CONSTRUCTION OF Z_{p}-ACTIONS ON MANIFOLDS

Lowell Jones

Abstract

This is one in a series of papers about PL topological actions of the prime order group Z_{p} on the \mathbf{m}-dimentional ball B^{m}.

Recall that P. A. Smith [15] has shown that any fixed point set $K \subset B^{m}$ of an action $Z_{p} \times B^{m} \rightarrow B^{m}$ must satisfy

$$
\begin{equation*}
\bar{H}_{*}\left(K, Z_{p}\right)=0 \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\left(K, K \cap \partial B^{m}\right) \text { is a } Z_{p} \text {-homology manifold pair . } \tag{2}
\end{equation*}
$$

More recently the author has shown [7] that if $K \cap B^{m}$ is the fixed point set of a PL topological action $Z_{p} \times B^{m} \rightarrow B^{m}$, and p odd, then K also satisfies

$$
\begin{equation*}
h_{*}(K)=0 . \tag{3}
\end{equation*}
$$

Here

$$
h_{*}(K) \in H_{*}(K, Z)
$$

is a characteristic class defined for all rational-homology manifolds. There are many examples of K satisfying (1), (2) above, but not satisfying (3) above. Properties of $h_{*}(K)$, and of related characteristic classes, can be found in [7]. An important step in the verification of (3) above was a PL equivariant index theorem (see Theorem A below) which shall be described now.

Let G_{p} denote the Witt group of nondegenerate symmetric forms over the field Z_{p} : each element in G_{p} is represented by a symmetric matrix $\left(a_{i j}\right)$ over Z_{p} with $\operatorname{det}\left(a_{i j}\right) \neq 0 ;\left(a_{i j}\right)$ and $\left(b_{i j}\right)$ are added in G_{p} by forming their direct sum $\left(a_{i j}\right) \oplus\left(b_{i j}\right)$; the zero element of G_{p} is represented by any direct sum of hyperbolic planes $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right) \oplus\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right) \oplus$ $\cdots \oplus\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right) . \quad G_{p}$ also has a ring structure: if $\lambda: V \times V \rightarrow Z_{p}, \lambda^{\prime}:$ $V^{\prime} \times V^{\prime} \rightarrow Z_{p}$ are two symmetric forms representing $\alpha, \beta \in G_{p}$, then $\alpha \cdot \beta$ is represented by the tensor product $\lambda \oplus \lambda^{\prime}:\left(V \oplus V^{\prime}\right) \times\left(V \oplus V^{\prime}\right) \rightarrow$ Z_{p}.

If -1 is a square $\bmod p$ then $G_{p} \cong Z_{2} \oplus Z_{2}$: let $r: G_{p} \rightarrow Z_{2}$ map $\left(a_{i j}\right)$ to its rank mod 2, and let det: $G_{p} \rightarrow Z_{2} \operatorname{map}\left(a_{i j}\right)$ to its determinant it the group of units $Z_{p} \bmod$ the subgroup of square units $Z_{p}^{*} /\left(Z_{p}^{*}\right)^{2} \cong Z_{2}$; then $r \oplus \operatorname{det}: G_{p} \rightarrow Z_{2} \oplus Z_{2}$ is an isomorphism. If -1 is not a square $\bmod p$, then $G_{p} \cong Z_{4}:[1]$ is a generator for G_{p}, and in G_{p} there are relations $[1] \oplus[1] \oplus[1] \sim[-1],[1] \oplus[-1] \sim\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$.

Let A denote a finitely generated torsion-free module over the group ring $Z\left(Z_{p}\right)$. Following Wall [16, 17], a Hermitian form on A is a bilinear mapping $\lambda: A \times A \rightarrow Z\left(Z_{p}\right)$ satisfying $\lambda(\alpha \cdot x, \beta \cdot y)=$ $\alpha \cdot \bar{\beta} \lambda(x, y)$ for $\alpha, \beta \in Z\left(Z_{p}\right)$, where if t is a generator for Z_{p} then $\overline{a_{0}+a_{1} t+a_{2} t^{2}+\cdots+a_{p-1} t^{p-1}}=a_{0}+a_{p-1} t+a_{p-2} t^{2}+\cdots+a_{1} t^{p-1}$. To each Hermitian form λ on A is associated a symmetric bilinear form $\hat{\lambda}: A \times A \rightarrow Z$ over the integers by the rule $\lambda(x, y)=a_{0}+a_{1} t+\cdots+$ $a_{p-1} t^{p-1}=\hat{\lambda}(x, y)=a_{0}$: elsewhere $\hat{\lambda}$ is called the transfer of λ. Set $A_{s}=\{x \in A \mid s \cdot x=0\}, A_{\eta}=\{x \in A \mid \eta \cdot x=0\},\left.\hat{\lambda}_{s} \equiv \widehat{\lambda}\right|_{A_{s} \times A_{s}},\left.\hat{\lambda}_{\eta} \equiv \hat{\lambda}\right|_{A_{\eta} \times A_{\eta}}$, where $s=t-1$ and $\eta=1+t+t^{2}+\cdots+t^{p-1}$. Let $i(\lambda), i_{\eta}(\lambda), i_{s}(\lambda)$ denote the indices of $\hat{\lambda}, \hat{\lambda}_{n}, \hat{\lambda}_{s}$; note that over the rationals $\hat{\lambda}=\widehat{\lambda}_{s} \oplus \hat{\lambda}_{\eta}$, so $i(\lambda)=i_{\eta}(\lambda)+i_{s}(\lambda)$.

Now let $r: Z_{p} \times M \rightarrow M$ be a PL action of the group Z_{p} on a closed oriented PL manifold, M, having dimension $4 k . K \subset M$ denotes the fixed point set of r. We now define the invariants $i(M), i_{r}(M), i_{s}(M)$, $i_{p}(K)$.

The first three will denote i, i_{η}, i_{s} epplied to the \boldsymbol{Z}_{p}-equivariant intersection pairing

$$
\frac{H_{2 k}(M, Z)}{\operatorname{Tors}(M)} \times \frac{H_{2 k}(M, Z)}{\operatorname{Tors}(M)} \longrightarrow Z\left(Z_{p}\right)
$$

where $\operatorname{Tors}(M)$ denotes the torsion subgroup of $H_{2 k}(M, Z)$. This intersection pairing is determined by the given orientaion, [M], of M.

Let $K_{i}, i=1,2,, \cdots, q$ be the connected components of K. Each K_{i} is a closed Z_{p}-homology manifold (a P.A. Smith theorem). We assume in addition that each K_{i} is orientable over the integers, i.e., $H_{k_{i}}\left(K_{i}, Z\right) \cong Z, H_{j}\left(K_{i}, Z\right)=0 \forall j>k_{i}$, where $k_{i}=\operatorname{dim}\left(K_{i}\right)$.

If $k_{i}=0 \bmod 4$, write $k_{i}=4 l_{i}$ and choose arbitrarily an integral orientation, [K_{i}], for K_{i}. [K_{i}] determines an intersection pairing

$$
\frac{H_{2 l_{i}}\left(K_{i}, Z\right)}{\operatorname{Tors}\left(K_{i}\right)} \times \frac{H_{2 l_{i}}\left(K_{i}, Z\right)}{\operatorname{Tors}\left(K_{i}\right)}
$$

where $\operatorname{Tors}\left(K_{i}\right)$ denotes the torsion subgroup of $H_{2 l_{i}}\left(K_{i}, Z\right)$. The $\bmod p$ reduction of this pairing represents some $\alpha_{i} \in G_{p}$.

Define $i_{p}(K) \equiv \sum_{i} h_{i}\left(\alpha_{i}\right)$, where the summation runs over all i with $k_{i}=0 \bmod 4$, and where the homomorphisms $h_{i}: G_{p} \rightarrow G_{p}$ are yet to be defined.

We now define $h_{i}: G_{p} \rightarrow G_{p}:$ Choose for each K_{i} a "slice" $Z_{p} \times D^{4 k-k_{i}} \rightarrow$ $D^{4 k-k_{i}}$ of the action $Z_{p} \times M \rightarrow M$ near the fixed point set K_{i}. These "slices" can be gotten by constructing a \boldsymbol{Z}_{p}-equivariant cell structure
"dual" to a \boldsymbol{Z}_{p}-equivariant PL triangulation for $\boldsymbol{Z}_{p} \times M \rightarrow M$, and then choosing $Z_{p} \times D^{4 k-k_{i}} \rightarrow D^{4 k-k_{i}}$ to be any equivariant cell dual to a k_{i} dimensional simplex of K_{i}. Note that the orbit space $\partial D^{4 k-k_{i}} / Z_{p}$ is a homotopy lens space, which we'll denote by L_{i}. For the K_{i} under consideration, $k_{i}=4 l_{i}$. So dimension $\left(L_{i}\right)=4\left(k-l_{i}\right)-1$. Thus $H_{2\left(k-l_{i}\right)-1}\left(L_{i}, Z\right) \cong Z_{p}$ and links dually with itself. Note that there are two linking forms, corresponding to the two distinct integral orientations for L_{i}. A particular orientation [L_{i}] is determined from $[M]$ and $\left[K_{i}\right]$ as follows. $[M]$ and $\left[K_{i}\right]$ determine an orientation [$\left.D^{4 k-k_{i}}\right]$ for the dual cell $D^{4 k-k_{i}}$ by requiring the equation $[M]=$ $\left[D^{4 k-k_{i}}\right] \times\left[K_{i}\right]$ to hold near $D^{4 k-k_{i}}$. Since $L_{i}=\partial D^{4 k-k_{i}} / Z_{p},\left[D^{4 k-k_{i}}\right]$ determines an orientation [L_{i}]. Now let link: $H_{2\left(k-l_{i}\right)-1}\left(L_{i}, Z\right) \times$ $H_{2\left(k-l_{i}\right)-1}\left(L_{i}, Z\right) \rightarrow Q / Z$ denote the linking pairing associated to [L_{i}]. If for all $x \in H_{2\left(k-l_{i}\right)-1}\left(L_{i}, Z\right)$ we have link $(x, x)=a_{x} / p$ where the integer a_{x} is a square $\bmod p$ then set $h_{i} \equiv 1$. Otherwise define h_{i} to send each symmetric matrix $\left[a_{i j}\right]$ to $\left[b a_{i j}\right]$ where b is some nonsquare element of Z_{p}.

Here is an equivalent definition of h_{i}. Note that link: $H_{2\left(k-l_{i}\right)-1}$ $\left(L_{i}, Z\right) \times H_{2\left(k-l_{i}\right)-1}(L, Z) \rightarrow Q / Z$ maps into $Z_{p} \subset Q / Z$, and thus represents an element $\ln (L) \in G_{p} . h_{i}: G_{p} \rightarrow G_{p}$ is just left multiplication by $\ln (L)$.

Theorem A. Let $Z_{p} \times M \rightarrow M$ be a PL action of a group having odd prime order on an oriented, closed, PL manifold having dimension equal zero $\bmod 4$.

Then $i_{p}(K), i(M)$, and $i_{r}(M)$ are related by the following tables.
Table (1) if $p=2 q+1$ with $q=$ odd,

$i_{p}(K)$	$i_{\eta}(M)+(p-1) i(M) \bmod 8$
$[1]$	$+2 q$
$[1] \oplus[1]$	4
$[1] \oplus[1] \oplus[1]$	$-2 q$
0	0

Table (2) if $p=4 q+1$ with $q=$ odd,

$i_{p}(K)$	$i_{\eta}(M)+(p-1) i(M) \bmod 8$
$[1]$	4
$[2]$	0
$[1] \oplus[2]$	4
0	0

Table (3) if $p=8 q+1$

$i_{p}(K)$	$i_{n}(M) \bmod 8$
$[1]$	0
$[l]$	4
$[1] \oplus[l]$	4
0	0

Here l denotes any integer which is not a square $\bmod p$.
Remark. The entries under $i_{p}(K)$ in Tables 1,2 completely exhaust the elements of the Witt group G_{p}. To see this note that by the quadratic reciprocity principle -1 is not a square $\bmod p \Leftrightarrow p=$ $2 q+1$ with $q=$ odd. And 2 is not a square $\bmod p \Leftrightarrow p=4 q+1$ with $q=$ odd.

This theorem was first formulated and proven by the author, under the condition that 2 generates the group of units in the field Z_{p} (see [8]). A complete proof and significant generalization was later given by J. P. Alexander and G. C. Hamrick [1].

There is also a characteristic class version of Theorem A, due to the author [7], which follows directly from Theorem A. If $Z_{p} \times M \rightarrow M$ is a PL action on an oriented PL manifold M (M need not be closed), let K denote the fixed point set and $\psi: Z_{p} \times R \rightarrow R$ an equivariant regular neighborhood for K in $Z_{p} \times M \rightarrow M$. There are two characteristic classes

$$
\sum_{i} \gamma^{i}(K) \in \sum_{i} H^{m-4 i}\left((K, \partial K), W(Q) \otimes_{Z} Z_{(2)}\right)
$$

and

$$
\sum_{i} \theta^{i}(\psi, R) \in \sum_{i} H^{m-4 i}\left((K, \partial K), W\left(Q\left(Z_{p}\right)\right) \otimes_{Z} Z_{(2)}\right)
$$

Here $m=$ dimension $(M), Z_{(2)}$ denotes the integers locallized at 2 , $W(Q)$ and $W\left(Q\left(Z_{p}\right)\right)$ denote the Witt-Grothendiek group of nonsingular symmetric and hermetian forms over Q and $Q\left(Z_{p}\right)$ respectively. The class $\gamma^{*}(K)$ depends only on the topological type of ($K, \partial K$). But the class $\theta^{*}(\psi, R)$ depends on the PL topological type of $Z_{p} \times R \rightarrow R$. There is a relation between $\gamma^{*}(K)$ and $\theta^{*}(\psi, R)$ which is determined directly by the tables in Theorem A. By exploiting this relation, one can prove that $h_{*}(K)=0$ for any fixed point of a Z_{p} action on a PL manifold $\left(h_{*}()\right.$ is the characteristic class mentioned in (3) above) [see 7].

In this paper we prove the following related (to Thm. A) result.
Theorem 0.1. Let n be any positive integer, and $\left[a_{i j}\right]$ a square,
symmetric matrix over the integers satisfying $\operatorname{det}\left(\alpha_{i j}\right) \neq 0 \bmod p$. Let Z_{p} denoze the integers localized at p. Then there is a PL group action $Z_{p} \times M \rightarrow M$ on $a(4+4 n)$-dimensional almost paralizable manifold M, having a 4-dimensional fixed point set K, for which the intersection pairing $H_{2}(K, Z) \times H_{2}(K, Z) \rightarrow Z$ is equivalent over $Z_{(p)}$ to $\left[a_{i j}\right] \oplus\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$. Furthermore $i_{p}(K), i(M), i_{\eta}(M)$ are related as in the tables given above in Theorem A.

Remark. If the action $\boldsymbol{Z}_{p} \times M \rightarrow M$ is restricted to the boundary of a cell which is dual to a 4 -dimensional simplex of K, the orbit space will be an exotic lens space, L, of dimension $4 n-1$. If L^{\prime} is any other exotic lens space of dimension $4 n-1$, there is an action $Z_{p} \times M^{\prime} \rightarrow M^{\prime}$ satisfying 0.1 , and for which L^{\prime} is obtained form $Z_{p} \times M^{\prime} \rightarrow M^{\prime}$ in the manner just described.

Theorem 0.1 is related in several ways to the authors study of actions $Z_{p} \times B^{m} \rightarrow B^{m}$. Originally, Theorem 0.1 was the first step in proving Theorem A above. By forming the connected sum of $Z_{p} \times M \rightarrow M$ in Theorem A with some $C P^{n} \times\left(Z_{p} \times M^{\prime} \rightarrow M^{\prime}\right)$ where $Z_{p} \times M^{\prime} \rightarrow M^{\prime}$ comes from 0.1 , it reduces proving Theorem A to the special case when the fixed point set K has a mid-dimensional intersection form equivalent over the rationals to a hyperbolic form. Then a surgery procedure on K and $Z_{p} \times M \rightarrow M$ changed the homology of M and K (but not the value of $i_{p}(K), i(M), i_{r}(M)$, so that Theorem A becomes obvious.

Another use of Theorem 0.1 (one which shall be followed in a later paper) is to aid in completing surgery on a complicated surgery problem. To any triangulated subset $K \subset B^{m}$ satisfying (1), (2) above, there is associated a complicated surgery problem \mathscr{S}, and surgery can be completed on \mathscr{S} (i.e. $\mathscr{S}=0$ in a surgery group) iff $K \subset B^{m}$ is the fixed point set of a PL action $Z_{p} \times B^{m} \rightarrow B^{m}$ [see 8]. It is known \mathscr{S} lies in the 2 -torsion supgroup of a complicated surgery group, and that $\mathscr{S}=0$ if $\bar{H}_{*}\left(K, Z_{2}\right)=0$ (see [8]). To analyze \mathscr{S} further it is important to relate it to some intrinsic invariant of K. The intrinsic invariant which works is the characteristic class $h_{*}(K) \in H_{*}\left(K, Z_{2}\right)$ in (3) above. In further papers it will be shown that surgery can be completed on \mathscr{S} iff $h_{*}(K)=0$, thus proving that (1), (2), (3) above are both necessary and sufficient conditions for K to be a fixed point set of some $Z_{p} \times B^{m} \rightarrow \dot{B}^{m}$. In proving the implication

$$
h_{*}(K)=0 \longmapsto \mathscr{S}=0,
$$

Theorem 0.1 will be used in detail. That is, not just the statement
of 0.1 will be used, but also some further properties (see 3.1 below) of $Z_{p} \times M \rightarrow M$ constructed in the proof of 0.1 will be used.

The rest of this paper is organized as follows:
Section 1. Shows that certain torsion free $Z\left(Z_{p}\right)$-modules are actually stably free.

Section 2. Computes $i_{r}(\lambda)$ for certain Hermitian forms $\lambda: Z\left(Z_{p}\right) \times Z\left(Z_{p}\right) \rightarrow Z\left(Z_{p}\right)$, and gives an algebraic version of the computations in the tables of Theorem A.

Section 3. Constructs the actions $Z_{p} \times M \rightarrow M$, and examines homology properties.

Section 4. Verifies Tables 1, 2, 3 for the actions constructed in $\S 3$.

It is a pleasure to thank G. Hamrick for some suggestions about this paper. Thanks also to J. Milgram for help with the calculations in $\S 2$, and to the referee his suggestion of Lemma 2.2 to simplify the computations in $\S 4$.

1. Let $0 \rightarrow C_{m} \xrightarrow{\partial_{m}} C_{m-1} \xrightarrow{\partial_{m-1}} C_{m-2} \xrightarrow{\partial_{m-2}} \cdots C_{0}$ be a finitely generated free $Z\left(Z_{n}\right)$-chain complex. Suppose the homology groups $H_{i}(C)$ are torsion prime to n for $i \neq j$, and the torsion part of $H_{i}(C)$-denoted $\operatorname{Tors}\left(H_{j}\right)$-is also prime to n. It is a well-known fact that under these restrictions the quotient $H_{j}(C) / \operatorname{Tors}\left(H_{j}\right)$ must be a projective $Z\left(Z_{n}\right)$-module.

Theorem 1.0. $H_{j}(C) / \operatorname{Tors}\left(H_{j}\right)$ is a stably free $Z\left(Z_{n}\right)$-module if one of the following holds:
(a) Z_{n} acts trivially on each of the modules $H_{i}(C)(i \neq j)$, $\operatorname{Tors}\left(H_{j}\right)$.
(b) n is a prime; p is a prime which generates the group of units in the field Z_{n}; each of the modules $H_{i}(C)(i \neq j)$, Tors $\left(H_{j}\right)$ has order equal to a power of p.

Proof.
Step 1. For M equal any of the modules $H_{i}(C)(i \neq j), \operatorname{Tors}\left(H_{j}\right)$, there is an exact sequence of $Z\left(Z_{n}\right)$-modules

$$
0 \longrightarrow F \longrightarrow F^{\prime} \longrightarrow M \longrightarrow 0
$$

where F, F^{\prime} are finitely generated stably free $Z\left(Z_{n}\right)$-modules.
If the chain complex satisfies (a), then this follows Lemma 1.1 [4].

Suppose (b) is satisfied. First consider the case when $H_{i}(C)$ ($i \neq j$), and $\operatorname{Tors}\left(H_{j}\right)$ are Z_{p}-vector spaces. Set $\Gamma \equiv Z_{p}\left(Z_{n}\right) . \Gamma$ is the
direct sum of two fields $Z_{p} \otimes Z_{p}(\theta)$ where θ is a primitive nth root of unity: $Z_{p}(\theta)$ is a field because by the hypothesis of (b) $1+x+$ $x^{2}+\cdots+x^{n-1}$ is an irreducible polynomial over the field Z_{p}. So as Γ-modules $H_{i}(C)(i \neq j)$ and $\operatorname{Tors}\left(H_{j}\right)$ as the direct sum of a finite number of copies of Z_{p} and $Z_{p}(\theta)$. The kernels of the first two of the following natural projections

$$
\begin{aligned}
& Z\left(Z_{n}\right) \longrightarrow Z_{p} \\
& Z\left(Z_{n}\right) \longrightarrow \Gamma \\
& Z\left(Z_{n}\right) \longrightarrow Z_{p}(\theta)
\end{aligned}
$$

are free $Z\left(Z_{n}\right)$-modules (see $\S 1$ in [3]); hence the kernel of the third projection must be stably free (Schanuel's Lemma). Now it is seen that the kernel of $F^{\prime} \xrightarrow{\alpha} H_{i}(C)$ (or of $F^{\prime} \xrightarrow{\alpha} \operatorname{Tors}\left(H_{j}\right)$) must be stably free, where α is any surjection from a finitely generated, stably free $Z\left(Z_{n}\right)$-module F^{\prime} (again, Schanuel's Lemma).

To establish Step 1 in general, split $H_{i}(C)$ (or Tors $\left(H_{j}\right)$ into its primary components, filter each of the by submodules $A_{p}^{1} \subset A_{p}^{2} \subset A_{p}^{3} \subset$ $\cdots \subset H_{i}(C)_{p}$ where A_{p}^{i+1} / A_{p}^{i} is a Z_{p}-vector space. Using the induction, and the special case just considered, argue that each A_{p}^{i} has a length two finite generated free resolution. Clearly then the same holds for $H_{i}(C)=\otimes_{p} H_{i}(C)_{p}$.

Step 2. There is no loss in supposing $j \neq m$. Consider the exact sequence

$$
0 \longrightarrow K_{i} \longrightarrow C_{i} \longrightarrow K_{i-1} \longrightarrow H_{i-1}(C) \longrightarrow 0,
$$

where $K_{i} \equiv \operatorname{kernel}\left(\partial_{i}\right)$. Using this sequence, Schanuel's Lemma, and Step 1, argue that K_{i} is stably free for all $i \leqq j$. In particular, $H_{j}(C)$ has a finitely stably free resolution

$$
0 \longrightarrow C_{m} \longrightarrow \cdots \longrightarrow C_{j+1} \longrightarrow K_{j} \longrightarrow H_{j}(C) \longrightarrow 0 .
$$

Tors $\left(H_{j}\right)$ has a finite stably free resolution by Step 1 . It follows that the quotient of these two modules, $H_{j}(C) / \operatorname{Tors}\left(H_{j}\right)$, also has a finite stably free resolution. But since this last module is torsion free, and with finite projective dimension, it must be projective, [see 5.1 in 13]. Finally a projective module with a finite stably free resolution must be stably free, so $H_{j}(C) / \operatorname{Tors}\left(H_{j}\right)$ is stably free as claimed.
2. Notations. For two primes $p, q,\binom{q}{p}$ equals +1 if q is a square $\bmod p$, and equals -1 otherwise.

The calculations needed to prove 0.1 , which are purely algebraic in nature, are gathered together in the following lemma.

Any Hermitian for $\lambda: Z\left(Z_{p}\right) \times Z\left(Z_{p}\right) \rightarrow Z\left(Z_{p}\right)$ is represented by a matrix $[\alpha]$, where $\alpha \in Z\left(Z_{p}\right)$ with $\bar{\alpha}=\alpha$. This means that $\lambda(1,1)=\alpha$, so $\lambda(x, y)=x \bar{y} \alpha$ follows from the properties of a hermetian form. For specific $\alpha, i_{r}([\alpha])$ calculates as follows:

Lemma 2.0.
(a) $i_{\eta}\left(\left[t^{(p-1) / 2}+t^{(p-1) / 2+1}\right]\right)=0$ for $p=4 q+1$.
(b) $i_{r}([1+a \eta])=2 q$ for $p=2 q+1, a=$ any integer.
(c) $i_{\eta}\left(\left[\alpha_{l}\right]\right)=4 \bmod 8$, for $p=8 q+1, l$ an odd positive prime integer less than $p / 2$ with $\binom{l}{p}=1$, and

$$
\alpha_{l}=t^{(p-2 l+1) / 2}+t^{(p-2 l+1) / 2+1}+\cdots+t^{(p-2 l+1) / 2+2 l-1}
$$

Proof of 2.0.
Part (a). Let $W \subset\left(Z\left(Z_{p}\right)\right)$ be generated over Z by $\left\{t-1, t^{2}-t\right.$, $\left.t^{3}-t^{2}, \cdots, t^{(p-1) / 2-1}-t^{(p-1) / 2-2}\right\}$. Then with respect to the transfer pairing, $W \perp W$, and $\operatorname{dim}_{Q}\left(W^{\perp} / W\right)=2$. A Q-basis for W^{\perp} / W is given by

$$
\{v, w\} \equiv\left\{\left(\sum_{i=(p-1) / 4}^{(p-1) / 2} t^{2 i}-\left(\frac{p-1}{4}+1\right)\right),\left(\sum_{i=(p-1) / 4}^{(p-1) / 2} t^{2 i+1}-\left(\frac{p-1}{4}\right)\right)\right\} .
$$

Then

$$
\left[\begin{array}{ll}
\langle v, v\rangle & \langle v, w\rangle \\
\langle w, v\rangle & \langle w, w\rangle
\end{array}\right]=\left[\begin{array}{ll}
-\left(\frac{p-1}{2}\right) & -\left(\frac{p-1}{2}\right)-1 \\
-\left(\frac{p-1}{2}\right)-1-\left(\frac{p-1}{2}\right)
\end{array}\right]
$$

where $\left\rangle\right.$ is the transfer pairing associated to $\left[t^{(p-1) / 2}+t^{(p-1) / 2+1}\right]$. Since the latter matrix has index zero (see pages $7-11$ of [3]), there is $v^{\prime} \in W^{\perp} / W \otimes_{Z} R$ so that $\left\langle v^{\prime}, v^{\prime}\right\rangle=0$ ($R=$ real numbers). Now $W^{\prime}=\left\{v^{\prime} \cup W \otimes_{Z} R\right\}$ satisfies: $W^{\prime} \perp W^{\prime} ; \operatorname{dim}\left(W^{\prime}\right)=1 / 2 \operatorname{dim}\left(\left(Z\left(Z_{p}\right)\right)_{r} \otimes_{Y} R\right)$. So the index in question is zero.

Part (b). With respect to the real basis $\left\{t-1, t^{2}-t, t^{3}-t^{2}, \cdots\right.$ $\left.\cdots, t^{p-1}-t^{p-2}\right\}$, the index in question is computed from the $(p-1) \times$ ($p-1$) matrix

$$
\left[\begin{array}{rrrrrr}
2 & -1 & & & & \\
-1 & 2 & -1 & & & \\
& -1 & 2 & -1 & & \\
& & -1 & 2 & & \\
& & & & \cdot & \\
& & & & 2 & -1 \\
& & & & -1 & 2
\end{array}\right]
$$

which has 2's down the diagonal, -1 's on either side of the diagonal and zero's elsewhere. The index of this matrix is $p-1$ (see pages 7-11 of [3]).

Part (c). Set $\lambda=\left[\alpha_{l}\right]$. Then $i_{\eta}(\lambda)=i(\hat{\lambda})-i_{s}(\lambda) . \hat{\lambda}_{s}$ is represented by [2lp] so $i_{s}(\lambda)=+1$. Thus it suffices to show that $i(\hat{\lambda})=+5 \bmod 8$. To do this we'll need the results of Appendix 4 in [2]. In the notation of that Appendix L will denote the Z-module $Z\left(Z_{p}\right)$ provided with the Z-valued symmetric bilinear form $\hat{\lambda}$. Note that $\hat{\lambda}\left(t^{i}, t^{i}\right)=0 \forall i$ where t is a generator for \boldsymbol{Z}_{p}, thus $\hat{\lambda}(x, x)=0 \bmod 2$ $\forall x \in Z\left(\boldsymbol{Z}_{p}\right)$. So L is of type II and Milgrams Theorem (pg. 127 [2]) applies. $L^{\#}$ is the subgroup of $L \otimes Q$ generated by L and $\eta / 2 l$, where $\eta=1+t+t^{2}+\cdots+t^{p-1}$. Thus $L^{\sharp} / L \cong Z_{2 l}$ and has $x \equiv \eta / 2 l$ for generator,

$$
\varphi(x) \equiv(1 / 2) \hat{\lambda}(\eta / 2 l, \eta / 2 l)=(1 / 2) \cdot\left[1 /\left(4 l^{2}\right)\right] \cdot 2 l p=\frac{p}{4 l}
$$

So by Milgram's Theorem $i(\hat{\lambda})=+5 \bmod 8$ if and only if $\sum_{k=D}^{2 l-1} \exp$ $\left(\pi i k^{2}(p / 4 l)\right.$) is a positive real multiple of $\exp (2 \pi i 5 / 8)$.

We will show this in several steps. First we claim

$$
\begin{gathered}
\sum_{k=0}^{2 l-1} \exp \left(2 \pi i k^{2} \cdot \frac{p}{4 l}\right) \\
=\underbrace{\left(\sum_{k=0}^{1} \exp \left(2 \pi i k^{2} \cdot \frac{l p}{4}\right)\right.}_{\alpha}) \cdot(\underbrace{\left(\sum_{k=0}^{l-1} \exp \left(2 \pi i k^{2} \cdot \frac{p}{l}\right)\right.}_{\beta}) .
\end{gathered}
$$

This follows by splitting L^{\sharp} / L into its primary components

$$
L^{\#} / L \cong Z_{2} \oplus Z_{l} .
$$

Note, this is an orthognal with respect to the quadratic function φ, i.e.,

$$
\varphi(x \oplus y)=\varphi(x \oplus 0)+\varphi(0 \oplus y)
$$

for any $x \in Z_{2}, y \in Z_{l}$. So

$$
\begin{aligned}
& \quad \sum_{k=0}^{2 l-1} \exp \left(2 \pi i k^{2} \cdot p / 4 l\right) \\
& =\sum_{x \in Z_{2}} \sum_{y} \exp (2 \pi i \varphi(x \oplus y)) \\
& =\underbrace{\left(\sum_{x \in Z_{2}} \exp (2 \pi i \varphi(x \oplus 0))\right) \cdot(\underbrace{\left(\sum_{y \in Z_{l}} \exp (2 \pi i) \varphi(0 \oplus y)\right)}_{\beta}}_{\alpha} .
\end{aligned}
$$

In the notation of pg .85 [9], $\beta=G(p, l)$. The computations of pages 85,87 [9], show

$$
G(p, l)=\left\{\begin{array}{l}
\binom{p}{l} \cdot(\sqrt{l}) \quad \text { if. } \quad l=1 \bmod 4 \\
\binom{p}{l} \cdot(i \sqrt{l}) \quad \text { if } \quad l=3 \bmod 4
\end{array}\right.
$$

Also, since $p=8 q+1 \Rightarrow l p=l \bmod 4$; so

$$
\alpha=\left\{\begin{array}{l}
1+\exp \left(\frac{2 l i}{4}\right) \quad \text { if } \quad l=1 \bmod 4 \\
1+\exp (2 \pi i \cdot 3 / 4) \quad \text { if } \quad l=3 \bmod 4
\end{array}\right.
$$

From these calculations for β and α it follows that $\alpha \cdot \beta=\binom{p}{l} \sqrt{l}$ $(1+i)$. Since $p=8 q+1$ and $\binom{l}{p}=-1$, by quadratic reciprocity (p. 78 [9]) we $\operatorname{get}\binom{p}{l}=-1$. So $\alpha \cdot \beta=-\sqrt{l}(1+i)=\sqrt{2 l} \exp (2 \pi i 5 / 8)$ as desired.

Lemma 2.1. Let $\left[m_{i j}\right]$ denote a symmetric matrix with integer entries, satisfying: index $\left(\left[m_{i j}\right]\right)=k, \operatorname{det}\left(\left[m_{i j}\right]\right)= \pm 1$. Then the $\bmod p$ reduction of $\left[m_{i j}\right]$ equals $k[1]$ in G_{p}.

Proof of 2.1. $\left[m_{i j}\right],\left[m_{i j}\right] \oplus\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ are equal in G_{p}. Since the latter matrix is indefinite it is congruent over $Z(1 / 2)$ to

$$
[1] \underbrace{[1] \oplus[1] \oplus}_{k_{2} \text {-fold }}[-\underbrace{-1] \oplus[-1] \oplus \cdots \oplus}_{k_{2} \text {-fold }}[-1]
$$

where $k_{1}-k_{2}=k$ (see Theorems 1, 2 in [11]).

In the remainder of this section we give a algebraic version of Theorem 0.1. We need the following notation. If R denotes a module over the group ring $Z\left(Z_{p}\right)$, then ()$\otimes_{Z Z_{p}} R$ will denote the tensor product over $Z\left(Z_{p}\right)$ with R. For example each of $Z(\theta), Z, Z_{p}$ is a module over $Z\left(Z_{p}\right)$ via the following scheme of ring homorphisms

Here $Z(\theta)$ is the ring of integers augmented by a primitive p th root of unity θ, and the group Z_{p} acts trivially on each of the $Z\left(Z_{p}\right)$ modules Z and Z_{p}. For any hermetian form $\lambda: F \times F \rightarrow Z\left(Z_{p}\right)$ defined on a $Z\left(Z_{p}\right)$-module F, there are the hermetian forms

$$
\begin{aligned}
& \lambda \otimes_{z Z_{p}} Z(\theta) \\
& \lambda \otimes_{z Z_{p}} Z \\
& \lambda \otimes_{z Z_{p}} Z_{p}
\end{aligned}
$$

over the rings $Z(\theta), Z, Z_{p}$.
Let $\bar{\lambda}: \bar{F} \times \bar{F} \rightarrow \boldsymbol{Z}(\theta)$ denote a hermetian form defined on a free $Z(\theta)$-module \bar{F}. We define and index-type invariant, ind $(\bar{\lambda})$, to be the index (as a symmetric form over Z) of the composition

$$
\bar{F} \times \bar{F} \xrightarrow{\bar{\lambda}} Z(\theta) \xrightarrow{\psi} Z
$$

where $\psi\left(a_{0}+a_{1} \theta+\cdots+a_{p-1} \theta^{p-1}\right) \equiv p a_{0}-\left(a_{0}+a_{1}+\cdots+a_{p-1}\right)$. Then note, for λ a hermetian form defined on a free $Z\left(Z_{p}\right)$-module F,

$$
\begin{equation*}
i_{\eta}(\lambda)=\operatorname{ind}\left(\lambda \otimes_{Z Z_{p}} Z(\theta)\right) \tag{2.2}
\end{equation*}
$$

Proposition 2.3. If $\bar{\lambda}: \bar{F} \times \bar{F} \rightarrow Z(\theta)$ is a nonsingular hermetian form (\bar{F} a free $Z(\theta)$-module), and $\lambda \otimes_{Z(\theta)} Z_{p}=0$ in G_{p}, then $\operatorname{ind}(\bar{\lambda})=0$ $\bmod 8$.

Corollary 2.4. In general, if $\bar{\lambda}: \bar{F} \times \bar{F} \rightarrow Z(\theta)$ is a nonsingular hermetian form over the free $Z(\theta)$-module \bar{F}, then $\operatorname{ind}(\bar{\lambda})$ depends $(\bmod 8)$ only on the value of $\lambda \otimes_{Z(\theta)} Z_{p}$ in G_{p}.

Before proving 2.3, we derive from it and 2.4 some tables establishing the relations between $\operatorname{ind}(\bar{\lambda}) \bmod 8$ and the value of $\bar{\lambda} \otimes_{Z(\theta)} Z_{p}$ in G_{p}.

Proposition 2.5. \bar{F} denotes a free $Z(\theta)$-module, and $\bar{\lambda}: \bar{F} \times \bar{F} \rightarrow$ $Z(\theta)$ a nonsingular hermetian form. Then the following relations always hold between $\operatorname{ind}(\bar{\lambda})(\bmod 8)$ and the value of $\bar{\lambda} \otimes_{Z(\theta)} Z_{p}$ in G_{p}.

Table 1. If $p=2 q+1, q=$ odd.

$\bar{\lambda} \otimes_{Z(\theta)} Z_{p}$ in G_{p}	$\operatorname{ind}(\bar{\lambda}) \bmod 8$
$[1]$	$2 q$
$[1] \oplus[1]$	4
$[1] \oplus[1] \oplus[1]$	$-2 q$
0	0

TABLE 2. If $p=4 q+1, q=$ odd.

$\bar{\lambda} \otimes_{Z(0)} Z_{p}$ in G_{p}	$\operatorname{ind}(\bar{\lambda}) \bmod 8$
$[1]$	4
$[2]$	0
$[1] \oplus[2]$	4
0	0

TABLE 3. $p=8 q+1, q=$ odd.

$\bar{\lambda} \otimes_{K(0)} Z_{p}$ in G_{p}	$\operatorname{ind}(\bar{\lambda}) \bmod 8$
$[1]$	0
$[l]$	4
$[1] \oplus[l]$	4
0	0

Here l is any positive which is not a square $\bmod p$.
Proof of Proposition 2.5. It suffices (see 2.4) to check that the values in the tables hold for some choices of $\bar{\lambda}$. We shall choose $\bar{\lambda}=\lambda \otimes_{Z Z_{p}} Z(\theta)$, where $\lambda: F \times F \rightarrow Z\left(Z_{p}\right)$ is one of the hermetian forms given in 2.0 above.

Table 1. To verify line 1 , set $\lambda=[1], \bar{\lambda} \equiv \lambda \otimes_{z Z_{p}} Z(\theta)$. Then $\operatorname{ind}(\bar{\lambda})=i_{\eta}(\lambda) \quad$ (see 2.2), and $i_{\eta}(\lambda)=2 q$ (see $2.0(\mathrm{~b})$). Obviously $\bar{\lambda} \otimes_{Z(\theta)} Z_{p}=[1]$ in G_{p}. This verifies the first line. The other three lines can be deduced from line one and the addativity of the invariants $\lambda \otimes_{Z(0)} Z_{p}$, ind $(\bar{\lambda})$.

Table 2. To verify line 1 , set $\lambda=[1]$ and $\bar{\lambda}=\lambda \otimes_{z Z_{p}} Z(\theta)$. Then $\operatorname{ind}(\bar{\lambda})=i_{\eta}(\lambda)$ (see 2.2), and $i_{\eta}(\lambda)=4 q$ (see $2.0(\mathrm{~b})$). So $\operatorname{ind}(\bar{\lambda})=4$ $\bmod 8(q=$ odd $)$. Obviously $\bar{\lambda} \otimes_{Z(0)} Z_{p}=[1]$ in G_{p}. This verifies line 1 in Table 2.

To verify line 2 in Table 2 , set $\lambda=\left[t^{(p-1) / 2}+t^{(p-1) / 2+1}\right], \bar{\lambda} \equiv \lambda \otimes_{z Z_{p}}$ $Z(\theta)$. Then $\operatorname{ind}(\bar{\lambda})=i_{\eta}(\lambda)$ (see 2.2), and $i_{n}(\lambda)=0$ (see 2.0 (a)). Obviously $\lambda \otimes_{z(\theta)} Z_{p}=[2]$ in G_{p}. This verifies line 2.

The other lines in Table 2 follows from lines one and two, and the addativity of the invariants $\bar{\lambda} \otimes_{Z(0)} Z_{p}$, ind $(\bar{\lambda})$.

Table 3. To verify line one, set $\lambda=[1], \bar{\lambda} \equiv \lambda \otimes_{z z_{p}} Z(\theta)$. Then $\operatorname{ind}(\bar{\lambda})=i_{\eta}(\lambda)$ (see 2.2), and $i_{\eta}(\lambda)=8 q$ (see $2.0(\mathrm{~b})$). Obviously $\bar{\lambda} \otimes_{z(\theta)}$ $Z_{p}=[1]$ in G_{p}. This verifies line one.

To verify line two, set $\lambda=\left[\alpha_{l}\right]$, where α_{l} is given in 2.0 (c), and $\bar{\lambda} \equiv \lambda \otimes_{z Z_{p}} Z(\theta)$. Then $\operatorname{ind}(\bar{\lambda})=i_{n}(\lambda)$ (see 2.2), and $i_{\eta}(\lambda)=4$
$\bmod 8($ see $2.0(\mathrm{c}))$. Also $\bar{\lambda} \otimes_{z(\theta)} Z_{p}=[2 l]=[l]$ in G_{p} (because 2 is a square $\bmod p)$. This verifies line two.

The other lines are deduced from lines one and two and the addativity of the invariants $\bar{\lambda} \otimes_{z(\theta)} Z_{p}$, ind $(\bar{\lambda})$.

This completes the proof of 2.5 .
Proof of Proposition 2.3. Assume $\bar{\lambda} \otimes_{Z(0)} Z_{p}=0$ in G_{p}. Then $\operatorname{det}\left(\bar{\lambda} \otimes_{Z(\theta)} Z_{p}\right)=a^{2}$ for some $a \in Z_{p}$. Choose $b \in\{1,2,3, \cdots,(p-1) / 2\}$ so that a^{-1} equals the $\bmod p$ reduction of b. Set $\alpha=1+\theta+\theta^{2}+$ $\cdots+\theta^{b-1}$. Note α is a unit in $Z(\theta)$ (see 1.1 in [4]). Thus $\bar{\alpha}$ is also a unit in $Z(\theta)$. But $\operatorname{det}(\bar{\lambda})$ is a unit in $Z(\theta)$ by the hypothesis of 2.3 , so $\operatorname{det}(\bar{\lambda})$ is also a unit in $Z(\theta)$, where

$$
\bar{\lambda} \equiv \bar{\lambda} \otimes\left[\begin{array}{ll}
0 & \alpha \\
\bar{\alpha} & 0
\end{array}\right]
$$

Set

$$
\left[m_{i j}\right]=\bar{\lambda} \otimes_{Z(0)} Z_{p} .
$$

By assumption $\bar{\lambda} \otimes_{Z(\theta)} Z_{p}$ equals zero in G_{p}, so there is $T \in G L\left(Z_{p}\right)$. Satisfying

$$
T^{t}\left[m_{i j}\right] T=\underbrace{\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \otimes \cdots \otimes\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]}_{n \text {-fold }}
$$

We claim that T is the reduction $\bmod p$ of an integral matrix s with $\operatorname{det}(S)= \pm 1$. In fact $\operatorname{det}\left[m_{i j}\right]=1$, so $\operatorname{det}(T)= \pm 1$ in Z_{p}. So T is the product of elementary matrices, permutation matrices, and diagonal matrices having ± 1 down the diagonal. These matrices are the $\bmod p$ reduction of integral valued elementary matrices, permutation matrices, and diagonal matrices having ± 1 entries down the diagonal. Multiply these last matrices together to get S.

Now recall that $Z\left(Z_{p}\right)$ can be displayed as the fiber product of $Z(\theta)$ and Z over Z_{p}, by the diagram

where

$$
\begin{aligned}
& f\left(\sum_{i} a_{i} t^{i}\right)=\sum_{i} a_{i} \theta^{i} \\
& h\left(\sum_{i} a_{i} \theta^{i}\right)=\sum_{i} a_{i} \bmod p
\end{aligned}
$$

$$
\begin{aligned}
& j(n)=n \bmod p \\
& g\left(\sum a_{i} t^{i}\right)=\sum_{i} a_{i}
\end{aligned}
$$

In the same way the nonsingular hermetian forms over $Z\left(Z_{p}\right)$ are a fiber product of the nonsingular hermetian forms over $Z(\theta)$ and Z over the nonsingular hermetian forms over the field Z_{p}. In particular the diagram
2.6.

defines a nonsingular hermetian form $\left[\beta_{i j}\right]$ over $Z\left(Z_{p}\right)$, as the fiber product of $\bar{\lambda} \oplus\left[\begin{array}{ll}0 & \alpha \\ \bar{\alpha} & 0\end{array}\right]$ with $\left(S^{t}\right)^{-1}\left[\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right] \oplus \cdots \oplus\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]\right] S^{-1}$ over $\left[m_{i j}\right]$. Note that all of the last three forms are nonsingular because $\operatorname{det}(S)$ $\pm 1, \alpha$ is a unit in $Z(\theta)$, and $\bar{\lambda}$ is nonsingular by the hypothesis of 2.3.

We remark that any nonsingular hermetian form λ over $Z\left(Z_{p}\right)$ is even if $\lambda \otimes_{z z_{p}} Z$ is even. By 2.6,

$$
\left[\beta_{i j}\right] \otimes_{Z Z_{p}} Z=\left(S^{t}\right)^{-1}\left[\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \oplus \cdots \oplus\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\right] S^{-1}
$$

which is even. So $\left[\beta_{i j}\right]$ is even.
Now we complete the proof of 2.3. There are the following equalities.
2.7.
(a) $\operatorname{ind}(\bar{\lambda})=i_{7}\left[\beta_{i j}\right]$
(b) $i_{s}\left[\beta_{i j}\right]+i_{\eta}\left[\beta_{i j}\right]=i\left[\widehat{\beta}_{i j}\right]$
(c) $i\left[\widehat{\beta_{i j}}\right]=0 \bmod 8$
(d) $i_{s}\left[\beta_{i j}\right]=0$.

Note that 2.3 follows direct from 2.7.
To verify 2.7 apply 2.2 and 2.6 .
To verify 2.7 (b) review the definitions of i_{s}, i_{n}, i.
To verify 2.7 (c), recall that $\left[\beta_{i j}\right]$ is even and nonsingular. So [$\widehat{\beta_{i j}}$] is even and nonsingular over the integers.

To prove $2.7(\mathrm{~d})$ note $i_{s}\left[\beta_{i j}\right]=i\left(\left[\beta_{i j}\right] \otimes_{z Z_{p}} Z\right)$. By 2.6

$$
\left[\beta_{i j}\right] \otimes_{z z_{p}} Z=\left(S^{t}\right)^{-1}\left[\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \oplus \cdots \oplus\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\right] S^{-1} .
$$

This completes the proof of 2.3 .
Lemma 2.8. Let $\lambda: F \times F \rightarrow Z\left(\boldsymbol{Z}_{p}\right)$ be a hermetian form, with F a finitely generated free module over $Z\left(Z_{(p)}\right)$. Then $\bmod 8$ we have

$$
i_{r}(\lambda)=-(p-1) i(\hat{\lambda}) \bmod 8
$$

Proof. We first remark that the equality holds for λ of the form $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ or [1]. Also, the equation holds for a general λ iff it
 may assume

$$
\begin{gather*}
\operatorname{rank}(\lambda)=\text { any convenient number } \bmod 4 . \tag{2.9}\\
\operatorname{det}\left(\lambda \otimes_{z Z_{p}} Z\right)= \pm 1 \text { in } Z_{p}
\end{gather*}
$$

Next, we remark that by 2.2 we have

$$
\begin{equation*}
\operatorname{ind}(\bar{\lambda})=i(\lambda) \bmod 8 \tag{2.10}
\end{equation*}
$$

where

$$
\bar{\lambda} \equiv \lambda \otimes_{Z Z_{p}} Z(\theta)
$$

Case 1. $\quad p=4 q+1$. We take $\operatorname{rank}(\lambda)=0 \bmod 2$ (2.9). Then $i(\hat{\lambda})=0 \bmod 2$. So the equation in 2.8 take the form $i_{\eta}(\lambda)=0 \bmod$ 8. By $2.10,2.5$ takes 2,3 , it suffices to show $\bar{\lambda} \otimes_{Z(\theta)} Z_{p}$ equals zero in G_{p}. This follows from 2.9 and the choice $\operatorname{rank}(\lambda)=0 \bmod 2$.

Case 2. $p=2 q+1, q=$ odd. We choose $\operatorname{rank}(\lambda)=0 \bmod 4$. Then the equation in 2.8 takes the form $i_{r}(\lambda)=0 \bmod 8$. By 2.10, 2.5 table, it suffices to show $\bar{\mu} \otimes_{Z(\theta)} Z_{p}=0$ in G_{p}. Because $\operatorname{rank}(\lambda)=0$ $\bmod 4, \operatorname{rank}\left(\bar{\lambda} \otimes_{Z(0)} Z_{p}\right)=0 \bmod 4$. Moreover $\operatorname{det}\left(\bar{\lambda} \otimes_{Z(0)} Z_{z}\right)=+1$ (2.9). This implies $\bar{\lambda} \otimes_{Z(\theta)} Z_{p}=0$ in G_{p}.

This completes the proof of 2.8 .
3. In this section, the actions $Z_{p} \times M \rightarrow M$ are constructed, and their homological properties are determined.

Let $\left[e_{i j}\right]$ be a symmetric matrix with integral entries, so that the $\operatorname{det}\left[a_{i j}\right]$ is a unit $\bmod p$. Note that $\left[a_{i j}\right] \otimes\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ is congruent over the integers localized at p to $\left[b_{i i}\right]$ with $b_{i i}=0$ ($p=$ odd). Using plumbing, construct a framed cobordism extension W of D^{4} which realizes $\left[b_{i j}\right.$] as its 2 -dimensional intersection pairing: there are framed embeddings $S_{j}^{2} \times D^{2} \subset W-\partial W j=1,2, \cdots, l$ representing a
Z-basis for $H_{2}(W, Z)$ with respect to which the intersection pairing is represented by $\left[b_{i j}\right]$. [W] will denote the orientation of ($W, \partial W$) which gives this intersection pairing. Note that ∂W is a Z_{p}-homology 3 -sphere. L will denote an arbitrary homotopy lens space of dimension $4 k-1(k \geqq 1)$ with $\pi_{1}(L) \cong Z_{p} . \quad L$ comes equipped with an integral orientation [L]. An invariant $\alpha([L]) \in Z_{2}$ of the oriented lens space is defined as follows. Let link: $H_{2 k-1}(L, Z) \times H_{2 k-1}(L, Z) \rightarrow$ Q / Z denote the linking pairing determined by the orientation $[L]$. Then $\alpha([L])=0$ if $\operatorname{link}(x, x)=a_{x} / p$ where the integer a_{x} is a square $\bmod p \quad \forall x \in H_{2 k-1}(L, Z)$. Set $\alpha([L])=1$ otherwise. Note that if $\alpha([L])=1$, then $\operatorname{link}(x, x)=a_{x} / p$ with $a_{x}=$ square $\bmod p$ holds only if $x=0$.

If $\alpha([L])=0$ then we can find, for any $l>0$, pairwise disjoint embeddings $\left\{L_{i} \subset L \backslash i=1,2, \cdots, l\right\}$ of ($2 k-1$)-dimensional lens spaces L_{i} in L, which induce isomorphism on fundamental groups, and so that the universal cover inclusions $\hat{L}_{i} \subset \hat{L}, \hat{L}_{j} \subset \hat{L}$ link in $+1 \forall i, j \leqq l$ with $i \neq j$. If, on the other hand $\alpha([L])=1$, then for any l we can find embeddings $\left\{L_{i} \subset L \mid i=1,2, \cdots, l\right\}$ as before but with all the universal cover inclusions $\hat{L}_{i} \subset \hat{L}, \hat{L}_{j} \subset L$ linking in $b \forall i, j \leqq l$ with $i \neq j$, where b is an integer which is not square $\bmod p$.

Consider the surgery problem $(W, \partial W) \times L \xrightarrow{g \times 1}\left(D^{4}, S^{3}\right) \times L$, where $g:(W, \partial W) \rightarrow\left(D^{4}, S^{3}\right)$ is a degree 1 map which map each of $S_{j}^{2} \times D^{2} \subset W$ to the point $b_{0} \in\left(D^{4}, S^{3}\right)$. Let the $\left\{\tau_{j} \mid j=1,2, \cdots, l\right\}$ denote the normal bundle to L_{j} in L.

First extend $g \times 1$ by adding framed 2 -handles to $\partial W \times L$ to kill $\pi_{1}(\partial W \times L)$. This changes $H_{2}(\partial W \times L)$ from $\{0\}$ to a free $Z\left(Z_{p}\right)$-modulo F (use Theorem 1.0, and recall the ∂W is a Z_{p}-homology 3 -sphere).

Now add framed three handles to a $Z\left(Z_{p}\right)$-basis for F, killing F, and extending $g \times 1$ to a normal map $f:(X, \partial X) \rightarrow\left(D^{4}, S^{3}\right) \times L$ with $\left.f\right|_{\partial x}$ a homotopy equivalence. Set

$$
\begin{gathered}
\bar{X} \equiv X \times I \cup\left\{U_{j=1}^{l} D_{j}^{3} \times D^{2} \times \tau_{j}\right\} \\
\bar{X}_{\partial} \equiv \partial X \times I
\end{gathered}
$$

where the union is taken along $S_{j}^{2} \times D^{2} \times \tau_{j} \times 1 \sim \partial D_{j}^{3} \times D^{2} \times \tau_{j}$. And extend f to $\bar{f}:\left(\bar{X}, \bar{X}_{\partial}\right) \rightarrow\left(D^{4}, S^{3}\right) \times L$ by letting $\bar{f}_{1 D_{j}^{3} \times D^{2} \times \tau_{k}}$ the projection to $b_{0} \times \tau_{j} \subset D^{4} \times L$. Finally extend \bar{f} to $h:\left(Y, Y_{\partial}\right) \rightarrow\left(D^{4}, S^{3}\right) \times L$ by first completing surgery on $\bar{f}:\left(\partial_{+} \bar{X}, \partial_{+} \bar{X}_{\partial}\right) \rightarrow\left(D^{4}, S^{3}\right) \times L \bmod$ $\left.\bar{f}\right|_{\partial_{-}, \bar{X}_{\partial}}$; and then surgering $\bar{f}: \bar{X} \rightarrow D^{4} \times L$ up to the middle dimension by performing interior surgeries away from the polyhedra ($S_{j}^{2} \times 0 \times$ $\left.L_{j}\right) \times I \cup D_{j}^{3} \times 0 \times L_{j}, j=1,2, \cdots, l$: completing surgery on $f_{1\left(\partial_{+} \bar{X}, a_{+}, \bar{x}_{\partial)}\right.}$ $\bmod f_{1 a_{+}, \bar{X}_{\partial}}$ requires the calculation $L_{3}^{h}\left(Z_{p}\right)=0$, which is a direct consequence of R. Lee's calculation $L_{3}^{S}\left(Z_{p}\right)=0$ [10], of Lemma 6.7 in
[12], and of the Rothenberg exact sequence (see [14]).
Note that the original \bar{X} is equal $(X \times I) \cup\left\{U_{j=1}^{l} D_{j}^{3} \times D^{2} \times \tau_{j}\right\}$ and so is contained in Y. Add to both the original \bar{X}, and to Y, the set $W \times$ cone (L). Then the resulting spaces are the orbit spaces of PL actions, $Z_{p} \times A \rightarrow A$ and $Z_{p} \times B \rightarrow B$ respectively, both having W for fixed point set.

The $Z_{p} \times M \rightarrow M$ considered in this section are now obtained by adding to $Z_{p} \times B \rightarrow B$ the cone action cone ($Z_{p} \times \partial B \rightarrow \partial B$). The fixed point set, K, equals $W \cup$ cone (∂W), which is a Z_{p}-homology manifold $\cdot\left[b \cdot b_{i j}\right]$ represents $i_{p}(K)$ in G_{p}, where $b=+1$ if $\alpha([L])=0$, and b is an integer which is not a square $\bmod p$ if $\alpha([L])=1$. Note that $\partial B=S^{4 k+3}$, so M is a PL manifold required.

That $\partial B=S^{4 k+3}$ requires some proof. A careful inspection of the construction of B makes clear that $\partial B=\left(\partial W \times \operatorname{cone}(\hat{L}) \cup C \cup \hat{\bar{X}}_{\partial} \cup\right.$ $\partial_{+} \hat{\bar{X}}$: where $\left(C, \partial_{+} C\right)$ is the surgery cobordism gotten by doing equivariant 1 and 2-surgeries on $g \times 1: \partial W \times \hat{L} \rightarrow S^{3} \times \hat{L}$ to get the homotopy equivalent $f: \partial \hat{\bar{X}} \rightarrow S^{3} \times \hat{L}$ of the last paragraph: $X_{\partial}, \partial_{+} \bar{X}$ are defined in the last paragraph; and the unions are taken along $\partial_{-} C=\partial W \times \hat{L}, \partial_{+} C=\partial_{-}\left(\hat{\bar{X}}_{\partial}\right), \partial\left(\partial_{+} \hat{\bar{X}}\right)=\partial_{+}(\hat{\bar{X}})$. Note that by construction $\partial_{+} \bar{X}$ is homotopy equivalent to $D^{4} \times L, \bar{X}_{\partial}$ is the product cobordism. Now a Van Kampen argument (using the above decomposition for ∂B) shows that $\pi_{1}(\partial B)=\{1\}$, and a Mayor-Viotoris argument shows that $\bar{H}_{*}(\partial B)=H_{4 k+3}(\partial B)=Z$. So $\partial B=S^{4 k+3}$ by the PL Poincare conjecture.

Note that the action $Z_{p} \times A \rightarrow A$ is a subset of the action $Z_{p} \times B \rightarrow B$. Calculations shows that $H_{z \bar{k}+2}(A, Z)$ is a free Z-module with Z-basis represented by the polyhedra $P_{j}=\left(S_{j}^{2} \times \operatorname{cone}\left(\hat{L}_{j}\right) \cup\right.$ $\left.D_{j}^{3} \times \hat{L}_{j}\right) 1 \leqq j \leqq l ; \quad \bar{H}_{i}(A, Z)=0$ for $i \neq 2 k+2$ or $2 ; H_{2}(A, Z)$ is a torsion group of order prime to p on which Z_{p} acts trivially. The P_{j} are Z_{p}-invariant, so Z_{p} acts trivially on $H_{2 k+2}(A, Z)$ also.

Finally consider the intersection number $\left[P_{j}\right] \cap\left[P_{i}\right]$ of homology classes. I claim that $\left[P_{j}\right] \cap\left[P_{i}\right]=b\left(\left[S_{j}^{2}\right] \cap\left[S_{i}^{2}\right]\right)$, where $\left[S_{j}^{2}\right] \cap\left[S_{i}^{2}\right]$ is computed in the 4 -dimensional manifold W. To see this, choose PL isotopies $\dot{\phi}_{t}^{j}$; cone $(\hat{L}) \rightarrow$ cone (\hat{L}) satisfying
(a) $\left.\dot{\phi}_{t}^{j}\right|_{\hat{L}}=$ identity
(b) the $\dot{\phi}_{1}^{j}\left(\operatorname{cone}\left(\hat{L}_{j}\right)\right), \dot{\phi}_{1}^{i}\left(\operatorname{cone}\left(\hat{L}_{i}\right)\right)$ intersect pairwise transversely in a finite number of pts.
By the choice of the embeddings $L_{i}, L_{j} \subset L$ the \hat{L}_{i}, L_{j} are pairwise disjoint and have linking number in \hat{L} equal b. So the intersection number of $\phi_{1}^{j}\left(\operatorname{cone}\left(\hat{L}_{j}\right)\right), \phi_{1}^{i}\left(\operatorname{cone}\left(\hat{L}_{i}\right)\right)$ in cone (\hat{L}) must be b if $i \neq j$. Set $P_{j}^{\prime}=\left(S_{j}^{2} \times \phi_{1}^{j}\left(\operatorname{cone}\left(\hat{L}_{j}\right)\right)\right) \cup D_{j}^{3} \times \hat{L}_{j}$. Then P_{j}, P_{j}^{\prime} represent the same homology class, and the $P_{j}^{\prime}, P_{i}^{\prime}$ intersect transversely with intersection number $b \cdot\left(\left[S_{j}^{2}\right] \cap\left[S_{j}^{2}\right]\right)$. Thus $\left[P_{j}\right] \cap\left[P_{i}\right]=b \cdot\left(\left[S_{j}^{2}\right] \cap\left[S_{i}^{2}\right]\right)$ as claim-
ed. So the Z_{p}-intersection pairing

$$
H_{2 k+2}(A, Z) \times H_{2 k+2}(A, Z) \longrightarrow Z\left(Z_{p}\right)
$$

is represented by $\left[b \cdot b_{i j} \cdot \eta\right]$, where $b=+1$ if $\alpha([L])=0$ and b is an integer which is nonsquare $\bmod p$ if $\alpha([L])=1$.

Concerning $Z_{p} \times B \rightarrow B: \bar{H}_{*}(B, Z)=H_{2 k+2}(B, Z)$, which is necessarily a free abelian group. Also, in the exact sequence

$$
\begin{aligned}
H_{2 k+3}((B, A), Z) & \xrightarrow{\partial} H_{2 k+2}(A, Z) \stackrel{i}{\bigcup_{j}} H_{2 k+2}(B, Z) \\
& \longrightarrow H_{2 k+2}((B, A), Z)
\end{aligned}
$$

there exists a left inverse, j, to the map i modulo the class of p^{*}-torsion groups $\mathscr{S}_{p_{*}}$: this is so because $\operatorname{det}\left[b_{i j}\right]$ is a unit $\bmod p$. So $\bmod \mathscr{L}_{p \pm} H_{2 k+2}((B, A), Z)$ is a free abelian group and $H_{i}((B, A), Z)=0$ for $i \neq 2 k+2$. Moreover, Z_{p} acts trivially on the torsion subgroup of $H_{2 k+2}((B, A), Z)$ and $H_{i}((B, A), Z)$ for $i \neq 2 k+2$, because Z_{p} acts trivially on $H_{*}(A, Z)$. So Theorem 1.0, as applied to the $Z\left(Z_{p}\right)$-free cellular chain complex of the relative space (B, A), shows that $H_{2 k+2}((B, A), Z) / \operatorname{Tors}(B, A)$ is a stabily free $Z\left(Z_{p}\right)$-module, where $\operatorname{Tors}(B, A)$ denotes the torsion subgroup of $H_{2 k+2}((B, A), Z)$. $H_{2 k+2}(A, Z) \subset U$ has quotient equal an element of $\mathscr{C}_{p^{*}} \quad Z_{p}$ acts trivially on U because it does on $H_{2 k+2}(A, Z)$, and the restriction to U of the Z-intersection pairing in B is congruent $\bmod p$ to $\left[b \cdot b_{i j}\right]$.

I'll end this section with a list of the things to remember.
We have constructed a PL group action $\psi: Z_{p} \times M \rightarrow M$, on a $4(k+1)$-dimensional manifold M, satisfying
3.1. (a) M is an almost parallizable, oriented PL manifold, and ψ is orientation preserving.
(b) The fixed point set of ψ is $W \cup \operatorname{cone}(\partial W)$, so it has middimensional intersection pairing represented by $\left[b_{i j}\right]$, which is congruent over $Z_{(p)}$ to $\left[a_{i j}\right] \oplus\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ where $\left[a_{i j}\right]$ comes from 0.1.
(c) The orbit space of the slice action of ψ is the homotopy lens space L.
(d) $H_{2 k+2}(M, Z)=U \oplus F$, where F is a free $Z\left(Z_{p}\right)$-module, and Z_{p} acts trivially on the torsion free module U.
(e) The restriction to U of the intersection form on M is represented by $\eta\left[c_{i j}\right]$, where $\eta=1+t+t^{2}+\cdots+t^{p-1}, c_{i j}$ are integers, $\left[c_{i j}\right]$ is congruent $\bmod p$ to $b \cdot\left[a_{i j}\right] \oplus\left[\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]\right]$. Here $\left[a_{i j}\right]$ comes from 0.1 and $b=1$ if $\alpha[L]=0$ and b is a positive integer not equal a square $\bmod p$ if $\alpha[L] \neq 0$.
(f) Note that the intersection form (over Z) is nonsingular on $U \oplus F$ (because M is a PL manifold) and is an even form (because
M is almost parallizable). Thus the index of this form equals 0 $\bmod 8$.
4. In this section we shall complete the proof of Theorem 0.1. The proof will depend on the following two lemmas.

Notation. Let $\lambda:(U \oplus F) \times(U \oplus F) \rightarrow Z\left(Z_{p}\right)$ denote the intersection for $Z_{p} \times B \rightarrow B$. Let λ_{F}, λ_{U} denote its restriction to $F \times F$, $U \times U$, etc. Let $Z(\theta)$ denote the integers with the primitive p th root of unity θ adjoined. Each of $Z, Z(\theta), Z_{p}$ is a $Z\left(Z_{p}\right)$-module, and Z_{p} is a Z and $Z(\theta)$-module, via the augmentations
$Z\left(Z_{p}\right) \xrightarrow[Z]{\nearrow Z(\theta)} Z_{p}$. Thus there are the tensor product forms
$\lambda_{F} \otimes_{Z Z_{p}} Z(\theta), \lambda_{F} \otimes_{Z Z_{p}} Z, \lambda_{F} \otimes_{Z Z_{p}} Z_{p}$, etc.
Lemma 4.1. $\operatorname{det} \lambda_{F} \otimes_{Z Z_{p}} Z(\theta)$ is a unit in $\boldsymbol{Z}(\theta)$.
Lemma 4.2. $\quad i_{p}(K)$ equals $\lambda_{F} \otimes_{z Z_{p}} Z_{p}$ in G_{p}.
Before proving 4.1, 4.2 we shall complete the proof of Theorem 0.1.

Proof of Theorem 0.1. Set $\bar{\lambda}=\lambda_{F} \otimes_{z z_{p}} Z(\theta)$. By 2.2 we have $\operatorname{ind}(\bar{\lambda})=i_{n}\left(\lambda_{F}\right) . \quad$ Also.

$$
i_{r}(M)=i_{\eta}\left(\lambda_{U \otimes F}\right)=i_{\eta}\left(\lambda_{F}\right)
$$

So
4.3(a). $\quad \operatorname{ind}(\bar{\lambda})=i_{\eta}(M)$

By 4.2 we have
$4.3(\mathrm{~b}) . \quad i_{p}(K)=\bar{\lambda} \otimes_{Z(\theta)} Z_{p}$ in G_{p}.
Now by, by $4.1 \bar{\lambda}$ must be nonsingular, so Proposition 2.5 is applicable to $\bar{\lambda}$. Applying 2.5, 4.3(a), (b) gives the tables in 0.1 .

Thic sompletes the proof of Theorem [.1.
Proof of 4.1. Note that $\operatorname{det}(\hat{\lambda})= \pm 1$ (see 3.1(f)), so if $x_{1}, x_{2}, \cdots, x_{n}$ are a $Z\left(Z_{p}\right)$-basis for $F \exists$ a dual free $Z\left(Z_{p}\right)$-module $F^{*} \subset U \oplus F$
 $\eta\left[c_{i j}\right]$ for some integral matrix $\left(c_{i j}\right)$, which gives

$$
\left[\lambda_{F} \otimes_{z_{p}} Z(\theta)\left(x_{i}, x_{j}^{*}-r_{j}\right)\right]=\left[\begin{array}{lll}
1 & & \\
1 & & 0 \\
0 \cdot \cdot & \\
& & 1
\end{array}\right]
$$

This completes the proof of 4.1.
Proof of 4.2. We divide the proof into two cases, depending on whether $\binom{-1}{p}=+1$ or $\binom{-1}{p}=-1$.

Case 1. Suppose $p=4 q+1$. Such p satisfy $\binom{-1}{p}=+1$. In this case, to show $i_{p}(K)=\lambda_{F} \otimes_{Z_{p}} Z_{p}$ in G_{p}, it suffices to show that

$$
\begin{aligned}
& \operatorname{rank}\left(i_{p}(K)\right)=\operatorname{rank}\left(\lambda_{F} \otimes_{Z Z_{p}} Z_{p}\right) \bmod 2 \\
& \operatorname{det}\left(i_{p}(K)\right)=\operatorname{det}\left(\lambda_{F} \otimes_{Z Z_{p}} Z_{p}\right) \quad \text { in } Z_{p}^{*} /\left(Z_{p}^{*}\right)^{2}
\end{aligned}
$$

Note that if $\operatorname{rank}\left(i_{p}(K)\right)=1 \bmod 2$ then the $Z-\operatorname{rank}$ of U is odd, and consequently the $Z\left(Z_{p}\right)$-rank of F is odd (see $3.1(\mathrm{f})$). Thus the ranks of $i_{p}(K)$ and $\lambda_{F} \otimes_{z Z_{p}} Z_{p}$ are equal mod 2. Next note that for any Z-basis y_{1}, y_{2}, \cdots, y for U we have

$$
\left[\lambda\left(y_{i}, x_{j}\right)\right]=\eta \cdot\left[d_{2 j}\right]
$$

where this equality defines the integral matrix $\left[d_{i j}\right]$. So $U^{\prime} \perp F$, where U^{\prime} is generated by the $y_{i}^{\prime}=y_{i}-\sum_{j} \eta \cdot d_{i j} \cdot x_{j}^{*}$. Consequently $\operatorname{det}\left(\hat{\lambda}_{U \prime \oplus F}\right)=\operatorname{det}\left(\hat{\lambda}_{U^{\prime}}\right) \cdot \operatorname{det}\left(\hat{\lambda}_{F}\right)$. Moreover

$$
\lambda\left(y_{i}^{\prime}, y_{j}^{\prime}\right)=\lambda\left(y_{i}, y_{j}\right)-p \eta \cdot \alpha_{i j},
$$

for some $\alpha_{i j} \in Z\left(Z_{p}\right)$; so $\hat{\lambda}_{U}$ equals $\hat{\lambda}_{U} \bmod p$. In particular $\operatorname{det}\left(i_{p}(K)\right)=$ $\operatorname{det}\left(\hat{\lambda}_{U}\right)$ in $Z_{p}^{*} /\left(Z_{p}^{*}\right)$ (see 3.1(c), and the definition of $i_{p}(K) U^{\prime} \oplus F$ generates $U \oplus F \bmod \mathscr{L}_{P^{*}}$, so $\operatorname{det}\left(\hat{\lambda}_{\left.U^{\prime} \oplus F\right)}= \pm \alpha^{2}\right.$, where α is a unit $\bmod p$. Using the last three determinant equalities, and $\binom{-1}{p}=+1$, one gets $\operatorname{det}\left(i_{p}(K)\right)=\operatorname{det}\left(\hat{\lambda}_{F}\right)$ in $Z_{p}^{*} /\left(Z_{p}^{*}\right)^{2}$. It remains to see $\operatorname{det}\left(\hat{\lambda}_{F}\right)=\operatorname{det}\left(\lambda_{F} \otimes_{z Z_{p}} Z_{p}\right)$ in $Z_{p}^{*} /\left(Z_{p}^{*}\right)^{2}$. Let $\left[\alpha_{i j}\right]$ be a matrix repre-
sentation for λ_{F}, then there is an exact sequence

$$
0 \longrightarrow F \xrightarrow{\varepsilon} F \longrightarrow X \longrightarrow 0
$$

of $Z\left(Z_{p}\right)$-modules where ε is given by $\left[\alpha_{i j}\right]$ and X is a finite p^{*} torsion module on which Z_{p} acts trivially $\left(\operatorname{det}\left[\alpha_{i j}\right]\right.$ is a unit in $Z(\theta)$ by 4.1)). Tensoring with Z over $Z\left(Z_{p}\right)$ gives the exact sequence of Z-modules

$$
0 \longrightarrow F \otimes_{Z Z_{p}} Z \xrightarrow{\varepsilon^{\prime}} F \otimes_{Z Z_{p}} Z \longrightarrow X \longrightarrow 0
$$

where ε^{\prime} has $\left[\operatorname{aug}\left(\alpha_{i j}\right)\right]$ for associated matrix. The first of the above sequences displays $\operatorname{det}\left(\lambda_{F}\right)= \pm|X|$, while the second displays $\operatorname{det}\left(\lambda_{F} \otimes_{Z Z_{p}} Z\right)= \pm|X|$. Thus $\operatorname{det}\left(\lambda_{F} \otimes_{Z Z_{p}} Z_{p}\right)=\operatorname{det}\left(\hat{\lambda}_{F^{\prime}}\right)$ in $Z_{p}^{*} /\left(Z_{p}^{*}\right)^{2}$.

Case 2. Suppose $p=2 q+1, q=$ odd. For such p we have $\binom{-1}{p}=-1$.

We begin by constructing from ($\lambda, U \oplus F$) another hermetian form ($\lambda^{\prime}, U^{\prime} \oplus F^{\prime}$) as follows.

Choose $V \subset U$ so that U / V is all p^{*}-torsion, and $\operatorname{det}\left(\hat{\lambda}_{V}\right)= \pm 1$ $\bmod p$. Then, if $\left[m_{i j}\right]$ represents $\hat{\lambda}_{V}$ with respect to a Z-basis $y_{1}, y_{2}, \cdots, y_{l}$ of V, there will exist $T \in G L\left(Z_{p}\right)$ so that $T^{t}\left[\bar{m}_{\imath \jmath}\right] T$ and $i_{p}(K)$ are related by the table
$T^{t}\left[\bar{m}_{i j}\right] T$
$\left[\begin{array}{ll}0 & 1 \\
1 & 0\end{array}\right] \oplus \cdots \oplus\left[\begin{array}{ll}0 & 1 \\
1 & 0\end{array}\right]$
\([1] \oplus\left[$$
\begin{array}{ll}0 & 1 \\
1 & 0\end{array}
$$\right] \oplus \cdots \oplus\left[\begin{array}{ll}0 \& 1

1 \& 0\end{array}\right]\)$|$| $i_{p}(K)$ |
| :---: |
| $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ |
| $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] \oplus\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right] \oplus \cdots \oplus\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ |
| $\left[\begin{array}{ll}-1\end{array}\right] \oplus\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right] \oplus \cdots \oplus\left[\begin{array}{ll}0 & 1 \\ 0 & 1\end{array}\right]$ |

Here $\left[\bar{m}_{j}\right]$ denotes the \bmod production of $\left[m_{i j}\right]$. Necessarily $\operatorname{det}(T)=$ ± 1, so T is the $\bmod p$ reduction of a matrix S, with integral entries satisfying $\operatorname{det}(S)= \pm 1$. $\quad S$ represents a transformation of (y_{1}, \cdots, y_{l}) to a new Z-basis ($y_{1}^{\prime}, \cdots, \cdots, y_{i}^{\prime}$) for V with respect to which $\hat{\lambda}_{V}$ has $S^{t}\left[m_{i j}\right] S$ for matrix representation. $S^{t}\left[m_{\imath \jmath}\right] S$ can be written as $\left[d_{2 j}\right]-p \cdot\left[c_{2 j}\right]$ where $\left[d_{2 j}\right]$ is the appropriate one of the unimodular matrices listed in the left hand column of the above table. Consider the $Z\left(Z_{p}\right)$-Hermitian form λ_{1} defined on the $Z\left(Z_{p}\right)$ free-module $F_{1} \oplus F_{1}^{*}$
which, with respect to a basis $x_{1}, x_{2}, \cdots, x_{l}$ for F_{1} and a "dual" basis $x_{1}^{*}, x_{2}^{*}, x_{3}^{*}, \cdots, x_{l}^{*}$ for F_{1}^{*}, has $\left[\begin{array}{cc}{\left[c_{i j}\right]} & 1 \\ 1 & 0\end{array}\right]$ for matrix representation. Set $\lambda^{\prime} \equiv \lambda \oplus \lambda_{1}$; set $U^{\prime} \equiv \bigoplus_{i}\left[y_{i}^{\prime \prime}\right]$ where $y_{i}^{\prime \prime}=y_{i}^{\prime}-\eta \cdot x_{i}$; set $F_{2} \equiv F \oplus F_{1} \oplus F_{1}^{*}$. If $F_{2} \rightarrow\left(U \oplus F_{2}\right) / U^{\prime}$ denotes the composite $F_{2} \subset$ $U \bigoplus F_{2} \rightarrow\left(U \bigoplus F_{2}\right) / U^{\prime}$, there will be an exact sequence

$$
0 \longrightarrow F_{2} \longrightarrow\left(U \oplus F_{2}\right) / U^{\prime} \longrightarrow U / V \longrightarrow 0
$$

From this we deduce that $\left(U \oplus F_{2}\right) / U^{\prime}$ is a stably free $Z\left(Z_{p}\right)$-module as follows. U / V is all p^{*}-torsion, and $\left(U \oplus F_{2}\right) / U^{\prime}$ is a torsion free Z-module (in fact a calculation shows $\operatorname{det}\left(\widehat{\lambda}_{U^{\prime}}^{\prime}\right)= \pm 1$): so \exists a $Z\left(Z_{p}\right)$ module homomorphism $h:\left(U \oplus F_{2}\right) / U^{\prime} \rightarrow F_{2}$ having finite cokernel X of order prime to p and having zero kernel. This shows that $\left(U+F_{2}\right) / U^{\prime}$ is a projective module. Since Z_{p} acts trivially on U / V, Schanuel's lemma in conjunction with Theorem 1.0 and the exact sequence immediately above show that $\left(U \oplus F_{2}\right) / U^{\prime}$ is (stably) free as a $Z\left(Z_{p}\right)$-module. Thus $U \oplus F_{2}=U^{\prime} \oplus F^{\prime}$ with $F^{\prime} \cong\left(U \oplus F_{2}\right) / U^{\prime}$. This completes the definition of ($\lambda^{\prime}, U^{\prime} \oplus F^{\prime}$).

Now we shall list the properties of $\left(\lambda^{\prime}, U^{\prime} \oplus F^{\prime}\right)$ which we shall need.
4.4. (a) $\lambda_{F}^{\prime}, \oplus_{Z Z_{p}} Z_{p}=\lambda_{F} \otimes_{Z Z_{p}} Z_{p}$.
(b) $\hat{\lambda}_{U}^{\prime}$, and $i_{p}(K)$ are related by the following table.

$\hat{\lambda}_{U}^{\prime}$,	$i_{p}(K)$ in G_{p}
$\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right] \oplus \cdots \oplus\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$	$\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
$[1] \oplus\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right] \oplus \cdots \oplus\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$	$[1]$
$\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] \oplus\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right] \oplus \cdots \oplus\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$	$\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
$\left[\begin{array}{ll}-1\end{array}\right] \oplus\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right] \oplus \cdots \oplus\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$	$[-1]$

(c) $\operatorname{det}\left(\lambda_{F}^{\prime},\right)$ is a unit in $Z\left(Z_{p}\right)$.

To see 4.4(a), note that $\lambda_{F} \otimes_{z Z_{p}} Z_{p}=\left(\lambda_{F \oplus F_{1} \oplus F_{1}^{*}}\right) \otimes_{Z Z_{p}} Z_{p}$ because $\lambda_{F \oplus F_{1} \oplus F_{1}^{*}} \equiv \lambda_{F} \oplus\left[\begin{array}{cc}c c_{i j} & 1 \\ 1 & 0\end{array}\right]$. Let $h: F \oplus F_{1} \oplus F_{1}^{*} \rightarrow F^{\prime}$ denote the composition

$$
F \oplus F_{1} \oplus F_{1}^{*} \subset U \oplus F \oplus F_{1} \oplus F_{1}^{*}=U^{\prime} \oplus F^{\prime} \rightarrow F^{\prime}
$$

Note that h induces an isomorphism

$$
\lambda_{F \oplus F_{1} \oplus F_{1}^{*}} \otimes_{z Z_{p}} Z(\theta) \cong \lambda_{F^{\prime}} \otimes_{z Z_{p}} Z(\theta) .
$$

So

$$
\lambda_{F \oplus F_{1} \oplus F_{1}^{*}} \otimes_{Z Z_{p}} Z_{p}=\lambda_{F}, \otimes_{Z Z_{p}} Z_{p} \quad \text { in } \quad G_{p} .
$$

We leave the routine verification of $4.4(\mathrm{~b})$ to the reader.
To see 4.4(c), consider the form $\left[b_{i j}\right]$ over Z defined by $\eta\left[b_{i j}\right] \equiv \lambda^{\prime}\left(y_{i}^{\prime \prime}, x_{j}^{\prime}\right)$, where $x_{1}^{\prime}, x_{j}^{\prime}, \cdots, x_{q}^{\prime}$ is a $Z\left(Z_{p}\right)$-basis for F^{\prime}. If $\left[b_{i j}\right]=[0]$, then $\operatorname{det}\left(\hat{\lambda}^{\prime}\right)=\operatorname{det}\left(\lambda_{U}^{\prime}\right) \cdot \operatorname{det}\left(\hat{\lambda}_{F}^{\prime}\right)$. Because both $\operatorname{det}\left(\hat{\lambda}^{\prime}\right)$ and $\operatorname{det}\left(\hat{\lambda}_{U^{\prime}}^{\prime}\right)$ one units in Z it follows that $\operatorname{det}\left(\hat{\lambda}_{F^{\prime}}^{\prime}\right)$ is also. So $\operatorname{det}\left(\hat{\lambda}_{F^{\prime}}^{\prime}\right)$ must be a unit in $Z\left(Z_{p}\right)$. Now if $\left[b_{i j}\right] \neq[0]$, choose $z_{1}^{\prime}, z_{2}^{\prime}, \cdots, z_{q}^{\prime}$ in U^{\prime} satisfying $\lambda^{\prime}\left(y_{i}^{\prime \prime}, z_{j}^{\prime}\right)=-\eta\left[b_{i j}\right]$. Then replace F^{\prime} by the $Z\left(Z_{p}\right)$ module having $x_{1}^{\prime}+z_{1}^{\prime}, x_{2}^{\prime}+z_{2}^{\prime}, \cdots, x_{q}^{\prime}+x_{q}^{\prime}$ for basis, and note that the above argument can now be carried out.

We can now complete the proof of 4.2. We do this by considering each of the possible values for $i_{p}(K)$ in G_{p}.
$i_{p}(K)=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ in G_{p}. In this case $\left[c_{i j}\right]$ above will be an even symmetric matrix over Z. So $\lambda^{\prime}=\lambda \oplus\left[\begin{array}{cc}{\left[c_{i j}\right]} & 1 \\ 1 & 0\end{array}\right]$ will be an even hermetian form. Thus $\lambda_{F}, \bigotimes_{Z Z_{p}} Z$ will be an even symmetric form over Z with unit determinant (4.4c). So index $\left(\lambda_{F}, \otimes_{Z Z_{p}} Z\right)=0 \bmod$ 8. Now it follows from Lemma 2.1 that $\lambda_{F}, \bigotimes_{Z Z_{p}} Z_{p}=0$ in G_{p}. So $i_{p}(K)=\lambda_{F}, \bigotimes_{z Z_{p}} Z_{p}$ in G_{p}.
$i_{p}(K)=[1]$ in G_{p}. Recall that $\hat{\lambda}$ has even rank, because it is an even symmetric form over Z with unit determinant (3.3). So $\lambda^{\prime}=\lambda \oplus\left[\begin{array}{cc}c_{i j} & 1 \\ 1 & 0\end{array}\right]$ also has even rank. By $4.4(b) \hat{\lambda}_{U^{\prime}}^{\prime}$ must have odd rank. So $\lambda_{F^{\prime}}^{\prime}, \bigotimes_{Z Z_{p}} Z$ must also have odd rank, implying that index $\left(\lambda_{F^{\prime}}^{\prime}, \otimes_{Z Z_{p}} Z\right)= \pm 1 \bmod 4$. If this index is $+1 \bmod 4$, then $\lambda_{F}^{\prime}, \otimes_{Z Z_{p}} Z_{p}$ equals [1] in G_{p} by Lemma 2.1. So $i_{p}(K)=\lambda_{F}^{\prime}, \otimes_{Z Z_{p}} Z_{p}$ in G_{p} as claimed. Now suppose index $\left(\lambda_{F}^{\prime}, \otimes_{Z Z_{p}} Z\right)=-1 \bmod 4$. We will derive a contradiction from this assumption. By Lemma 2.1 and $\operatorname{ind}\left(\lambda_{F}^{\prime}, \otimes_{Z Z_{p}} Z\right)=-1$ we get $\lambda_{F}^{\prime}, \otimes_{Z Z_{p}} Z_{p}=[-1]$ in G_{p}. From 2.2, 2.5 Table 1, and this last equality, we get $i_{y}\left(\lambda_{F^{\prime}}^{\prime}\right)=-2 q \bmod 8$, where $p=2 q+1$. From 4.4(b) we get $i\left(\hat{\lambda}_{U^{\prime}}^{\prime}\right)=+1$. But $i\left(\widehat{\lambda}_{U^{\prime}}^{\prime}\right)+i\left(\lambda_{F^{\prime}}^{\prime}, \otimes_{Z Z_{p}}\right.$ $Z)+i_{7}\left(\lambda_{F^{\prime}}^{\prime}\right)=i\left(\hat{\lambda}^{\prime}\right)$ and $i\left(\lambda^{\prime}\right)=i(\lambda)=0 \bmod 8$. This leads to

$$
1+(-1+4 m)+(-2 q)=0 \bmod 8
$$

which is impossible when q is odd.

$$
i_{p}(k)=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \text { or }[-1] \text { in } G_{p}
$$

These two cases can be settled by arguments similar to the pre-
vious cases. The remaining details are left to the reader.
This completes the proof of 4.2.

References

1. J. P. Alexander and G. C. Hamrick, Periodic maps on Poincaré spaces, Comment. Math. Helvetici, 53 (1978), 149-159.
2. D. Husemoller and J. Milnor, Symmetric Bilinear Forms, Springer-Verlag, 1973.
3. B. W. Jones, The arithmetic theory of quadratic forms, Carus Math. Monographs, 1950.
4. L. E. Jones, The converse to the fixed point theorem of P. A. Smith; I, Ann. of Math., 94 (1971), 52-68.
5. —_, Combinatorial symmetries of the m-disc, I, Bull. Amer. Math. Soc., 79 (1973), 167-169.
6. -, The nonsimply connected characteristic variety theorem, Proc. of Symposia in Pure Math., 32 (1978), 131-140.
7. —— Two Characteristic Classes and Smith Theory, Springer-Verlag Lecture Notes in Math. 664, 104-122.
8. -, On the construction of surgery problems, to appear in Proc. of Georgia Topology conference (1977).
9. S. Lang, Algebraic Number Theory, Addison-Wesley, 1970.
10. R. Lee, Computations of Wall groups, Topology, 10 (1971), 149-166.
11. J. Milnor, On simply connected 4-manifolds, Symp. Inter. De Top. Alg., Mexico, (1958), 122-128.
12. Whitehead torsion, Bull. Amer. Math. Soc., 72 (1966), 358-426.
13. D. S. Rim, Modules over finite groups, Ann. of Math., 69 (1959), 700-712.
14. J. L. Shaneson, Wall's surgery obstruction groups $G \times Z$, Ann. of Math., 90 (1969), 296-334.
15. P. A. Smith, Transformations of finite period I, II, Annals of Math., 39 (1938), 127-164, 40 (1939), 690-711.
16. C. T. C. Wall, Surgery of nonsimply connected manifolds, Ann. of Math., 84 (1966), 217-276.
17. -, Surgery on Compact Manifolds, Academic Press, New York.

Received December 5, 1977.
State University of New York at Stony Brook
Stony Brook, NY 11790
and
Yale University
New Haven, CT 06520

