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COBORDISM OF BRANCHED COVERING SPACES

HucH M. HILDEN AND ROBERT D. LITTLE

We shall develop a general method of constructing
branched covering spaces of spheres and other manifolds.
In the case of the sphere, this method gives rise via trans-
versality to an equivalence between certain cobordism classes
of branched covering spaces and the homotopy groups of
certain topological spaces. We will interpret the cobordism
equivalence and compute the homotopy groups in one case.

Let (X", B*™®) be a pair of finite CW complexes such that X"
is a PL n-manifold in a neighborhood of B*™? and B*? is embedded
as a locally flat submanifold. Suppose @: 7,(X* — B*%) —3,(q) is a
representation into the permutation group of ¢ letters. (Because
we shall identify two such representations if they differ by an inner
automorphism of Z(q) there is no need to choose a base point.) Now
let Y* be a closed PL manifold and let f: Y*— X" be a PL map in
general position with respeet to B*»2. The map @f,: 7, (Y*— f
(B™™?) — X(q) is a representation of 7z (Y* — f(B"?) into Z(q) de-
fined up to an inner automorphism of X(¢). Such an equivalence
class of representations defines a ¢-fold branched covering space
p: M¥(f) — Y*, branched over the codimension two submanifold
f7Y(B"*™®) (see [5]). A homotopy F' between two such maps f, g:
Y*— X", that is itself in general position with respect to B"?
gives rise to a cobordism p: W**(F)— Y* x I, branched over the
codimension two submanifold F(B*%. (We allow branched cover-
ings p: M*(f) — Y* where M*(f) is disconnected and we allow the
branch set to be empty. Thus, if f is the constant map to a point
not on B** then M*(f) is q disjoint copies of Y* each mapped to Y*
by the identity.)

Two natural questions to ask at this point are:

1. What g¢-fold branched covering spaces p: M*(f) — Y* can be
obtained in this manner?

2. What cobordisms between g-fold branched covering spaces
can be obtained?

For at least one set of fixed X", B~ Y* q and @, these ques-
tions have geometrically interesting answers. In this case we in-
terpret the cobordism, compute the homotopy group and present the
results in the last section.

2. Construction of X(n). Let A(n) denote the subgroup of
even permutations of X(n), the group of permutations of the
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n-symbols {1, ---, n}.

Let G(n) be the pullback of Z(n) and Z over Z/2Z. That is
G(n) = {(9, 9.) € Z(n) D Z|a(g,) = B(9.)} Where a:Z(n)— Z/2Z and
B: Z — Z|2Z are the natural maps.

The group G(n) has the universal property that the homo-
morphism indicated by the dotted line exists provided all the solid
line homomorphisms exist in the commutative diagram below where
a, B, v, and 0 are all natural maps.

T—7
] ﬁG(n) ‘ﬂ
e \\ i

IO P— /Y

LEMMA 1. Given any n and k, there is a connected PL mani-
fold X(n) with the following properties:

@ 7(X(n)=0,2=j=F

(b) m(X(n)) = G(n).

(¢) There s a manifold K(n), with =, (K(n)) = An), 7,(K(n))=
0,2<j =<k and a fibration K(n) — X(n) — S~

Proof. Pick ¢ >k + 2 and let E(n) be the n-fold cartesian pro-
duct of E* with the big diagonal deleted (i.e., those elements with
at least one pair of identical coordinates). We can prove inductively
that E(n) is k connected by studying the fibration, H? — (n — 1
points) — E(n) — E(n — 1), obtained by projecting on the first n — 1
coordinates.

We have natural actions of A(n) and X(n) on E(n) by permut-
ing coordinates. Let K(n) and L(n) be the respective quotient
spaces and let 7: K(n) — K(n) be the covering transformation map
of the double covering K(n) — L(n). Let X(n) = K(n) x [0, 1]/(x, 0) =
(z(x),1). We have a fibration K(n)— X(n) — S* and properties a
and ¢ easily follow. It remains to be shown that 7,(X(n)) = G(n).

The space X(n) is double covered by Y(n) = K(n) x [0, 2]/(x, 0)=
(x, 2) with projection (z,?) —(x,t) if 0=t<1 and (z,t)— (c(x),
t—1)if 1<t < 2. The space Y(n) is covered by E(n) x R* with
projection ((x, ---, 2,), t) — (p(x,, - -+, 2,), t(mod 2)) where p: E(n) —
K(n) = E(n)]A(n) is natural.

Now fix a base point ((x,, ---, %,), 0) in E(n) X R* and let Z, be
the image of that base point under the covering space map K(n) X
R'— X(n). If [g]en(X(n), ), let (¥}, -+, ¥,), m) be the endpoint
of the lift of g that begins at ((z, ---, =,), 0). There are maps
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6: w(X(n), &) — X(n) defined by taking [g] into the coordinate per-
mutation that sends (2, -« -, ®.) to (¥, - -+, ¥.), and : 7, (X(n), 2)—2Z,
defined by taking [¢] into m. It can be checked directly from the
definitions that af = By and that an isomorphism is induced from
7,(X(n), &) onto G(n).

The manifold X(n), depends on %k, but we will suppress this de-
pendence and just choose k large enough to suit our purposes.

In the remainder of the paper, when we identify =, (X(n)) with
G(n) we shall use the base point #, and isomorphism (6, vv). Now
let X(n) be defined as follows. Let S*' be a locally flat circle in
X’(n) representing the element ((1, 2), 1) in nl()f'(n); Z,). Then X(n)=
X(n)U D* where the boundary D?is identified with S:. Let 0 be
the center of D2

LEMMA 2. We have the following computations of homotopy
and homology groups

(8) m(Xm)=0.

(b) Hi(X(n)) = Hi(X(n)),j = 2.

Proof. By Van Kampens Theorem =,(X(n)) = G(n)/{(Q{, 2), 1))
where {((1, 2), 1)) is the normal subgroup generated by ((1, 2), 1).
It can be seen that this group is G(n) using the fact that any two
transpositions are conjugate.

The second statement follows from a Mayer-Vietoris argument
using the fact that H,(S!) — H,(X(n)) is an isomorphism because
A(n) is the commutator subgroup of X(n).

We shall adopt the following orientation convention. If B is a
codimension two oriented submanifold of the oriented manifold A
with normal disc bundle, and D? is a dise fiber of this normal disc
bundle, then an orientation of D? is called positive if the orienta-
tion of B followed by the orientation of D? gives the orientation of
A. An orientation of 0D? is called positive if this orientation fol-
lowed by the outward normal gives the positive orientation of D

3. Some technical lemmas and some computations. In this
entire section we shall assume that M*2 is a propertly embedded,
locally flat not necessarily connected, oriented PL submanifold of
the oriented PL manifold W*, and that H(W*, Z) = H(W*; Z) = 0.

LEMMA 3. There is a regular neighborhood U* of M** that is
the total space of a linear 2-disc bundle over M*2.

Proof. By [10], there is a block bundle neighborhood of M*2
and there is no obstruction to putting a D? bundle structure on it.
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The projection map p: U* — M** induces a D* bundle structure on
U*NoW?* over oM*=.

LEMMA 4. The group H(W* — M*=, Z) is free abelian and
generated by the meridians of M** one generator for each compo-
nent of M*>. The regular neighborhood U* is the total space of a
trivial bundle over M* .

Proof. Using the exact homology sequence, excision, and a
homotopy, we have H(W*— M*? = H(W*, W — M*? = H,(U*,
Ut — M**) = H(U* E**') where E** is the total space of the S'
bundle associated with the linear 2-disc bundle over M*2, as in the
preceding lemma. By Poincaré duality and homotopy H,(U*, E* )=
H"U* UrNoW?"*) = H*¥(M"* 2 oM"**) = a free abelian group gener-
ated by the components of M*2.

To see that the normal bundle of M**is trivial, recall that
orientable two plane bundles over a finite complex (in this case
M"*?) are classified by their Euler class (X € H*(M*™®). Since M"*™*
is properly embedded in WF*, the Euler class X = i*(@i, [M*?]) where
[M*?] is the fundamental class of M*72, 4: M** — W* is the inclusion,
and @ is the Poincaré duality isomorphism for W*. Since H(W* =
H(W* =0, we have H}(W* =0 and X = 0.

Alternatively, represent the element (41, +1,-.--, +1) in
HY(W*— U* Z) by a map f: W¥— U*— S', put f in general posi-
tion and pullback a point to get an orientable “Seifert surface”
F* ' with oF** = M*2 The outward normal gives a cross-section
of the associated S* bundle so D?*— U* — M*? is trivial.

LEMMA 5. Let o: t(W* — M*®) — Z(n) be a representation in
which meridians are mapped to transpositions. There is a unique
representation (up to an inner automorphism of G(n)) a:w,(WF—
M*?*) — G(n) such that yo = o and positive meridians are mapped
into +1 by Bo.

Proof. This follows immediately from Lemma 4 and the pro-
perties of G(n) as pullback of X(n) and Z over Z/2Z.

At this point, to obtain further results we must specialize to
the case n = 3.

PROPOSITION 6. Let M*® be an oriented (not mecessarily con-
nected) properly embedded, submanifold of the compact oriented
manifold W*.  Suppose H,(WF*) = H(W*) =0 and let p:z,(W*—
M*?) — %(3) be a representation in which meridians are sent to
transpositions.
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There is a map f: W*— X(3), in general position with respect
to the point 0, with the following properties:

(@) f7(0) = M*.

(b) The composition map Y(f|W*— M*?,:n(WF— M*?) —
7,(X(3) — 0) = G(3) — Z(3) s equivalent to p, where equivalence
means equivalence up to an inmer automorphism of 2(3).

(¢) The induced map H(W* — M*?) — H(X(3) — 0) — Z sends
each positive meridian to +1.

(d) If g ts another such map satisfying a,b, and c, then
g = f.

Proof. By Lemma 3 U* = M** x D*. Let E*' be M** x S

By Lemma 4 H,(W* — M**) is a free abelian group generated
by one positive meridian for each component of M*% (Since M*?
and W* are both oriented, it makes sense to define positive meri-
dians.)

By Lemma 5 there is a unique representation o: 7,(W* — M*?) —
G(3) such that vo = p and positive meridians are mapped into +1
by ABo. Define a function fi: W8 — U*— X(8) — 0 such that
fi: T (WE = U = g (W* — M*?) — n,(X(8) — 0) — G(8) is equivalent
to 0. This is done by defining f; on the 1l-skeleton by using the
definition of ¢ on the generators, extending to the 2-skeleton using
the fact that o is a homomorphism, and extending to the rest of
W* — U* using 7;(X3) —0)=0,2=<j <k. (See Lemma 1.)

Now let E** be a component of E**, let S, be some fiber and
let 5,6 S:. We wish to investigate [E*™*, X(3) — 0]. First notice
that if f and g e [E*?, X(8) — 0] then f and g are homotopic if and
only if their restrictions to the 1-skeleton are homotopic since
(X)) —0)=0,2=<j<k. Also, their restrictions to the 1-skele-
ton are homotopic if and only if they induce the same homomorphism
T,(B*) - 7,(X(8) —0) = G(B) up to an inner automorphism of
7, (X(8) — 0). Next we restrict our attention to the subset of
[E:?, X(3) — 0] consisting of the functions that take the positive
meridian [S!] to +1 in homology. We denote this subset by
[EFt X(8) — 0]. Since E¥*'= M!*x S the homotopy class = of
the positive meridian S! is central in =,(E!, s,). If ¥ is any element
of m (K}, s,) and fe[E*?, X(8) — 0], then f,(y) commutes with f,().
If aslo fe[E,™?, X(8) — 0], then f.(x) = ((a, b), 1) for some transposi-
tion (a, b) in Z(3). If we check the commutativity relations in G(3)
and X(8). (It is exactly at this point we need n = 3.) We see that
f«(y) commutes with f,(x) implies that f,(y) is a power of f.(x).
Thus if f belongs to [E**, X(8) — 0], it follows that f.mx (E*™) is
the infinite cyclic subgroup of G(8) generated by ((a, d), 1) and it
also follows that two elements f, h of [E*™, X(38) — 0]' are homotopic
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if and only if they induce the same homomorphism; H,(E*™) —
H,(X(3) —0) = Z.

Recall that X(8) = X(3)UgD®. The first homology of X@3) is
carried by S* and X(8) — 0 = X(8). Let h: E**— S* be such that h
(composed with the inclusion S* — X(8) — 0) induces the same homo-
morphism on homology as f,JE**. We can also assume (by simul-
taneously homotoping the “lifts” to R' of the maps on the fibers to
S") that & maps each fiber homeomorphically onto S*. By the pre-
ceding remarks f,|E** is homotopic to A. Thus by homotoping f;
near each component of E**' we may assume that f, maps
(W* — U*UE** into X(8) — 0 in such a way that each fiber of the
PL bundle S§'— E**— M** is mapped homeomorphically onto S
We can now define the sought after map f: W*— X(8) by simul-
taneously coning in each fiber onto the disc D?. We are done with
parts a, b, c.

If g is another map satisfying a, b, and ¢, then we can homotope
g so that ¢ and f are both fiber maps to the trivial bundle neigh-
borhood of 0. Restricting f and g to E*™, we see by b and ¢ that
they induce the same homomorphism H,(E*™) — H,(X(3) — 0) and
since H,(S') — H,(X(8) — 0) is an isomorphism the restrictions induce
the same homomorphism H,(E*?*) — S*. Thus the restrictions are
homotopie, so with no loss of generality we can assume g = f on
UE,

By b and ¢ and 7;(X(8)) =0,2 < j <k, we have g|(W* — UH=
fI(W* — U¥. The homotopy f, restricted to F*™* = M*x S* gives
a map F:E*x S'—>X@3)—0 by F(x,t) = f,(x),0<t <1 Since
T (E¥* x SY = n(E¥Y) D (SY) and F (7, (E*™) D {0}) is infinice cyeclic
generated by ((a, b), 1), the same commutativity argument we gave
before shows F,(m(E*™ x S') is infinite eyclic generated by ((a, b),
1). As before an investigation of [E*™* x S* X(8) — 0] shows we
can homotope the homotopy so that f,.(E*™*) takes valuesin S*. Thus
we can extend the homotopy to a homotopy from f to g and we
are done.

4. Computation of homotopy groups. The purpose of this
section is to compute the first two nontrivial homotopy groups of
X(3). We begin with a lemma in which the integral homology and
cohomology groups of X(3) are computed. Note that since X(8) is
simply connected (Lemma 2), we have H(X(3); Z) =0 and so 7 =1
is an exceptional value which must be excluded from the table of
values for H*(X(3); Z).

Lemma 7. For i >0, we have:
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0,7=1,2 (mod 4)
Z;, 1 =0,3 (mod 4)
0,7 =23 (mod 4)

(b) HY(X@3); Z) = {Zs, i=0,1 (mod 4).

(a) H(X(3); %) = {

Proof. 1t is clear from Lemma 2 and the universal coefficient
theorem that it is sufficient to prove the above assertions for the
homology groups of X(3). In Lemma 1, we saw that we have a
fibration K(3) — X(8) — S*, where K(3) is a K(Z, 1), since it is the
orbit space of a free action of Z,. The Serre homology spectral
sequence of this fibration converges to H*(X'(i’»); Z) with E*term
given by E:,= H,S'; H/(Z,1;Z)). Here we mean cohomology
with local coefficients in the local system of groups, H.(Z, 1; %),
given by the action of =,(SY).

The group 7,(S*) acts nontrivially on Hl(Za, 1; Z), for otherwise
the short exact sequence of fundamental groups given by the fibra-
tion would split. It follows from the universal coefficient theorem
that 7,(S?) acts nontrivially on H*Z,, 1;Z). Since H*(Z, 1;Z) is
a polynomial algebra on a generator of degree 2, it follows that the
action of =,(S') is nontrivial in dimensions congruent to 2 mod 4 and
trivial in dimensions congruent to 0 mod 4. Using the universal
coefficient theorem again, we can infer that the action of x,(S') on
H.(Z, 1; Z) is nontrivial in dimensions congruent to 1 mod 4 and
trivial in dimensions congruent to 3 mod 4. With this information
it is easy to compute the boundary operator for the singular chains
of S* with coefficients in the local system H,.(Z,, 1; Z) and conclude
that: B}, =Z,»=0 or 1, q = 3(mod 4), and E?, = 0 otherwise. It
follows that the homology groups of X(3) are exactly as stated in
the lemma.

PROPOSITION 8. The space X(8) is 2-connected and:
(a) m(X(@3) = Z,
(b) 7T4(X(3)) = Zy
(e) m(X(3)) =0.

Proof. The facts that X(8) is 2-connected and that 7,(X(3)) = Z,
follow immediately from Lemmas 2 and 7 together with the Hure-
wicz theorem. To prove the second two statements of the theorem,
observe that by Lemma 7 and the universal coefficient theorem,
there exists a map f: X(8) — K(Z,, 3) X K(Z,; 4) which induces inte-
gral homology isomorphisms in dimensions less than or equal to 4.
But the known computations of the homology of Eilenberg-MacLane
spaces in [4] and [3], together with the Kiinneth formula show that
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the integral homology of K(Z,, 3) X K(Z,, 4) is zero in dimensions 5
and 6. Therefore, by Lemma 7 and the Whitehead theorem, f in-
duces an isomorphism of homotopy groups in dimensions less than
or equal to 5 and the proof of the proposition is complete.

The authors would like to thank the referee for suggesting the
above proof of Proposition 8. It is shorter and simpler that the
author’s original argument.

5. Interpretation of results and remarks. An = to one branch-
ed covering p: M™— N* is simple if for each point ze N*, p7'(x)
contains » — 1 or »n points. Berstein and Edmonds studied simple
branched coverings in [1] where they proved, among other things,
that the simple branched coverings p: M* — S? of given degree are
an open dense set in the set of all branched coverings p: M* — S,
of given degree. It is a result of the first author [6] and José
Montesinos [8] that every closed orientable 3-manifold is a three to
one simple branched covering of S*' branched over a 1-manifold (a
knot or link). Montesinos has shown [7] that every closed orient-
able 4-manifold W* has a handlebody decomposition, W* = H UNH'U
ptH*UvH?*U H*, such that W* is uniquely determined by H°UMH'U
pMH? and H'UMNH'UpH? is a 3-fold simple branched covering of D¢,
branched over a properly embedded but not necessarily orientable
surface.

Berstein and Edmonds showed in [2] that there are 4-manifolds,
including S* x S’ x S* x S!, that are not 3-fold branched coverings
of St It is not known just what closed orientable 4-monifolds are
3-fold simple branched coverings of S* branched over an orientable
surface but it is clear that a great many four manifolds have such
a representation.

With this as motivation we proceed to study triples (M*, p, B*™)
where p: M* —S" is a k to one simple branched covering space,
branched over the oriented closed » — 2 manifold B**. We say two
such triples (M,", p,, B"™®) and (M., p,, B, %) are cobordant if there is
a triple (W*+, q, C*™") where ¢: W**' — S x I is a k to one simple
branched covering space, branched over the properly embedded
oriented submanifold C”, where oC*™* = B"*U —By™% and M =
g7 (8" x {0}), M = q"(S" x {1}), and ¢q|M = p, and ¢|M; = p..

Next, we orient the disc D* in X(k) so that 0D°*—+1 under
the map H,(X(k) — 0) — Z.

For each n and &k there is a map 6(n, k) from x,(X(k)) to co-
bordism classes of triples defined as follows: Orient S™ and consider
f:S*-» X(k). Throw f in general position with respect to 0 and let
B*™* = £7Y(0). Then B™* has a neighborhood U™ mapped onto a
smaller dise D¥c D? as a linear 2-disc bundle. Orient B"? and the
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fibres in U" so that the product of the orientations gives the orient-
ation of S* and so that the boundaries of the fibers are mapped
into +1 by H,(S*"—- U") - H(X(k)—0)—>Z. Let p: M"—S* be
the & to one simple branched covering defined by the equivalence
class of representations 7,(S* — B* %) — ,(X(k) — 0) — m,(X(k)) = G(k) —
X(k). Then 0(n, k): [f]— (M", p, B*™®). It is easy to see that 6(n, k)
is well defined by throwing any homotopy in general position with
respect to 0. At this point we specialize to k& = 3.

It follows immediately from Proposition 6, (and the 1 — 1 cor-
respondence between simple branched coverings of S™ branched over
B*? and equivalence classes of representations 7 ,(S* — B"%) — 3(k)
in which meridians are sent to transpositions) that 6(x, 3) is onto
for n = 3.

It also follows from part d, of Proposition 6 that 4(n, 3) is 1-1.

We summarize this in a theorem that concludes the paper.

THEOREM 9. If n =3 or n = 4, there are exactly three cobor-
dism classes of 3-fold simple branched covering spaces, p: M* — S*,
branched over oriented submanifolds, if n = 5 there is only one.

It may be useful, when n = 3, to have representatives for each
of the three classes of Theorem 9. Let f:S®— X(8) be in general
position with respect to 0 so that f*(0) is a knot. We have the
following commutative diagram of ‘“double branched coverings.”

ML Y3) Uy D?

| &

$* L X(3) = R@)Us D*

Here p: M® — S° is the usual double branched covering of the knot
k= f0) and Y(3) = K(3) x S* is defined in the proof of Lemma 1.
The map ¢: Y(8) — X(3) is the double (unbranched) covering map and
q: D* — D*? is the usual double branched covering branched over 0.
We can choose the attaching circle from D?* to Y(3) = K(8) x S* to
be of the form *x S'. We note that #,(Y(3)) =0,2<j <4 and
7 (Y(3) = Z, Z. The question is, when does f: S* — X(8) extend
to D*?

By the Hurewicz theorem, the map f extends if and only if
f«(®) =0 where e H,(S% Z) is a generator (see Section 8). But
f«(x) = 0 if and only if f*(y) = 0 where y € H,(M? Z) is a generator.
This is so because p,: H,(M? Z) — H,(S% Z) is multiplication by two
and ¢,: H(Y*UaDY; Z)=H(Y"; Z)=2,— H(X()U s D* = Hy(X(3))=Z,
is an isomorphism. The natural “projection” map =: Y(8)UD?=
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K(3) x S'UD?— K(38) sends *xS*UD? into * and also induces an iso-
morphism on H,( ;Z). Thus we have a map zf: M3, U) - (Y(B)Ugx
D?, D* — (K(3), *). where U is a regular neighborhood of the branch
cover p~(k). We now have that f extends if and only if (zf).(y) = 0.
At this point we investigate the homotopy classes of maps
[M°, U; K(3), *].

Obstruction theory tells us this group is the same as
H'M® U; Z). We also have o— H'(M? U;Z,)— H(M? Z,) —
HYU; Z;) from the long cohomology sequence and HYXM®; Z,) —
HYU; Z,) is the zero map because the preimage of the branch set
bounds either one of the two lifts of any Seifert surface for k.
Thus HYM?, U; Z,) = H(M? Z,) and we get the following result.

THEOREM 10. Let p: M*— S® be a three-fold simple branched
covering, branched over the knot k. If the double branched cover-
ing of k has trivial first homology with Z, coefficients, then
p: M?®— S* extends to p: W*— D* branched over an orientable sur-

face.

Now suppose that w,(M?®) = Z, and 7,(M?® = 0 such as for the
Lens space L(3,1). We wish to show that (z7),(y) # 0 in H,(K(3),
x; Z) = Z, where y generates H,(M? U; Z). It is enough to show
(nf)*(w) # 0 in H,(K(3); Z) where w generates H,(M?, Z). We know
that =7 maps m,(M?) onto z,(K(3)) and is therefore an isomorphism.
(Recall ,(M® — p~'(k)) is mapped onto 7,(Y(3)) = Z& Z/3 by the re-
presentation.) For purposes of computation we replace the map
xf: M? — K(3) by an inclusion map M*<> K(3). From the homotopy
sequence of the pair, we conclude that 7;(K(3), M*) =0 j=1,2, 3.
By the Hurewicz theorem H;(K(3), M*) =0 if 7 =1,2,0or 8. Thus
xf: H(M?) — H,(K(3)) is surjective and f: S°— X(3) does not extend
to D'

We observe (see [9]) that the double branched covering of the
trefoil knot is the Lens space L(3,1) and a reflection in S® sends
the left-hand trefoil knot to the right-hand trefoil. The last theorem
now follows easily.

THEOREM 11. The three cobordism classes of oriented simply re-
presented knots in S® are represented by the left- and right-hand
trefoil kmots with their wusual representations and any simply re-
presented knot (such as a slice knot) whose double branched cover-
ing space has trivial first homology.

The authors would like to again express their appreciation to
the referee and to José Montesinos for their helpful observations.
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Added in proof. Recently, extensive calculations of some of the
groups defined in §1 have been made by Neal Brand and Gregory
Brumfiel. Also Neal Brand has defined a classifying space for branched
coverings.

REFERENCES

1. I. Berstein and A. Edmonds, On the construction of branched coverings of low
dimensional manifolds, (preprint).

2. —————, The degree and branch set of a branched covering.

3. H. Cartan, Sur les groupes d’ Eilenberg-MacLane II, Proc. at. Acad. Sci. U.S. A,
40 (1954), 704-707.

4. S. Eilenberg and S. MacLane, On the groups of H(II,n) I. Ann. of Math., (2) 58
(1958), 55-106.

5. R. H. Fox, Quick Trip through Knot Theory, in Topology of 3-manifolds and
Related Topics, Ed. M. K. Fort Jr., Prentice-Hall, Inc.

6. H. Hilden, Three-fold branched coverings of S®, Amer. J. Math., 98 (1976), 989-997.
7. J. M. Montesinos, 4-manifolds, 3-fold coverings spaces and ribbons, (preprint).

8. —————, Three-manifolds as 3-fold branched covers of S*®, Quart. J. Math. Oxford
Ser., 27 (1976).

9. Dale Rolfsen, Knots and Links, Pulish or Perish press.

10. C. P. Rourke and B. J. Sanderson, Block bundles I, Ann. of Math., 87 (1968), 1-28.

Received May 28, 1978 and in revised form September 20, 1978. The first author’s
reseach was supported by a National Science Foundation grant.

UNIVERSITY OF HAWAII
Hon~oLuryu, HI 96822








