Proof. Set & = 7i¢®. From (9.1.1) we see that the eigenvalues
(R.R,R,)* are
(16.1) %0t , PP, nhipt.

In addition by (9.1.3)

(BiR,Ry) 0105 = —1°P 054
(R.R,R,)e, = n’ip®
Oy Vigy =0 .
This implies that (R.,R,R,)* fixes the point z(v,) of CP?% and each

point of the complex projective line w(vs;), rotates CP? around the
point w(v,,) by the scalar multiple

(16.1) Pipi — PPp® =&
stabilizes ef, and rotates the complex projective line 7(ei) around
the points
T(vy Ner) and 7w(wi Ney) by

scalar multiples (7i1®*)/(—7°¢~°) = & and & respectively.

The order of (R,R,R,)? in PU(H) is the order of &. This proves
the first part of (iv) and proof of the second part is similar.

By Lemma 12.3
. TV N ey) If (Vigg, Vi) > 0

TV Neg) i (Vi vy <0

13
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From §9.1 we see that R,Re, = —7nipe, (by symmetry from
R, R.e, = —nipe,) so that R Rei = ef. By Lemma 13.5, R,R\t, = t,.
Hence R,R, sends the quadrilateral @, = [0yf..0:t,] into the C-line
7w(ei) so as to abot the quadrilateral @, = [pt.s0ut:] along the geo-

desic line segment [¢,,, p.,] (cf. Figure 16.1) since R;j%l: R:R1—> (R,R)™.

R3RiP13

R3Riti2

R;R1Qs3
t32

P31
P12

t23
FIGURE 16.1

By symmetry one sees that image R.R,-R,R,-R.R.,Q, is given by
rotation about ¢,, through the angle 3 < (R,R)™, R.R, = 3(x/2 — w[p +
arg @*) = 3arg & in the sense from p,, to p,, this is a rotation about
the point £, by the scalar multiple & if (v, vy > 0 and by the
scalar multiple & if (v, v, < 0.

Suppose now that 3.t p. Then one can choose ¢ so that (R R,R,)*
rotates R,R,Q, back into @,; one need only select z¢ so that

& = g if <?)123, Vis) > 0
(53)” = 54 if <1.)123, ’0123> <0.
In either case &' =1; so select ¢ to satisfy 3¢+ 1 = 0(mod p).
Then we have
(RsR.R,)* R, R\ Ry, = p,,
(BB R, Ry R pys = Dy -
In addition, by Lemma 13.3 (i), R,R, =J on I, sending I, to I, if
{Vypsy Visy > 0. In this case, (R.RR,)*R;R,=J on I, (by Lemma

13.38(ii)) as well as on 7(ei) and therefore on the ball.
It remains to consider the case (¥, v, < 0. In this case, the
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triangles 4, 4.2, 4., collapse to points and the reasoning of the proof
of Lemma 18.3(1) does not apply. Instead, one argues as follows:
R,R, carries I, to I, and R,R,-R,R,- R, R, carries I, to I, rotating the
C-line I, about the point ¢,, by the scalar factor £&. Hence by symmetry
R.R, restricted to I, is the map p,oJ where p, is the rotation of the
ball about ¢,, by the scalar multiple £. Consequently, R,R, = p,-J.
By (16.1), (R,R.\R.)* = p;*. Consequently J = o{'R,R, = (R,R\R,)*R,R,.
This proves (i).

(ii) follows from (i) by applying J': V() — (@).

(iii) follows from (i) and (ii) by symmetry. The lemma is now
proved.

REMARK 1. From (9.1.6) it follows that the order in PU(H) of
R.R.R,R, is l.c.m.(order —7ip®, —5i®°) = lem(a, o).

REMARK 2. If Q(9) satisfies conditions (CD1) and (CD2), then
3|p and 3|o implies that % Aut, 2 = 1. For then the circuits around
4,5, result in the identity map. By Theorem 6.3.3(a), Aut, 2 = (1).

REMARK 3. More generally, in the joined I'Q2(¢) space, if 3|p
and 3|o, then # Aut, 2 = 1, provided that |arg #*| < /2 — /p. We
shall prove this in § 18.4.

REMARK 4. By Lemma 13.3(1), J'R.R, fixes each point of I..
Clearly J'R.R,p, = J'p, = p,. Consequently, J'R.R, is a rotation
of CP? about the line I, stabilizing the line ¢; and rotating p,, into
p, about ¢,. Comparison with (16.1) shows that J'RR, is a
rotation of CP*? about I, by the multiple &. Moreover, the matrices
JIRR, and R, commute. For JR, = R,.,J for any < mod 3; hence

J'RR,R, = J'R,RR, = RJ'RR, .
17. Nonarithmetic lattices I'(®).

17.1. Values of ® for which 2(p) satisfies (CD2).
Set

o = order(719*) , ¢ = order(7i%")
r = order(19®)’ , s = order(7:7%)° .

From Lemma 16.1 we know that » = order(R,R,R,)* in PU(H), and
s = order (R,R,R,)* in PU(H). From the fact that F); is a funda-
mental domain for the finite group I';;, we know that the codimension
two condition (CD2) is satisfied for all 2-faces of 2(9) which contain

an apex P, ¢ # J, 1, j€{1, 2, 83}. The only 2-faces not containing an
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apex are 4,; with ijk ranging over all even permutations of (123)
if — (/2 — w/p) < arg @* < 3(x/2 — «/p), and over all odd permutations
if —3(z/2 — w/p) < arg @* < 7w/2 — w/p. The circuit around 4,; is
R.R;-R.,R;-R;R, --+ 2. Each such circuit places side by side around
4;; the region bounded by two spinal surfaces whose spines lie in
a common C-line and which interseet in the slice [;;,. By Lemma

15.1, (R/Z-}%j)*l and Rﬁ?k meet at a constant angle equal to 7/2 — w/p &
arg @* (the (+) or (—) corresponding to even or odd permutations).
Since (7i9%) =1, the image of 2(p) after p terms of the circuit
coincides with 2(®), and by definition of p no shorter circuit brings
Q2(p) back to coincidence with itself. On the other hand, by (CD2)
all the interiors of the p images of 2(®) in the circuit must be dis-
joint. Hence for |arg ¢*| < 3(x/2 — «/p).

(i) pm/2 —xm/p + arg %) = 2x, if arg @* > —(%/2 — «w/p).
Similarly,

(ii) o(@/2 — n/p — arg®®) = 2x, if arge® < w/2 — w/p. If
larg @* | < /2 — w/p, both (i) and (ii) apply and adding we get

1 1 1 n l_

Setting m = inf(p, o), this implies m < 4p/(p — 2) < 2m. Thus

(iii) 6=m<12 if p=3
4<m<8 if p=4
4<m=<6 if p=5.

If 3(x/2 — =/p) > arg @* > w/2 — ©/p, we see from (i) that

O e )

Thus p/(p — 2) < p < 2p/p — 2, yielding

(iv) 4=p<5 for p=3
3=<p=<3 for p=4
2=0=3 for p=5.

In this latter range for @, 4,,,4,,, and 4,, are the only 2-faces of
Q2(®) not containing an apex.

In order to determine all the @ for which I'(p) is a discrete
group it suffices to consider the range 0 =< arg ¢® < 3(z/2 — 7/p),
inasmuch as the negative values of @ are given by the symmetry
J:V(p) - V(p). We shall give the @ in two lists, one for 0 £ argp* <
/2 — w/p, the other for z/2 — 7/p < arg ¢* < 3(x/2 — w/p). In case
arg @* = /2 — w/p, the geodesic triangle 4., degenerates to a point
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at o and it can be regarded as limiting value of arg ¢* > or <
/2 — w/p; we list this case on our first table.

Set t = (1/n)arg ¢*, then ¢ =2/p — (1/2 — 1/p). If 0<t then
inf (o, 0) = p. We therefore arrange the tables according to increasing
values of the integer po. In Table 1, 1/0 + 1/0 = 1/2 — 1/p; in Table
2, we have instead, 1/0 + 1/0 = t. The requirement that ¢ be an
integer reduces the number

TaBLE 1. 0=¢t=<1/2—-1/p

P 0 4 t #Autr 2 r s
3 6 co 1/ 6 1 2 o
3 7 42 5/42 3 7 14
3 8 24 1/12 3 8 8
3 9 18 1/18 1 3 6
3 10 15 1/30 3 10 5
3 12 12 0 1 4 4
4 4 oo 1/ 4 3 4 oo
4 5 20 3/20 3 5 20
4 6 12 1/12 1 2 4
4 8 8 0 3 8 8
5 4 20 1/ 5 3 4 20
5 5 10 1/10 3 5 10
TABLE 2. 1/2—1/p <t < 3(1/2 —1/p)

P 14 G t #Autr Q r s
3 4 12 1/ 3 3 4 4
3 5 30 7/30 3 5 10
4 3 12 5/12 1 1 4
5 2 5 7/10 3 2 5
5 3 30 11/30 1 1 10

of cases in (iii).

REMARK. Let p =5, @* = 14, 4* = exp(7T7i/10). We will see in §21
that I'(p) is an arithmetic lattice despite the fact 2(®) does not satisfy
(CD2). In this case 2(®) is not a fundamental domain mod Aut, 2;
nevertheless, I'(p) is a lattice. In fact, as we show in §21, there
is an isomorphism of I'() onto I'(). Thus (CD2) is a sufficient
condition for I'(®) to be diserete but is not necessary. On the other
hand, the failure of (CD2) for 2(p), |arg ¢*| < /2 — w/p, seems to
imply the I'(@) is not discrete. For example, (CD2) fails for p = 5,
t =0. In this case, one can compute that (R.R,R.)%, ¢,y is a non-
admissible value (cf 2.4.3). This implies that {R,R,R,)’R,(R.R,R,)"°, R;}
is a C-reflection group which fixes a point in the ball but is infinite.
It follows that I'(1) is not discrete.

17.2. The field Q[Tr AdI'l. In applying the test of §4 for
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arithmeticity of the lattice I'(@), we must determine the field generated
by Tr Ad~, as v ranges over I'(p); we denote this by Q[Tr Ad I'].
For any subfield & of C stable under complex conjugation, we denote
by Rek the subfield kN R. We continue the notation p = order
N, n = e?. For argp* > —(n/2 — w/p), Nip* = ¢ by 17.1().

LEMMA 17.2.1. Q[Tr AdI'] = Re Q[e*"*, 2¢,?] for arg ¢*>
— (/2 — /D) and for I'(p) discrete.

Proof. We identify Hom(V, V) with V®V™* in the standard
way so that for any ¢, feV, a, ge V*,

(e @ a)(f) = a(f)e
eRaNfFRB) =a(fle@ B .

Let {e, ¢*, ¢’} denote the dual base to the base {e, e, ¢} of our vector
space V(p). We rewrite the generating C-reflections R, of I'(¢):

R(x) =& + (* — L){zse e, = p°x,8, — NiPre; — NiPX-e,
R =7 Qe — niPe, Qe — nive, K & + e, Qe + e; R €
and
3 _ 7:g)e(j,k) , y = k
RBi=3 Q¢ + > aue; ¢, a;; = 7 2 J
ki k=1 Ui , 7= k
where ¢(j, k) = (—=1)*7, (4, k= 1,2,3). Then
l
qZ:l 1§i1<i2<z~~l-<iq<l Qi331,Qivigig * ** Qs

PO CDRCR
S ()0

TI‘ Rj].R-’iz e le

Il

Il

where n is the topological degree of the map of the loop (4,4, - - - 7,1,)
into the circular loop (1231) and m — 3% is a nonnegative even integer
2u. (The only terms having @ or & have i with them.) Write
v=R; -+ R;. Then Trv is a sum of terms of the form
PP @) (it with (o) = (§i)*“* = P+ (—1)**.  Hence
TrveQ(?, 7ip®). But 7ip® = ** for arg@®> — (z/2 — x/p) and
Tr Adv = (Trv)* by §4. Consequently

Q[TI‘ Ad F] c Re Q(e?ﬁi/p, e‘lf:i/p) .

In order to prove the converse inclusion, we consider Tr Ad~v
for v = R,R,R,R,. By (9.1.6) the eigenvalues of R,R.R.R, are 7*¢’
n*i®*, —n* and therefore
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(Tr ) = [(—)(—nip® — 7i@* + 1)
= 8 + 2Re(7i®* + TiP® + ¢°)

=3 + 2<cos—2;)71 + cos 2%‘” + cos 27rt>

where ¢ = 7~'arg @® and v is an integer prime to o, the order of
719®, with v =1 for |t]| <1/2 — 1/p.

Additional elements of Q[Tr Ad I'] are cos 27/p and cos 67/p aris-
ing from Tr Ad R, and Tr(R.R,R.)? respectively (ef. (9.1.1)).

Let K denote the field Q[e*¥?, ¢*¥?]; K is generated by a primitive
root of unity z, and its Galois group is given by automorphisms
z — 2™ for integers m prime to the order of z. The Galois group
of K, Gal K, is thus abelian and the subfield Q[Tr Ad I'] is stable under
all automorphisms of K. Hence

cos 27:7t + cos 2myrn + cos 2mmt € Q[Tr Ad I']
o

for all m such that z — 2™ is in Gal K. Examining the cases in Tables
1 and 2 one by one, it is easy to verify that some linear combination
of the foregoing elements in Q(TrAd ") yield each of cos2x/p,
cos2wn/o, and cos2mt except in the case p =4, p = 5/12. In the
latter case one computes

Tr R.R,R.R.R, = 7’("i@* — 7 — 1 — 7i@* + m’@
= 7;{—(% + 1/§> + i(l + -‘—/éiﬂ ;

thus Q(Tr Ad I") contains —(1/"8/2) = cos (2nn/o) in this case too.

The field K has as a primitive generator any element z = e*™*'*
where L is the least common multiple of p and p and ged(N, L) = 1.
Thus each element of the field K has the form 37} a2/ with a;€Q,
and each element of the field Re K has the form

o 2TjN
j%aj cos T

As is well known, cos 760 is a polynomial in the powers of cos@ with
integer coefficients for any integer 5. Thus

ZﬂN] .

Re K = Q[cos

On the other hand, we have

-%-—%—l-t:%argfﬁéﬁ:ﬂ(—é——%—t)z(l—Z(—%-}-%))-
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Hence o, the order of 74®* is the order of ¢*¥7.*r if ¢ is even,
and half that order if o is odd. Thus if ¢ is even and ged(p, 0) = 1,
then ¢ = L and exp(2wiv/o) generates the field K. In these cases
cos(2ry/o) generates Re K. In the remaining cases of Tables 1 and
2, exp 2zwit generates K and cos 27t generates Re K. As noted above,
these generators for Re K are in Re@Q[TrAdI']. Hence Re KC
ReTrAdI". From this the lemma follows.

17.8. Non-artithmetic lattices.
It remains only to apply the criterion of §4 to the groups I'(p)

listed in Tables 1 and 2 of §17.1 to determine which of them are
non-arithmetic lattices.

TABLE 3

ol p| ¢ k-gen. |#Cal k| 4 Arith.

3] 6] 1/ 6 1 1 A
7 5% Fie 257 . bm

3| 7| 5/42] cos 21 6 |—cos 42/(3sm 3) 05(.4)*—cosE/<35m 3 ><0 NA
T T T P £ 20T P )

3| 8| 1/12] cos 12 4 | —cos 12/<3sm 3) o:(4)=—cos 12/< 3sin 3 ><0 NA

3 9| 118|cos | 3 —cosl—’;/<3sin§> 03(d)>0, a(d)>0 A
x A gl (g llE

3110 1/30| cos 15 4 | —cos 30/<3sm 3) 711(4)= —cos 30/< 3sin 3 ><0 NA

3]12| o0 cos—g— 2 [—1/3 sm—;— a5(4)>0 A

4| 4| 1/ 4 1 1 |—1 A
T 1 cos 37/20 ° _ 1 cos 97/20

4] 5| 3/20| cos 10 4 2<1+ sin n/4 ) osld)= 2(1 -—sinrr/4> NA
T 1 cos 7/20 ___1_( COS571’/12>

4] 6f 12| cos 2| 2 2(1 siM/4> ) =—5(1+ 52 0E)<0 | NA

408/ 0 JesZ| 2 —%(1+sin1ﬂ/4) a5(4) >0 A

5| 4| 1/5|cos75| 4 [1- 4sifzn/5— 4‘;‘;if§5 o11(4)=1—2.1708+.9959 <0 NA
b _ 3 cos /10

5| 5[ 1/10| cos 5 2 |1 1sinia5 dsin 75 05(4)>0 A
s 1

8l 4| U3lcoso| 2 |~335mam o5(4)>0 A

3| 5| 70| cos2x| 4 ~—°?%;% i(d)>0, o2(d)>0, op(d)>0 | A
T 1 cos 5z/12

4| 3| 5n2| cos2-| 2 —2(1+———3sim/4> o5(d)>0 A
b3 3 cos 3r/10

5 2| 7/10{ cos 5 2 1_4sin21r/5 4sin’ 75 a3(4)>0 A
2r 3 cos117/30 _1_0 17 €085397/30

5| 8|11/30| cosyr | 4 11T e faimtaps | D TR a5 0 | NA
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All the groups of §17.1 are discrete. Except for the two cases
(p, p) = (3.6) and (4.4) in which ¢ = <o, the regions 2(®) are compact
and therefore PU(H(®))/I'(p) is compact; in the other two cases,
2(®) has three cusps at the boundary of the ball but nevertheless
has finite measure. Accordingly I is a lattice subgroup of PU(H)
for all the groups listed in Tables 1 and 2.

We list the arithmeticity results in Table 3. The fourth column
lists a primitive generator of the field & = Q[Ad I'], the fifth column
lists the order of the Galois group of k. 4 =1 — 3a® — a¥(@® + @),
the determinant of the matrix {e,, ¢,> (7, 7=1, 2, 3). The sixth column
lists the effect of the automorphism o,:2— 2" an 4, where z is a
primitive generator of the cyclotomic field containing %% ¢, #* and
the value ¢,(4) for some » when o,(4) < 0 and o, # identity on &k =
Q[Tr AdI']l. In the last column A and NA denote arithmetic and
non-arithmetic respectively.

In our situation, 4 =1 — 3/(4sin*(n/p)) — cos wt/(4 sin®*(z/p)) which
simplifies to —(cos zt/)/(8 sin x/3), —(1/2)(1+(cos zt)/(sinx/3)) for p =
3, 4 respectively.

Summing up the information contained in Table 3, we get the
following result.

THEOREM 17.3. There exists tn PU(2, 1) a non-arithmetic lattice
generated by C-reflections of order 3,4, or 5. Up to an isometry,
any such lattice with Coxeter diagram

and {e, ey{e, eyle, ey = e is given by the seven values

(v, t) = (3, 5/42), (3, 1/12), (3, 1/30)
(4, 3/20), (4, 1/12)
(5, 1/5), (5, 11/30)

The non co-compact lattices I'(P) are arithmetic.
18. The space Y(9), |arg @*| < /2 — x/p, (arg P)/x € Q.
18.1. The joined space.

We have seen in §14.2 that for |arg ¢*| < 7/2 — 7/p, the region
2(p) is bounded by the 24 3-dimensional faces
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E(Q) = (B#, R, B)®, RR,E)* i, =1,2,3; i # j)
and that for each ver,
v — 7.

Set 4(®) = (R, (R.R)*, (R.R;R)*; 1,5 =1,2,8; 4+ j} and let I'(®)
denote the subgroup of Isom B generated by 4(®). Write F, 4, I
for 2(p), 4(p), and I'(®) respectively. For any v e 4, set

e =7", TH) =7".
By the proposition of §14.4, we may assert
YE)YNF =e(y), all ved.

Set & — I'F. By Theorem 6.3.2(I), # is a connected abutted family
of polyhedra. We let _#~ denote the adjacency of # and we let
Y(p) denote the joined .#-space. In §14.8 we have seen that the
polyhedron F has 15 vertices of 4 distinct types, up to equivalence.
Mod Aut F

Di(1 # J) with py; = py
8;;(1 = J) with s;=s
8;;(1#7) with §; = 8
(i #= )

We recapitulate here the results from §16. Let

r = order(R,R,R,)* = order 7*i¢° = order(7ip)*
s = order(R,R,R,)* = order 7*®° = order(7i®°)*
o = order 7ip*

o = order 713" .

These integers are finite if and only if (2z)*arg € Q. In this case,
I'y = Z, if either p = r or o = s; equivalently 3 does not divide p
or . Cyelic permutations of indices make up Aut F' for all ¢ # 1.
Thus for ¢ =1, Aut F = Z,. If ¢ =1, F is stable under all permu-
tations and Aut F = Z,. Set I’y = (Aut I')I". Then modulo I',, the
vertices of E.(F') are

E(F)[I o Dusy 12y Loz s

18.1.0
(18.1.0) modulo I',, the remaining (4 — k)-faces E,(F') are

E(F) T ot Distasy Disy Losy Di:8i(Via s5), Dis81p(Via 83)
(18.1.1) S1atsz, Suilos

813815, SuSu
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Ez(F>/Fa: ei N F, Am, A:«m
(18.1.2)  R,nR.R, E.nR.R, R.NR.E.R, B,NnR.R,R, RE,NRRR,,
R.R.NRR.R,

(18.1.3)  E(F)/l'.: R, R R, R,R, RE,R, .
18.2. Stabilizers.

Up to an automorphism of I", the stabilizers of all faces in the
polyhedral decomposition .5 of the space Y(®) is given by the stabi-
lizers of the faces 7(e, F)) where 7 denotes the canonical map of
F x 7 onto Y(®) (cf. §6.2) and e ranges over the faces in the list
(18.1). As above, I'(e, F') denotes the stabilizer of the face 7%(e, F).

(18.2.1) [I', r is the subgroup /[",, of Aut B(=PU(H)) generated by
R, and R,; it has order 24(p/(6 — p))>.

Proof. Let vel',». Then vp, = p, and vF is p,-connected
to Fin &, and vF'e #,,,. By Remark 2 of §6.6, 7, = [',F,,.
Since F' lies in a fundamental domain for the action of I",on B, I',,
operates simply transitively on .&,, . and veI",,. The order of I,
is given in §2.

ProprOSITION 18.2.3.
(1) Tipnm = {{R,R.R.R,, R'R,R.R.}} = {{R;R,R,R,, Ry"R,R,R,}}
I'G,n = {B.R.R.R;, R,ERE}} = ({R.R.E,R, RR,RR;"}}
and these stabilizers are abelian.
(i) @ If 8100, then Tym = WRRRY, (RER)) = Z,% Z,.
(b) If 3|po, then {{(R,R.R,)", (R,R,R)}}} is a subgroup of
mdex 8 in Iy, p.
(iii) Iy, 0 \G(81, F') has 6 elements represented by

1, RY, R, R, R,RR,, R,R, .

2 elements represented by F, R.F
(iv) F(slz,F)\Zm,F has it Iy #{1)
6 elements if I'y=1.

Proof. Set a = R,RR,R, b= R'R,RR, ¢c=0>b"'a. Then ¢=
R7RIR;Y(R.R,R)R,R, = R;'R7'R;‘R,R.R,R,R, = R;'R,R,R,. Set " =
{{a, b}}. Then I = {{a, c}} = {{B;R.R\R,, B;*R,R,R\}}.

We shall prove (i) with the help of Proposition 6.6. By §14, the
3-faces of F containing s,, are

Elr EZ) Ei’v_ly Rlﬁz, EZRD (R&ﬁl)—l, (R3R2)—11 Rlﬁle .
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Thus the adjacent cells .+ (F,
the subset of 4 denoted

Fls.]: B, By, Ry, (BAR)™, (BB, BuRy, RoR, (RE,R)™

) are of the form (vF'),, with v in

12

We first verify
(1) A A (F) ST A (F,) UF,) .

12 12

In verifying this, we make use of the evident fact: for any vel,
Fe &, ec BE,(F)

'/1/‘<(7F>e) = 7<4/‘(F7_]e) .

In order to prove (1), we must show for each v e F[s,] and i ¢
F[v's,] that

(1) voe M(Flsp] U1) .

For v = R, we find v 's;, = Rs, = §,. From §11, we find the 3-
faces of F' containing 3, and accordingly we get for

F[3,]: R,y R, R,R,, R.R,, RR,R, R;", (R.R,)™ (RyR,)™

and R F[§,|=R'R,, 1, RT'R,R,, R,, R,R,,(R.R)™", (R.R,R,)"\,(R,R.R,).
We have R'R,R. R, =bel*. Thus
R'R, = b(R.R,)" CI"F[sy,] .
Similarly R'R,R, = (R'R;R,R,)R;* C I"'F'[s,,], and
(RR,R)™" = (Ry'R,R,R)"R;* C I'Flsy) .

Consequently R ‘F[§,] C I'(F[s,] ULl). The verification of (1) for v =
R;* and R, is similar. For v = (BR,)™", we find (R,R,)s;, = s,;, and
Flsy]: R, B, R, (R.R;)™, (R,R,)”, RB\R,, R.R,, (R,R,R,)™"
(R\R,)"F[sys]: (RR,R)7, (R.R.R,), R,", (R,R,R\R,)""(R;R,R,R,)™" ,
1, R;'R.,, (R,R,R,R,R,)™*
R:'R, = R;'R,R,R(R,R,)* € I"'F[s,] .
Similarly, (R.R,R.R.R,)™ = a'R;*e " F[s;,]. Verification of (1') for
v = (R,R)™, R,R,, R,R,, and (R.R,R)™' is similar. For example,
R R,Rs, =5, and we have for
F[5.]: R, R,, R.R,, B,R,, R.R.R,, R;", R,
(R.R,R)7F(3,): (R.R)™, (RE)™, B, R, 1, (B;R.E,R)™, and
(R:R,R.R;R)™ = a'R;", (R, R;R.R,R,)™" = a”'R"

all in I"(F'[s,,] U 1), in verification of (1').
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Next we compute S = {(LJUF[s.)T» N1, m- Let J denote the
automorphism of B arising from the cyclic permutation (1, 2, 8) —
(2,38,1). Then Aut F = {{J}}. From §16 we know that if 3 does not
divide p,

J = (R1R2R3)2#R1R2 = (R2R3R1)2pR2R3 = (RstRz)zyRsRl
where 3¢ + 1 = 0(mod p); if 3 does not divide o
J™' = (R,R,R,)”R;R, = (R,R.E,)”R,R, = (R.R;R,)”R R,

where 3y + 1 = 0(mod 0); if 3|p and 3|¢ then I', = (1).
From the relation of §13:

Risi,' = §ik’ nglij = Si,'('i + j)(Sij = Sj,;) .
These permit us to find

R.s; = 8y, By8;, = 8y, RS, = 55
R.R;8,, = 83, ByR,8,, = 83, B3B8y = 8,5, ByRy8y = 8, R R, R;8,, = 8, .

Consequently if
[A] I'y = (1)9 S = {7 € {1} U F[Sm]; V82 = 312} = (1)
[B] r={J S = {1, (B.R)J, (B.R)J ", R,RJ ™, RR.J} .

If 84p, (RR,)'J = R;'R;'(R,R,R,)"R.R, = (R,RR)*el". If 30,
(Rle)—lJ = (R,R,)"(B;R,) " (R;R,R,)™ = (RstRLRz)-l(RstRl)—zue[' n
Similarly, we find in Case [B] that ScI™. Hence I =TI, . By
Proposition 6.6. I'y,» = ["S=1I". The result for I':r follows
from the isomorphism of I'(p) to I'(®) provided by complex con-
jugation which sends s;;(®) to §,;(®) and R,(®) to R;Y(P).
Proofof(ii). ac=(R,R,R)*and bc=R‘R,R,R,R,R,= R‘R,R,R.R,R, =
a. Therefore a®*=ab-ac € I'*. Let E denote the subgroup {{ad, ac}}. Then
I''/E has order dividing 8. By §10 the matrix R,R,R,R, is diagonal-
izable with eigenvalues (*@°, 7°i®°, —7? so that its order in PU(H)
is the order of the diagonal matrix d = (—7i®°, —9i®®). On the other
hand, by §10, the order (R,R,R,)* in PU(H) is the order of 7%@° =
(—7i3*? and the order of (R,R.,R,:* = (—ni9®?®. If 3 does not divide
the order of d, then a® has the same order as a and a® € F implies that
acE. Therefore E=1I", and I, » = {(R;RR,)’, (RR,R)}. The
intersection of the cyclic groups {(R.R.R,)’N {(R.R,R,)*} = (1) for any
element in this intersection fixes each point of the orthogonal C-lines
containing 4,, and 4,, respectively and therefore fixes all the points
of B. Thus I',,» = Z, X Z, in Case 3 does not divide the order of
d, or equivalently the order of d = (7i9®, 7i®"). This proves (iia).
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If 3 divides the order of d, then 3 divides the order of a so
that @ is not in E. Hence E is of index 3 in Iy, », proving (iib).

Proof of (iii). Write I'* for Iy, r, & * for Z,,r. We know
from the proof of (i) that

G(sw, F) = I"({1} U Fs,)F .
Clearly

(R3R1R2R1)—1R3R1 = (R2R1)—1
(R3R2R1R2)—1R3R2 = (Rle)—l
(R3R2R1R2)(R1R2R1)—1 = Ra .

Consequently, G(s,, F) = I'{1, R{*, R;*, R,, R,R,, R,R,}. For any two
distinet elements 7v,, v, of the six elements @ = {1, R?, R;%, R,, R;R,,
R;R,} one can order them so that v,7;! is either in @ or is one of
{R7R,, R,R:R,R:R,R R,R.R,RR,RR;'R;'}. From §18 we have the
diagrams

(823 831) (85, 810)
RiRy/ \R.R BB/ \R:R:
/ N v N
(812 1) (——IE;,—RH— (8a1y Sa) (8%, 8a1) —EE;_’ (815, 825)

and also

Sa1

Rt

From these relations it is easy to verify that for any v, 7,€Q,
VY58, £ 8. For example

' R,R.R;'(s;) = RyR(85) # 81
since (R,R,)™'s;, = S, # 8. Hence G(s,, F) has exactly six I'(, n

orbits.

Proof of (iv). The set 'y, »\F., » is the space of double cosets
I, 0\G(85y F)/I. It remains therefore to find which pairs of ele-
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ments g, and g, of @ are in the same double coset; this is the case
if and only if

9J*%9, €, m (=1).

Clearly if I'y = {1}, then .#, . is represented by the six elements
of G(s,, F). If I';, + {1}, then either 8t p or 3 tao.

Case 1. 34t p. Then

R.R,-J 1= R,R|[(R,RR,)R,R,]| " el
R,R,-J-1 = R,R[(R,R,R,)*R,R,] = Ry(R,R,R,)**R,R,R,
= (R,R.R,)"R.R,R R, e I
RJR, = R(R,R,R,)*R R,R, = (R,R,R,)*R. R R,R, €I
RJ'R, = Ra[(RstRl)zﬂRst]—le = Rs[Rz(R3R1R2)2FR3]—1R2
= (R,R,R)*el™.

Case 2. 3to

R,R,-J*1 = R(R,R,R,)”R,R,R, = (R,R,R)”R.R.R,R, € I'*
R,RJ-1 = R,R[(R,R,R)*R,R,] 'l
RsJRl = Rs[(RleRz)zuRlR:a]_lRl = [R1(R3R2R1)2y]_1R1 el
RsJRz = Rs[(R2R1R3)2PR2R1]R2 = (R3R2R1)2VR3R2R1R2 el.
Thus if either 3/ p or 3} o, the space of double cosets has at most

2 distinet elements represented by 1 and R,. It is easily verified
that R,J*'s, #* s,. Proof of (iv) is now complete.

PROPOSITION 18.2.4. Let o = order 7@, ¢ = order 7i9°, r =
order(R.R,R,)?, s = order(R,R,R,)*
(i) If 8fpo, then I,rn = {{By (RER)}Y} = Z, X Z, and
Iiry = {Ryy (RR.R)Y = Z, X Z,, and r = p,0 = s.
(ii) (a) If 3|o but 3t p, then
Lyprm = (R, (BRER)YY =2, X Z,, 7=0
and
F(tspF) = {{Rz, (R3R1R2)2#R3R1R2R1}} = Z, X Zy, 0 = 38
where 3¢t + 1 = 0(mod 7).
(b) If 3|p but 3} o, then
F(tst) = {{R29 (RSRle)z}} = Zp XZ, s=0
and

r (13 F) = {{R2; (R2R1R3)2VR2R1R2R3}} = Zp X Zsr y 0= 3r
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where 3v + 1 = 0(mod s).
(iii) If 3lp and 3|o, then
F(tls,F) = {{R,, (R\R,R,)}} = Zp X 4y, 0= 3r
Iyyn = ({R.y (BBR)YY)=Z, X Z,, 0 =3s.
(V) Lym\Fiyr has 3 elements represented by F, (R,R:)™'F,
(R.R)F if I'y = {1}, and has only one element if I', = {1}.
Proof. From §13, we have R,R;t,; = t;, for any distinct 1, 7, k.
Thus we get the diagrams

t ts

13
RiR, /l \\R:R; R2R1/ AN R;R,
/ N v N
2% iR, 12 Los R.R, |

Let J be the element in Aut F' permuting (1, 2, 3) into (2, 3, 1).
From §16 we know that if 3} p,

J = (RleRs)zﬂRle = (RstRlyﬂRzRe, = (R3R1R2)2/1R3R1

where 3¢t + 1 = 0(mod p).
Similarly, if 3t g,

J = (RaRle)%Rst = (R2R1R3)2vR2R1 = (R3R1R2)2"R3R1

where 3y + 1 = 0(mod o).

For every product of the form v = (R .R,)(R,R,)(R,R,) ---, t,,€VF}
and thus every such v which fixes ¢, isin I"(,, ». A similar assertion
holds for any permutation of (1, 2, 3).

If 3 does not divide p, we infer from JR,R,(t;,) = J(t,;) = ¢, that
JRle € r(tm,F)- Moreover, (JR2R1)3 = ((R3R1R2)2yR3R1R2R1)3' = (RaRle)s'u
(R,R,R,R,?® since by Proposition 18.2.3(i), R,R,R,R, commutes with
(R;R.R,)*. As before, set @« = R,R R,R,b = R'R,RR,, ¢c = R;'R,R.,R,.
Then a® = a®>-a = a%bc = ab-ac = (R,R.R,)*R,R,R,)?. Therefore

(B.B.R,) (R, R\ B, R,)* = (R, R\ R,)™"- (R, R\ R,)' (B, R, R = (B, R.R\)* .

Similarly, if 3o, then we infer from J'R,R.(t,;,) = J'(t,) = &, that
J'R,R, eI, . Moreover,

(J —1R2R3)3 = (R2R1R3)2”R2R1R2R3 s = (R2R1R3)6”(R2R1R2R3)3

since R,R,R,R, commutes with (R,R,R,)* by the cited result.
As before

(R.R\Ry)"(E.R.R,R,)’ = (B,R.R;)™ - (R,R.R)(R,\R,R,)* = (R, R,)" .
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If 3} p, then {{JR.R,}} = {(JR.R)Y} = ({(B;R.R)’}}, and similarly, if
3t o, then {{J7R:R;}} = {{(R.E.R,)}}. Set

I {{{Rz’ (B.R.R)*R.R.E,R;}} if 3fo

{{R29 (RleRs)g}} if 3]0‘
7t {{{Rz, (R,R.R)*R,RR,R} if 3/)p
(R, (RB.RYY if 3p.

We have I“c[ly., and I'cTly,.,. By Proposition 18.2.3(),
(R,R.R,)*R,R.R.R, fixes the point §, as well as ¢,;,, hence each point
of the C-line through 4,,, and hence commutes with R,. Each element
in {R,}} N {(R.R.R,)*R,R,R,R,}} fixes each point of two C-lines and
therefore is the identity. Hence the order of 7/ is pp. Similarly,
the order of I = po. Thus assertions (i), (ii), (iii) of the proposition
is equivalent to: I =T, and [* =T .. Making use of the
isomorphism I'(p) — I'(p) given by complex conjugation, which sends
t.(®) to (), it suffices to prove only that I = I' .

To prove this equality, we apply Proposition 6.6, arguing as in
the proof of the preceding proposition. By Lemma 13.4 the 3-faces
of F' containing ¢,, are

R, R, R,R, (RR)", RE.R, (RER)™".

Thus the cells in &, , adjacent to F, are of the form ~F with v
in the set

Flt;]: B, R, (R.R)7, R R,, (R,E,R,)”, R,R.R, .
First we verify

(1) AN (Fo)) C TN (Fo) UF) .

13

We must show that for each ve F[t;] and 6 € F[v~'t;]
(1) voe M'(Ft,]UL) .

For v = Rf', we have veI" and the assertion is obvious. If v =
(R,R)™, vty = RyRit,; = t,; we have for

Flt,]: R, R, (R.:R)™, R,R;, (R:R,R;)™", R R.R,

(R,R)'F[t,]: RR*R;', Ri*'R;*R., R;7'R;*R'R:, 1, (R,R R,R.R;)™

R,
(R,R.R,)™" € F[t,], Ri*R;*R, = R,R;'R;* = R(R,R;)"'e ["F[t,],
R7'R;7*RTR;* = (R.R,R;)*R R, c ["'F'[t,s] ,

and

(RR.R;R.R,)™ = (R,R\E,R;R,)™ = R;'(R.R,R.) "R\ R.Ry- R;* € "R\ R, .
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Thus (B,R,)*F[t, ] C IM'(F[t;]UL). In a similar way we verify the
remaining claims in (1'). For example,
R2R1R2F[(R2R1R2)—lt13] = RleRzF[taz]
= R,R.R{R*, R,, (R\R,)”, R,R, ,(R.R;R))™, R\R,R,}
= {R\R,, R,R\R.R,, R,, R,R\R,R;R,, 1, R,R R,R.R;R,} .
We have R,RR,R,R = R,(RR,R;)’(R,R;)" and R,RR,RRR, =
R,(R.R,R,)¥R,R,)"'R,, and R;‘R;'R, = R,R;'R;*. Therefore
R2R1R2R1R3R1 = RZ(R1R2R3)2R2R;1R;1 = Rz(RJRzRa)Z(Rst)_I .

In this way we see that R,R.R,F[(R,RR,)‘t.,]cI'(F[t,JU1l). So
much for the proof of (1).
From Proposition 6.6, it follows that

[‘(tls,F) =I"8

where S = {’7 € (F[tm] U {1})FF; Ty = t13}- Set T = F[t13] U {1} For
any subset S*cT" such that /"T" = I"'S', we have I''(S'I'; NI, r) =
I, by Remark 1 following Proposition 6.6. The images of ¢,, under
F|t ] » are seen from

R2t13 = tla, (R2R3)_1t21 = t13; (Rle)t:sz = t13; R1R2R1t32 = t13 .

Inasmuch as I(R,R,)~ contains (R,R.R,)™', we can ignore the con-
tribution of (R,R,R,)~'. That is, set S' = {1, (R.R,)™", R,R,}. Then

IS = ({1} U Flt,)) ,

*
( ) bty = (RzR?,)hlJtls = (Rle)J“tw .
Consequently
I'i, (R.R)™J, (R.R)J '} if Jel,
**) r(tm,F) =

rif Jerl,.

All the assertions of the proposition follow from (**) and (*).

REMARK 18.2.5. The number of polyhedra in the polyhedral space
Y(ts, &) surrounding ¢, is

#%BJ = PP .
Similarly,
¥ %31,1-' = po .

From Proposition 18.2.3, we have

#%“',F = #y‘;ﬁ,p = 2‘00' o
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PROPOSITION 18.2.6. The stabilizer in I' of ec E(F)k =1, 2, 3)
18 given by the following lists

77(e, F) F(c,F) order
Diglss 0T Dystos {R.}} P
DuS(Via s or 83) {1} 1
(IR oif JeT
il {{«RSRIRZV}} {’r if Jer
¢ {{{JRIRa}} {0 if JeI'
ot {(R.R.R)Y s if Jer
. {J'R.R,, R,R.R}} (20 if Jel
et {{{RsRlRa} {m if Jer
$58a {{R,R,R.}} 2s
e N F {{R.}} P
y {J“Rle o if Jel
{(R.R.R))) rif Jero
y {JRle {o if JerI
{(RR.R))) s if JeT
R NER, R,NRR, R nRRR, E,0RR,R, 1
R.R,N R.R.R, BR N RR.R, 1
R, R.R, R.R, RR.R, 1

Proof. One verifies that R,R,R,S,;, = s, and R,R . R;s,, = §;;. Thus
the stabilizer of the 1-face §s,, contains the cyclic group {{R.R.R,}}.
Similar for §,s;. By reasoning as in the preceding propositions, one
proves the asserted results for §,s, and §,s,. For B, N R.R,, the
stabilizer leaves fixed each of its vertices v, 55, s, and its stabilizer is
in the intersection of the stabilizer of its vertices; hence the stabilizer
fixes each point of the smallest geodesic subspace containing the faces.

18.3. Riemannian manifold structure on Y.

Assume that |arg @*| < /2 — 7/p and that (1/7)arg*€ Q. Then
the space Y(®) has been defined as well as the canonical map = of
Y onto Ch®. At any point of ¥ which is not in the I' orbit of a
point in one of the six 4,;, the map 7 is a local homeomorphism.
At faces lying in some 4,;,, the neighborhood of the faces are given
by the results in §18.2. The hypotheses of Proposition 6.4.1 are
satisfied by the abutted family I"2. Indeed one can give Y a complex
analytic structure so that n: Y — Ch? is holomorphic (cf. Proposition
6.4.2). Thus we conclude (cf. §19 for details).
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LEMMA 18.3. For |arg @*| < w/2 — z/p and (1/x)arg @*cQ, the
space Y(®) has the structure of a Riemannian manifold such that
w:Y — Ch* is differentiable.

The infinitesimal Riemannian metric in Ch® pulls back to a metric
on Y which may be degenerate at points at which # is not a local
homeomorphism. However, it is not difficult to define a Riemannian
metric on Y(®) that is preserved by I'. For example, let I'; be a
torsion-free normal subgroup of I” of finite index — such a subgroup
exists in any finitely generated metric group by a result of Selberg.
Then choose a Riemannian metric on the manifold /°\Y. Averaging
over the finite group I'/I",, we can assume that the metric d on I"\Y
is I'-stable. The pull-back of d to Y gives a I'-stable metric on Y.

18.4. Autr Q, |arg 9*| < n/2 — ©/p, 3|gcd(p, o).

We take up the question of the order of Aut, 2 that was
mentioned in Remark 3 of §16.

LEMMA 18.5. Assume |arg @*| < w/2 — w/p. Let p = order 7ip°,
o = order 7i%° and assume that 3|ged(o, 0). Then % Aut, 2 = 1.

Proof. Let Y denote the manifold Y(®), let Y* denote the simply
connected covering space of Y, and let I'* denote the lift of I" to
Y. Then I'*/n(Y) = I and I'* operates discontinuously as a group
of isometries on the Riemannian manifold Y*. Let 2% denote a lift
of the polyhedron 2; inasmuch as 2 is a topological cell (by Lemma
3.8.2) 2% is a cell mapping homeomorphically onto 2. The space Y*
is the joined I'*-space of the abutted family of polyhedron I'*Q%*.
The group I'* operates discontinuously on Y* and satisfies both (CD1)
and (CD2) of Theorem 6.3.3. It follows that Aut,.2* is generated
by Ry, the set of words corresponding to shortest circuits in Y*
around 2-faces of 2*. From this in turn it follows that Aut,Q is
generated by <, the set of words corresponding to shortest circuits
in Y around 2-faces of 2. Inasmuch as the circuits around 2-faces
of 2 which do not contain an apex correspond to trivial words, we
need only consider the circuits around 4,;, for permutations (ijh) of
(123). By symmetry, it suffices to consider only circuits around 4,,..

Given such a circuit 2, RR, R R,-R,R 2, R R,-R,R,-R,R.,2, ---
with RR,-R,R,- --- 2 = 2, then set v = RR,-R,R, ---. We have
veAut; 2. We can assume that @ # 1, otherwise 3|0 and 3|0, imply
p = 8 and Q(p) satisfies (CD,); in that case the lemma is known (cf.
Remark 2 of §16). Hence Aut; 2 = Z;, and vy=1,J, or J'. Thus
v sends into 4,,, either 4,,, 4,,, or 4,,. Accordingly, v has the form
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(B.R.R,)"™, (RR,R)'" R, R, (R.R,R;)""R.E,R.R, .

We wish to prove v = 1. Hence we need only dismiss the possibilities
Y = (RB.R,R;)"R,R, or (R.R,R.)"R.R,R,R,.

Consider the canonical map 7:Y — Ch®. The circuit in Ch? cor-
responding to v places side by side 3m + l(resp. 3m + 2) images of
2 bounded by spinal surfaces meeting in a common slice containing
4y;. Bach of the 3m + 1(resp. 3m + 2) angles formed equals < (R,R,)™,
R,R;, = arg 7i9* (cf. §15). Hence (7ip®)™+*=1¢e¢=1 or 2. Conse-
quently, p|3m + (e = 1, 2). This contradicts 3|p. It follows that
Aut- 2 = 1.

19. Complex analytic structure on Y(®), |arg ¢*| < w/2 — 7/p,
Ttarg € Q.

We continue the notation of §18, writing I' = I'(p), 4 = A(p),

F = Q(p), Y = Y(®), p = order 7i®°, 0 = order 7i@*. Assume that p

and o are finite. Then
T P

— — =4 argp’)=2 n,o(i
P( p g@) m 5

— ar 3):2 g
5 g P )

K
VY
where ged(m, o) = 1 = ged(n, o). Set

¢ = exp(2wi/p) , ¢ = exp(2ri/o) .
Then &™ = i@ (" = Ni@°.

The canonical map © of Y onto the ball B is clearly a homeo-
morphism in the neighborhood of any point p of thecell n(v, F) of ¥
if p does not lie on 9(v, 4,;.)(¢, 4, k any permutation of 1, 2, 3); in the
neighborhood of such p, one chooses as coordinates the pull-back of
a standard coordinate system on the ball B.

We next describe the choice of a coordinate system in the neigh-
borhood of a point in %(v, 4,;;). By symmetry, we can take v =1
and pen@, 4,,). We shall cover a neighborhood of 7(1, 4,,,) in Y by
pull-backs of three balls in B centered at the vertices of 4,,.

We first consider the case p = s,. Reecall that (ef. (12.1))s, =
I,N I} and that the C-lines I, I} are orthogonal at s,, (cf. Remark
2 following Lemma 12.3). Therefore we can choose a standard non-
homogeneous coordinate system centered at s, with w =0 on I] and
v»=0 on I,. Since u and v are unique up to a scalar factor of
modulus one, (each line has a unique holomorphic structure induced
from C®!) we can make the choice unique by the additional conditions
u(8) > 0, v(§,) > 0. Let a be a positive number such that the ball
B,(s,,) with center at s, and radius d meet no face of F other than
those containing s,,. Let C,, denote the subset of B,x Cx C defined by
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CIZ = {(my u, 77); = ’I,l;((l?), vt = v(x)} .

Let : C,;, — B,(s;;) denote the projection on the first factor. We can
define an operation of I'i,,  on C, so that ¢ is a I';,,,, map. We
see this as follows.

By (9.1.6) the eigenvalue of R,R.R,R, corresponding to its fixed
point s in B is —»* and on standard nonhomogeneous coordinates
centered at s its eigenvalues are (7%®°/—7° 7°@°(—7?%); that is,
(¢*, ™). The same is true for R,R,R,R, (for it has the same charac-
teristic polynomial) which fixes s,. Hence

u(R, R, R, Ryx) = z”u(x)
v(R;R;R R,x) = &™v(x)

for all x ¢ B. Similarly by (9.1.1) and (9.1.2)

w(BsR\R,)'w) = u(@), v(B,R,R,)w) = §"v(x)
w(R,R,R.)'%) = Tu(@), v(ByR,R)'w) = v()

for all z e B.
Thus we define for all y = (x, %, 9) € C,,,

ﬁ(RaRleRﬂ/) = @1(2/) ’ ﬁ(RsR2R1R2y) = E 77(?/)
A(R:R.R)Y) = U(y) , F(R.R.Ry)y) = E0(y)
A((R.R.R,)y) = Cil(y) , T(R.R.R)\y) = 9(y) .

Holomorphiecally, take C, ~ {(&, ¥) € C% |&|™ + |7|™ < »¥}. Itis clear
now that : C,, — B.(s;,) is a I',,,» map and also holomorphic. The
canonical map =: y,, » — B branches over B,(s;) in exactly the same
way that C,, does. Hence the projection : C,, — B factors through
Y,,r and there is a unique /', homeomorphism f.:C,— Y, N
n(B,) such that wof, = 4, & > 0 on f5'(N([sw, Sil, F')), and ¥ > 0 on
S (glss, 8], F)). We sometimes denote f, as f,,.

In exactly the same way, one defines a space C;(resp. C;;) for
each vertex s,;;(resp.s:), 1+ 7,1, J =1,2,3; this yields six space.
Given any 7€ G(s,, F) (cf. §6.6 for definition), ¥'s, €. = {s;;, s3;
1#73, 1, =1, 2, 8}, and for each s€.%” we get a commutative diagram

c,—" ¢,

fslz ’"l 12

7
n_l(B) n Ys,F - 819, F ﬂ TL._I(Ba)

l l

Bu(s) —— Bu(sy) -

We next prove that:

v: C,—— C,, is holomorphic for all v e G(s,,, F') where s = vs,, .
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Inasmuch as f, is a I', » map, it suffices to prove that v is holo-
morphic for a set of representatives of I, »G(s, F); by Proposition
18.2.3(iii), {1, R, R;*, R,, R.R,, R.R,} is a set of representatives. We
shall give the argument only for the cases v = R,, v = R* and v
R.R,, the other cases following by symmetry.

Returning to Figure 14.1, we see that

(19.3) R[5, 8] = [812) 84s] -

Thus R,I, = I, and in the C-line I, the geodesic triangle R,4,,; abuts
4., along the geodesic line segment [s,, §,;]. Similarly

R,[3;, Sul = [82y 8], Rl = I3

and the geodesic triangle R, 4,, abuts 4., along the geodesic line
segment [s,, §;.]. Inasmuch as R, is an isometry of the ball, it carries
any standard nonhomogeneous coordinate on the C-line I, (resp. I)
centered at §,, to a standard nonhomogeneous coordinate on the C-
line I, (resp. I;) centered at s,,. We next compute the transformation
of the coordinates of Cj induced by R,.

By definition Cj has coordinates @, ¥; %™ (resp. ¥*) is the unique
standard nonhomogeneous coordinates on I, (resp. I;) centered at 3,
with @ > 0 on f57'(9([3.,, susl, F))(resp. ¥ > 0) on fi'(7([5%, sul, F)). By
(19.3), R, sends the defining data of the %, ¥ coordinates of Cj to
the defining data for the #, ¥ coordinates of C,,. Consequently, the
map R,C; — C,, is the map (@, ¥) — (&, ¥). Thus R, is holomorphic.

Consider next the map R;*: C; — C,. We have (cf. (13.1))

Rl_l[gm, t32] = [312, t32]
Ri—l[gls, Sp] = [3121 8]

The second relation implies that R sends the ¥ coordinates of Cy
to the ¥ coordinates of C,, by the same argument that was used
above. The first relation yields the diagram

s
12 13
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This shows that the image R[S, s] is the geodesic line segment
from s, to Ri's,,, which forms with [s,, §;] an angle equal to 2<(
tS8 = T2 — w/p — arg @* by Lemma 15.2. Thus transformation of
coordinates induced by R;':Cy — C, is

it too is holomorphic.
Finally, consider the map R.,R,: C, — C, where s = (R,R,)"'s;, = 8,
by (13.1)
RsRl[Ssu §32] = [312, §13]
R,R\[s5, tss] = [812, Ritss] -
The first relation implies by the argument used above that R,R,

transforms the % coordinate of C, to the # coodinate of C,. The
implication of the second relation becomes clear upon observing that

Rit,, = Ry(R,R.t;) by Lemma 13.3(i)
R3R1t23 = (R3R2R1)t31

and R,R.R,8,, S:] = [8s, si]. Consequently R,R,R, rotates 4, about
the midpoint of [s,, §,,] 180° and the image of 4,, under R,R, is
given (cf. the diagram)

Ty

R.R,R,4

R3R1t13

RSR lt23

by rotating [s., §,.] towards the direction of Imu < 0 through an
angle 2 < ¢,,8,,85; that is — (/2 — w/p + arg @°) by Lemma 15.2. Thus
the transformation of coordinates induced by R,R,: C,, — C,, is

which is holomorphic.
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Analogously, we can consider balls By(t,,) centered at ¢,, of radius
B and meeting no edge of 4,,, other than those containing ¢, We
can select @ and B so that

ds; C Bo(8y5) U Ba(815) U By(ts,) -
Define for any integer 7 mod 3,
C; = {(z, @); x € By(t,), W € C; W™ = w(w)}

where ¢; = ¢,_, ;+;, w is the unique standard nonhomogeneous coord-
inates on I, centered at ¢, and positive on the geodesic lin segment
[t:5::+:]- Then define the homeomorphism

fiCi—5 Y, » N T Y(Blty))

with properties analogous to (19.1). By the same type of reasoning
as above, one proves:

(19.4) For all veG(t, F) the map induced by v from C; to C; is
holomorphic, where v7't, = t;(i = 1, 2, 3).

The coordinate system on y that we have selected above has the
property:

(19.5) For any two overlapping coordinate neighborhoods, the coord-
wnates are biholomorphically related.

The proof is quite simple. For by choice of coordinates, the
intersection of two coordinate neighborhoods either
(i) projects by 7 biholomorphically onto a neighborhood in the
ball; or
(ii) has one of the forms
@) Y.rN Y. r N7 (Bus) N Bu(®)), 8, 8" €45
(b) Y, rNY.rNm(Bu(s) N By(t)), s, t € 4y
In Case (i), assertion (19.5) is obvious. In Case ii(a) the two coord-
inate systems are related by R,R;R, which belongs to G(s, F). In
case s = s, this is assured by (19.2); for any other s, the analogue
of (19.2) is valid by symmetry. Thus it remains only to consider
Case (iib). By symmetry, we may take s=s, ¢t =1¢, In the
overlap (iib), the coordinate function ¥ of C, has no branch locus
on Bg(t). Moreover, the %™ of C,, and @™ of C, are related by the
fractional linear transformation of the Poincaré disc I, which relates
the two standard nonhomogeneous coordinates centered at s,, and ¢,
respectively. Hence

o
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where neither numerator nor denominator vanish on B,(s;,) N Bs(t).
From this assertion (19.5) follows.

From (19.2) and (19.4) we can conclude that the group I' acts
holomorphically on Y. We summarize our conclusions in the following
theorem.

THEOREM 19.1. Let @ be any complex number of modulus 1 with
larg @*| < w/2 — @w/p and (1/7)arg® a rational number. Let I'(P)
denote the group generated by C-reflections with Coxeter diagram

and phase shift @, = @y = P, = . Let Y(®) denote the joined
I'(@)-space on which I'(p) operates discontinuously (cf. §6.5), and
7: Y(®) — Ch? the canonical I'(@)-map of Y(®) to the ball. Then Y(®)
has the structure of a complex analytic manifold satisfying

(1) = s holomorphic.

(2) FEach vel'(®) acts biholomorphically on Y(®@).

REMARK 1. If n/2—x/p<arg 9*<3(x/2 — w/p) and (1/7) arg @€
Q, the abutted smooth family of polyhedra I'2(®) satisfies conditions
BR of §6.4 but not hypothesis (2) of Proposition 6.4.2. For arg 9*>
)2 — TP, Aoy N Doy = &5, = 85 and Ly N 4y, = 8y = 8, the C-reflec-
tions (R.,R,R.? (R,R,R,)*? may not be an admissible pair (cf. §2).
The subgroup of I'(p) that fixes the point s, may not be finite.
Thus hypothesis (8) of Proposition 6.4.2 is generally violated.

REMARK 2. The proof of Theorem 19.1 is so much longer than
the proof of Proposition 6.4.2 because it proves the added assertion:
I" operates holomorphically on Y.

REMARK 3. By a well-known theorem of Selberg (cf. [9]) any
finitely generated matrix group I" has a subgroup of finite index I,
that has no elements of finite order. It follows readily that if vp=
p,vel, and pe B, then vy =1. A fortiori, I', operates freely on
Y. Therefore Y/I', is a complex analytic manifold and compact for
larg ¥*| < /2 — w/p and (1/x)arg®*c€ Q. In order to prove that
Y/I', is an algebraic manifold, it suffices by Kodaira’s fundamental
theorem to construct a Kaehler metric on Y/I", admitting a positive
line bundle. 3uch a metric can be constructed with the help of the
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Bergman kernel function for the domain [u|™ + |v[* < 1 in C% The
canonical line bundle turns out to be positive (cf. [8]). In [8], itis
shown that if m = 1, the Kaehler metric can be selected so as to
have everywhere negative sectional curvature.

20. Presentation for [I.

Let @ be a complex number with |p| = 1, ¥ = 1, and |arg ¢*| <
w/2 — w/p. LetI' = I'(@), Y = Y(p), and n: Y — Ch* the canonical F'
map. Let Y*® denote the simply connected covering space of Y, let
I'% denote the lift of I" to Y%, and let 0: Y* — Y denote the covering
map. Thus for each v%¢ /™ we have the commutative diagram

yil ys
| ]
Y-S v.

The cell decomposition Y = I"'Q lifts to a cell decomposition Y* =
"% with 0: 2% — 2 a homeomorphism. By the result in §18.3, ¥
has a Riemannian matrix which is preserved by I". The pull-back
of this metric to Y*® gives a metric preserved by I'5. The hypo-
theses of Theorem 6.3.2 are satisfied by (2%, I'% Y?®).

THEOREM 20.1. Let @ be a complex number of modulus 1 with
larg | <7m/2 — w/p. Let n = exp (wi/p). Set

p = order 7ip°, o = order 7i®*
r=pif 3}p, s=0if 3}o
e/3 if 3|p =0/3 if 3o .

Choose t, v so that

3¢t +1=0modp if3tp
3v+1=0modo if 3f0.

Let . denote the free group with gemerators {R; 1 =1, 2,3}. Let
#’ denote the normal subgroup of F generated by the words

{R?, R.R,R,R;'R;*R;", (R.R,R,)", (R,R,R)* 1,5 =1,2,38}.
Set

0: = (RiRi+1Ri+2)2HRiRi+l if 3 *‘0
o; = (RiRi_lRi_z)z”RiRi_l if 3/}’0' .

Let 2" denote the normal subgroup of & generated by the words
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(o= 0, =0} if 3/p0, largp’| <-Z — T
2 p
{0, = o) if 310,30, larg p|< Z — L
2 by
{0, = 0} if 3|, 3/0, largp'| < L — L
2 »
{1} if 3|0 and 3|0, largp| < L — T
2 »
— o, if 3po0, T _ T :
o, = 0 if 34p, 5~ = <argy
— i fe — (T
{o, = 03} if 3|p, arg 9’ < (2 . )

Let I' denote the action of I'(®) on Ch.
(1) If, in addition |arg @*| < /2 — w/p, then

I =9 ]z"..2".

(ii) If |arg | < w/2 — w/p and (@) satisfies (CD1) and (CD2)
(cf. §6.3), then

I' =9 | %" .
Proof. We first observe that the relations .’ and .&#” are
symmetric in 1,2,3. <%’ is symmetric since R;Y(R,R;R,)R, =

(R;R.R;)* for any 14, j, k. As for 2", given p, = p,, we have on
the one hand

Ri'0, = (R.R,R)"R;'R.R, (cf. Proof of Lemma 14.1 (i)) .

From R.R,R, = R,R.R,, we get R;'"R R, = R R,R;". Hence R;'p, =
o,R*. On the other hand

51‘01 = R?pz = (R3R1R2)2R3 = fostl .

Hence po,R;* = p;R;* and p, = p,. Similarly o, = 0, implies o, = o..
The relations <Z' U 2" coincide with the relations obtained around
the codimension-2 circuits of the region 2(@) by (10.1.2) and the
results in §17.1 and §18.4. Theorem 20.1 now follows directly
from Theorem 6.3.2.

REMARK 1. From the relations &2’ one can infer

(20.2) 0500, = 1 0,00, = 1.

Proof.
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0:0:0: = (BB R 'Ryt (B Ry R Ry (B R, Ry Ry
= (BoR.R,)** (BB, R,)* " Ry R (R, R, Ro)** "' 3
= (B.R.R)' % = (R R, R,)* ™" = 1.

The isomorphism J' V(@) — V(@) yields 0,0,0, = 1. The added rela-
tion p, = p, therefore implies pi=1. The independence of 2" from
#' is assured by the existence of the 3-fold branched I'-cover Y*
of §6.5. Similarly o, = 0, implies that ¢! = 1. The group .&# /%’
is the group operating on the lift of I” to the simply connected
covering space of Y* (which is not a manifold}).

REMARK 2. For those @ for which 2(p) satisfies condition
(CD1) and (CD2) (cf. §17.1) Theorem 20 gives a presentation for the
image of the lattice subgroup I'(®) in PU (H) — or equivalently, for
I'(p)]Z, where Z is the set of scalar multiplies of the identity matrix
in the matrix group I'(). In general, one may possibly have a
nontrivial extension

1 N r r—1

where N = 7,(Y), the fundamental group of the space Y(®). I do
not know whether there exist any values of @ with N(@) = {1};
equivalently, can Y(®) fail to be simply connected?

21. Some examples of isomorphisms among I'(®).

Let ¢; = (R.R;+.R;+,)%, regarded as an element of PU (H) for any
integer ¢ mod 3.

LeMMA 21.1. Let I’ denote the group I'(®) action on Ch* with
diagram

and @ =1V —1. Then
(i) I is an arithmetic lattice in PU (H).
(ii) I is generated by {c, ¢, cs}.

Proof of (i). Let k= Q[TrAdI'l. Then k = Q[cos2r/5] by
Lemma 17.2.1. Direct calculation shows that ‘4>0 for 1 + o € Galk,
4 denoting the determinant of the matrix e, e;) (7,5 =1, 2, 3).
Hence I' is an arithmetic lattice (cf. §4).
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Proof of (ii). By Lemma 16.1, the order of the transformation
¢; equals the order of 7i®®, which is the order of —»°. Thus ¢; is
of order 5 for j =1,2, 3. Inasmuch as arg¢* > —(n/2 — ©/5), we
have (v, vy > 0 (by (9.1.4)) and [,4, = Virnite 0 V7 is not empty.
By Lemma 13.3 (ii), ¢, fixes each point of I,,, and is thus a
C-reflection. Moreover, by Lemma 12.3

ILNIy =t (1 integer mod 3)

and thus each of I, I,, I, meets the other two. Thus ¢, ¢, fix the
point ¢,,. Direct calculation shows that for ¢°® = 1,

21.1 (Dy2s 'vzsﬁ_ = —qa 1—-2- 2—7:7—_2)_ — — QT
( : | V15| | Vo | 4 14+29+7° v
(212> (R3R1R2)_2t23 = Dz -

The first equation implies that {{c, ¢,}} ~ F;;. The second equa-
tion states that the stabilizer I',, of the point p,, contains {c;'c.c,,

¢i'c,Cs). Since I' is a discrete group, I7,, is a finite group. Since

@—3—@ is a maximal subgroup of PU (2) generated by C-reflec-
tions, it follows that {{ci'c.c., ci'c.cs}} = I',. Henee {{c, ¢, ¢;}} D{R,,
R,}. By symmetry {{c, ¢, ¢;}} D{R,, R,, R;}. This implies (ii).

ExampLE 1. Equation (21.1) has an interesting interpretation.
(@7*? = @*N°® = —7Ni. Thus there is an isomorphism A of I" to I'(y)
with arg «* = —7z/10 given by

The reason for not sending ¢, to R, is that ¢, rotates about its
fixed point set via 7i9* by (9.1.1), i.e.,, by —7%. Thus ¢ should
map to R,(y). The isomorphism A is induced by the automorphism
of C?

Vi it1,i40 — € (¢ integer mod 3) .

An alternative description is to say that A is induced by the isometry
of the Ch* formed from V(@) to the Ch* formed from V(y) which
takes

tog — Digy T Dasy iz Doy -
If we compose A with J': V(y) — V(v), we get that J'-A induces
by — Digy bos — Dagy Ly — Dy -

This example provides us with a fundamental domain for the
arithmetic lattice I'(®). For 2(@) does not satisfy condition (CD2)
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and is therefore not a fundamental domain mod Aut 2. However,
2(y) is a fundamental domain mod Aut,2(y) (={1, J, J3}).

The next example will provide a geometric isomorphism between
two arithmetic lattices generated by C-reflections having different
Coxeter diagrams.

ExXAMPLE 2. Let I'” denote the group generated by reflections
with diagram

3

3
O—OE—OG .

e; e e;

Inasmuch as there are no closed loops in the diagram, the phase
shifts can be arbitrary. Here {{R], R;}} and {{R,, R:}} are isomorphic
groups of I” where as R.R; = RiR;. It is easily verified that I is
discrete by the arithmeticity test of §4. Let @ = expni/6 as in
Example 1. Then there is an isomorphism of I to I'(p) given by

A R; — Ry(®)
R; — (R,E\R,)() .

Let pvi; =efNef (1,5=1,2,8,1+* 7). The isomorphism A’ is induced
by the isometry of Ch* which takes

D1z — tex(P), Dls — D1(P), Dis — to1(P) .

It should be noted that the image of A’ is all of I'(®) since it
contains (R,R,R.), (R.R;R,)* = R,(R,R,R,’R;*, and (R.R,R,)".

22. Nonstandard homomorphisms.

Given a nonarithmetic lattice I in PU(2, 1), there is a field auto-
morphism ¢ of C such that °I" is not a bounded set of matrices and
o is nontrivial on the field Q[Tr AdI'] (ef. Lemma 4.1). Such a
monomorphism ¢ of I" cannot be extended to a rational representation
of PU(2, 1) — for such a representation o would satisfy Tr Ad o(v) =
Tr Adv for all yeI'. This is in sharp contrast to the remarkable
“super-rigidity” theorem proved by Margulis for semi-simple groups
of R-rank > 1.

There is however, another kind of violation of super-rigidity:
There is a homomorphism p of I'(p,) onto I'(p,) which is not a
composition of a rational homomorphism and a field automorphism;
this will follow once we show that Ker p is infinite. Moreover, in
our example I'(p,) and I'(p,) are arithmetic lattices.
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Let I', = I'(p,) and I', = I'(p,) be the groups generated by C-
reflections with Coxeter diagrams

3

with arg ¢} = —x/10, arg ®; = Tx/10. By Theorem 20.1, we know
that the relations in the presentation for I, and I, are {R:=1,
R.R,R, = R;R,R; i, =1, 2,8} and in addition for I,

{(R1R2R3)m =1, (RR.R)" =1,
(R,R,R,)’R\R, = (RB,R,R,)°R,R, = (R,R.R,)R;R,)™

and for I,

{(131122133)4 =1
(R.R,R,)’R.R, = (R,R,R,)*R,R, .

Moreover, in I', we have ((R.R,R,)°R,R,) = (R,R,R,)’R.R,, by Lemma
16.1 and (R,R,R)° =1 by (9.1.2). Thus the map p: B,(®,) — R/(p,)
(1=1,2 3) is a homomorphism. Its kernel is a normal subgroup
N of I'(p,) containing (R.R,R,)‘, (R,R.R) (R,R.R,)*, whose common
fixed point set is I,N I, N I, which is empty. Since every finite
subgroup of I, fixes a point in the ball, N is not finite. Conse-
quently o is not a composition of the stated type. Consulting Table
3 of §17.3, we see that both I'(p,) and I'(p,) are arithmetic lattices.
Both these lattices are cocompact.
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