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ZEROS OF H? FUNCTIONS IN SEVERAL
COMPLEX VARIABLES

NicHOLAS TH. VAROPOULOS

Let 2 be a strictly pseudoconvex smoothly bounded
domain in C* and let MC? be a complex hypersurface in
Q. In this paper I develop a condition that is sufficient to
ensure that M=5"1(0) for some f< H?(2) (i.e., some f belong-
ing to some Hardy class of 2). That condition refers to
the growth of the 2#n—2 dimensional volume of 1/ as it
approaches the boundary 02.

Introduction. Quite recently G. M. Henkin and H. Skoda,
independently, in two remarkable papers [7] [15] have obtained a
complete characterization of the zero sets M of functions in the
Nevanlinna class of a strictly pseudoconvex domain 2 — C*. The
characterization is very simple and is just the Blaschke condition on
the growth of the volume of I as it approaches the boundary (ef.
§1 for the exact definitions).

The question naturally arises as to what can be said about the
zero sets of functions in the Hardy H?-classes (p > 0) of the same
domains. When n, the complex dimension, is one it is of course
well known that the same Blaschke condition is necessary and suffi-
cient to characterize the zero sets of all these classes.

When 7% = 2 the situation is considerably more complicated.
Indeed it is known [8], [14] that for two different values of » > 0
the zero sets of functions in the corresponding H?-classes differ
(this fact is essentially proved in §9 below). In view of this fact
a complete characterization of the zero sets of functions in H?
becomes much more difficult and to, my mind, not even very
feasible.

In this paper I give a general condition on M an analytic set
in 2 to be the zero set of some function in some H?(Q)-class (i.e.,
for some value of » > 0). The exact statement will be given in
§1. If I were to attempt to describe the condition in general terms,
I would say that it is just the Blaschke condition again, except that
it makes sure that no point at infinity (i.e., on 92) takes more limit-
ing mass of M than its due. In other words the Blaschke condition
holds in a uniform fashion as we approach the boundary (hence the
terminology “uniform Blaschke”).

The above uniformity can be expressed in terms of a Carleson
condition at the boundary. In the case of the complex ball which
is a domain that admits a transitive group of holomorphic self-
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mappings, the above uniformity can be expressed by the fact that
the Blaschke nature of the divisor M stays stable by all holomor-
phic self-mappings of 2. For n =1 the above “uniform Blaschke
condition” reduces to the classical Carleson interpolation condition
for sequences in the unit dise [1][2].

The way the material is organized is as follows:

§1. Exact definitions and statements of the theorems are given.

§2. The uniform Blaschke condition is examined in details and
the basic real variable Theorem 2.1 is stated.

§8. The geometric condition needed for the proof of Theorem
2.1 is given.

§4. The Theorem 2.1 is proved modulo the geometric estimates
that are postponed untill the next paragraph.

§5. The geometric estimates are given.

§6. The proof of the main theorem is completed.

§7. The passage to the general strictly pseudoconvex domains
is examined.

§8. Special kind of divisors that are obtained from complex
lines are examined.

§9. The previous results are illustrated by examples.

§10. The best possible nature (in some sense) of the uniform
Blaschke condition is exhibited.

The heart of the matter is §3 and §4. The* power-house” (i.e.,
the sordid computations that are needed to make everything else
work) is §5.

All the theorems are stated and hold for general strictly pseudo-
convex domains. Some of the more tedious “local” estimates and
geometric computations, however, are only given for B, the complex
ball, and dimension =2 for that matter. The situation is perfectly
typical and the reader who possesses some technique (and is suffici-
etly perverse) can, I am sure, carry these details out in general
domains for himself.

1. Notations, definitions, and statement of the main theorem.
Let 2 ={2¢C"; 0 <0} be a bounded strictly pseudoconvex domain
of C* and let us suppose that 2 is defined by some function p which
is C* and strictly plurisubharmonic in some neighborhood of 2 and
such that dp +# 0 on 042.

We shall say that # a Radon measure on £ is a Carleson
measure if:

(1.1 |2l (BL) S CIBG); 0<t<t,, (eon
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where C is a constant that depends only on g and not on ¢, or ¢.
The definition of the demains B,(,) and B,(,) has been given in
[18] 2.1 where also the notion of a Carleson measure has been
elaborated at length. We shall refer the reader there for the
details.

Let now

w = ZwI,szI A dEJ
1.J

be a current of order zero in 2 (i.e, such that its coefficients w;
can be identified with Radon measures in 2). We shall denote
then by

o] =3[0,
I,J
which is a positive measure in 2 and by
o]l = 2 llon]l =]
I,J

the total mass of @ when that mass is finite. (|w,;,| and ||, ,||
denotes, of course, the absolute value and the total mass of the
measure ®; ;). We shall also say that a current @ of order zero
satisfies the Carleson condition, or that it is Carleson, if |w| is a
Carleson measure in 2. (Observe that this definition is not consistant
with the one given in [18] 3.1.)

Let XC Q be a p-dimensional orientable submanifold regularly
embedded in 2, we shall adopt then the standard notation [X] for
the integration current on X, provided of course that the integration
current is well defined. More explicitely let us assume that for all
compact subset K< c  the p-dimensional volume | XN K|, < + oo,
we can then define

[X]e = SXQD

for all C* compactly supported differential form @ in 2. [X] when
defined 1is clearly a current of order zero.

Let now M be a divisor in 2 given by the Cousin data {f, U,
1=1,2,---} where {U;} is a covering of 2. Concerning divisors
we shall follow all the notations and definitions of P. Lelong [10]
(especially Ch. VII). In particular we shall denote by M the under-
lying analytic set of M, by M* c M the subset of regular points of
M, and by

M =Ump
k=1

the decomposition of M* into its topological components. We shall
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denote by m(x) (x€ M*) the multiplicity function of the divisor
defined on M* (m(x) = m, is constant on each component My, k =
1,2 ).

We shall denote by

=%8510g|fi[ on U, i=12, ---

the Lelong current associated with the divisor M in 2 [ef. [10] Ch.
VII]. P. Lelong’s basic theorem says then that ¢ is a positive cur-
rent in 2 and that

8

(1.2) t= 3 m[M] .

&
Il

In particular therefore ¢ is a current of order zero in 2.

Let us now denote by o(x) the Euclidean distance of x €2 from
02, 6(x) is then comparable with —p(x) when 2 is near 62 in the
sense that there exists C > 0 some positive constant such that

(1.3) C7(—p@)) = o(x) = C(—p(@)) .

t being a current of order zero we can define b = by = é(x)t a new
current which is also a current of order zero. We shall then say
that the devisor I/ satisfies the Blaschke condition, or that it is a
Blaschke divisor if [|b3] < + co.

Let us denote by do, the 2n — 2 Euclidean volume element on
M* (do, as a measure is given by the volume current 1/(n—1)1[M*]A
B where B = 1/237_, dz; A dZ;, but this fact is irrelevant for us).
In terms of do; we can then express the Blaschke condition as

181l = | m@d(@)dosa) < +eo .
Indeed the two “norms” || M|, and ||bz|| are easily seen to be equi-

valent.
Let us now consider

(1.4) O = — iodlog (—p) = LN | ;000
© —0

which is a positive (1, 1) form on £ and let us consider the positive

measure on M* defined by

1 _
1.5 doy = ———[M* ot
(1.5) Oy m— D1 [ 1A
do, is then the 27 — 2 volume element on M* for the Hermitian
metric on 2 defined by the fundamental form @ (but this again,
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for our purposes, is irrelevant).
Let us also denote by

18211, = | miz)o"@)dos@)

We shall then say that M satisfies the Malliavin condition if ||IZ,||<
+oo. We shall also denote in what follows by

(1.6) dyv = dyy = m(x)o™(x)do,(x)

the Malliavin measure of the divisor. The above measure and the
above condition were introduced and studied for the first time by
P. Malliavin (cf. [12]). It has since been proved that there exists
C > 0 a positive constant that only depends on 2 such that

(L.7) C™ || Mo < || M|]s < C || M]lo

for all divisor M in 2 (ef. [15], II §2).
We are now in a position to introduce the main notion of our
paper.

DEFINITION. We shall say that a divisor M cQ satisfies the
uniform Blaschke condition (U. B. in short) if the Malliavin measure
of the divisor dvy is a Carleson measure in 2.

The above definition is quite general. If we specialize however
2, to be the unit ball in C”

Q=B=xeCH|z|f =2+ -+ + |2, <1}

we can give an equivalent definition that does not involve Carleson
measures. Towards that let us denote by G the group of all holo-
morphic automorphisms of B (i.e., all holomorphic injective mappings
of B onto B), for all gc€G let us also denote by I, the image of
the divisor M by the mapping g:z — g.z, M, is then (for all ge@G)
a new divisor in B. We have then

PROPOSITION 1.1. Let M be a divisor in B. The following
conditions on M are then equivalent:

(i) M satisfies the U.B. condition.

(ii) SupgeGHJlggHﬁ < + oo,

(iii) supyee||Mylle < + oo

The fact that (ii) and (iii) are equivalent follows from (1.7), the
equivalence with (i) will be proved in the next paragraph.

We are finally in a position to state the main theorem of this
paper.
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THEOREM 1.1. Let 2 be a bounded strictly pseudoconver domain
in C* of class C* as above, and let M be a divisor in 2 that satis-
fies the U.B. condition and whose canonical cohomology class in
HY2;Z) 1is zero. There exists then p > 0 some positive number
and Fe H?(2) a holomorphic function belonging to the Hardy op-
class such that M = F~(0) (i.e., such that M is exactly the divisor
of zeros of F, with multiplicity counted).

We can further choose our function F as above such that the
admissible boundary values of F on 62 (which exist almost every-
where on 62) define a function F*(x) (x € 02) such that

log | F*(x)| € BMO(0R) .

The definition of the classes H?(2) is classical (cf. [14]). The
definition of BMO is also classical (cf. [4]), for the adaptation of
BMO to the boundary of complex domains ef. [18].

In some sense, but in some sense only, the above theorem is
best possible. Indeed we have

THEOREM 1.2. For all p, > 0 there exists M a divisor in BCC?
that satisfies the U.B. condition and such lhat

FeH»Q);, F OO 2 M— F=0.

2. The uniform Blaschke condition for currents. In this
paragraph I shall lay down the basic ground work and I shall state
the key real variable theorem needed for the proof of Theorem 1.1.
That theorem is, I believe, of some independent interest. For the
definition of positive currents and the necessary background that is
needed in this paragraph, we shall refer the reader to [10] Ch. VII
and also [11].

Let 2 be as in §1 and let

(2.1) T =3 T,dz A dZ;
Wi
be a (1, 1) current of order zero in 2. We shall then say that T
satisfies the U. B. condition (uniformly Blaschke) if the current
8T + 8*T N dp + 8*T Ndp + T N dp A dp

is a Carleson current in 2 (o and ¢ are as in (1.2)).
We have then the following:

PROPOSITION 2.1. Let T be as in (2.1) and let us assume that
T is a positive current, then T satisfies the U.B. cohdition if and
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only if the current
6T + T A dp N\ dp

18 a Carleson current.

PROPOSITION 2.2. Let T be as in (2.1) and let us assume that
T s positive and closed (i.e., dT = 0), then T satisfies the U.B.
condition if and only if the current

T A dp A dp

18 a Carleson current.

PROPOSITION 2.3. Let M C Q be a divisor in 2 and let ¢ be the
Lelong current associated to M. Then the divisor M satisfies the U.B.
condition 1f and only if the current t satisfies the U.B. condition.

We shall now state the following basic

THEOREM 2.1. Let T be a (1, 1) closed current im 2 satisfying
the U.B. condition, and let us suppose that the canonical cohomo-
logy class of T in H*2; Z) is zero. There exists then H a current
of degree 1 and order zero such that

dH =T
and such that
H + 672H,, N\ 9o

18 a Carleson current. (H,, denotes of course the (0,1) component
of H). Furthermore if T is a real current, H can also be chosen
real.

We say of course, in general, that a current S is real if S=S
where the bar indicates the complex conjugation operator that can
be extended, naturally, to the space of currents.

The above theorem is the “power-house” for the rest of this
paper, and its proof will be our main task in §3, §4 and §5. For
the rest of this paragraph however, I propose to give the proofs
of Propositions 2.1, 2.2 and 2.3 as well as of Proposition 1.1.

To simplify notations I shall assume for the rest of this para-
graph that n = 2 and 2 = B is the unit ball in C2. The situation
is perfectly typical. We have then

o=zl —1=lzaf+ [z —-1

and
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00 = Z,dz, + Z,d2,, 0p = 2,dZ, + 2,47, .
We shall also set

w = 2,dz, — zdz,; ®=7%dz, — z,dz, .
It is clear then that the four forms
(2.2) o, 0o, w, @

are orthogonal and they are of Euclidean norm 1/ 2||z|[* at every
point z¢€ B, they form thus a basis of the cotangent space in some
neighborhood of 6B. We shall in fact use that basis systematically
in the rest of this paper.

Let us also define for all ¢t > 0

C.=1{z= (2, 2,)€B; |2, — 1] = ¢}

which is a neighborhood basis of 1 in B that is equivalent to B:Zl/)
in the sense of [18] 2.2 (i.e., we can use C, and their complex
rotations to verify the Carleson condition (1.1)).

LEMMA 2.1. Let T be as in Proposition 2.1 and let us assume
in addition that T is C™ up to the boundary im B (i.e., that the

coefficients T;; are C* functions up to the boundary) we have then
for all 0 <t <1/2

2.3) SCtaw 1T A dp| = Sotam 1T A dp| < CO{(SQS T )"2

: (SC T Adondol) + SCtﬁl/“’lT/\ 20 A 3o}

where C, is a numerical constant (C, = 10° say, in fact C, = 10
will also dol).

LEMMA 2.2. Let T be as in Lemma 2.1 and let us assume in
addition that dT = 0, we have then for all 0 <t < 1/2

(2.4) S%a IT| < C, {SC IT A d0 A 3o + (SCta | T])W
: <SC, T Ao nFpl) }
where again C, is a numerical constant.

Proofs of the lemmas. If we use the basis (2.2) we can write
T = i(S,00 A 0p + Siop A @ + Su@ A 3p + Spw A @)
and by the positivity of T we see that
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(2.5) Sy = Slz; Suy S, = 0; [S12|2 = SnSzz

at every point of some neighborhood of 1. It is also clear that

2.6) {T A 0p = i(Syw AN 3p N\ dp + Spw A @ A 3p)

T Aop Ndo=iSyw A @A dp N dp.

Using then Schwartz’s inequality and (2.5) we obtain

on s (s ) ()"

But (2.6) implies that
S 51/2IT/\3‘0[:§ 51/2|T/\5pl
Cy Cy
< 1/2 1/2 A
scff, s+ [ a1 a0 n 30}

and this together with (2.6) and (2.7) completes the proof of (2.3).

The proof of (2.4) is a little more subtle. We shall immitate
the proof in [15] II. 2. Towards that let us fix 0 < ¢ < 1/2 and let
us define 0 < @(z) <1 a C~ function in C? that depends only on
the variable z, and which satisfies

P(z) =1 vz, |1""z1|§t/2
(28) @(zl) =0 \£2 Il - zl} =t
IV¢|§];—0 vz, .

Such a function can clearly be constructed. We shall now apply
Stoke’s formula to the form

Q=ppip ANT
in the ball B. So that

(2.9) LdQ —o0.

We also have

(2100 d2 =@ N AT + pddo AT + pop A dp A T ;

5@ = a_g) dzl = 9015(0 + @2(3 ’
07,

where, as an easy computation shows, we have:

lp.l = 100 [Fpl; [@:| = 100 |2,] [Fo]| .
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We conclude therefore that
(2.11)  |pop A dp A T| <1005 [F9||S,, | + 1006 2, |2 S| .
Integrating then (2.10) and using (2.9), (1.3) and (2.11) we finally

obtain

2.12) EC 2Tl = CoL@I.Oi |T A d0p]
( . t/2
<Co{50t | T AdpAap| + §0t5}7¢]|322| + Sctalzznyg,”sm'}

and if we use the fact that
0=<t; |21Vt vzeC,
we obtain by (2.6)(2.8) and (2.7) that:

[, o1relsal =G| 1T Adp A dp)

(2.13) [, 21211791 18ul = G 518,

N (REOR(RED

From (2.12), (2.18) and (2.6) our inequality (2.4) follows.
We can now give the

Proof of Proposition 2.1. Let T be as in Proposition 2.1, if T
is C® up to the boundary our proposition is an immediate con-
sequence of (2.3). If T is not C=, by an obvious regularization
process we can prove that (2.3) also holds for arbitrary positive
currents and our proposition again follows.

By a regularization process, that is perhaps slightly less obvious,
because now we have to preserve the d-closure of the form, we
can also prove that (2.4) also holds for arbitrary d-closed positive
currents, from this we can deduce the

Proof of Proposition 2.2. Let T be as in Proposition 2.2 and
let us denote for 0 < ¢ < 1/2

a(t) =t—1280 |T A dp A dp]
1
5<t>-§§0t511‘|.

By multiplying then T by an appropriately small constant and by
using Proposition 2.1 of II, [15] we see that we can suppose that
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(2.14) a(t)<107°(C,+1)7%, vO0<t<1/2; B)=1, VI0™"<t<1/2.

Inequality (2.4), which is valid for T, as we just pointed out, gives
then

1 1 172
(2.15) B(t/2) = 1o + I(—)(B(t)) VO <t <1

and (2.14) together with (2.15) implies that

<1 0<t<1)/2

and completes the proof of Proposition 2.2.
Proof of Proposition 2.3. Here again for simplicity I shall

assume that n» = 2. A simple computation for the Malliavin measure
dv of the divisor M [ef. (1.2) (1.4) (1.5) (1.6)] gives

o2

2.16)  dv= %i_t A 90 A 30) + Tt A (6900) = v+ 3,

where v, and v, are two positive measures. And using (1.3) we see
that there exists some constant C such that in some neighborhood
of 02 we have

where

5= [t A dp A dp|

(2.17) 551t

From the above it follows at once that M is a U. B. divisor if and
only if ¥, + ¥, is a Carleson measure i.e., if and only if ¢ satisfies
the U. B. condition.

The geometric meaning of |t] is of course clear, it is just the
2-dimensional Euclidean volume of M* counted with multiplicity.
The geometric meaning of |t A dp A dp| is just as obvious. It is
just the projection of that volume on the complex normal line that
passes from each 'point. It is worth nothing that in view of Pro-
position 2.2 M satisfies the U. B. condition if and only if the
measure P, is a Carleson measure. In §9 we shall exhibit a divisor
M that does not satisfy the U. B. condition but for which never-
theless the corresponding measure ¥, is Carleson. The above con-
siderations suggest that, contrary to what may appear at first
sight, the measure ¥, is a more significant invariant of the divisor
than the measure ,.

Let us now observe that when Q = B the fundamental form
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(1.4) becomes
(2.18) @ = —iddlog (1 — ||z|]P) .

So that the induced Hermitian metric is then the Bergman metric
of B, cf. [10]. That metric is of course invariant under all the
analytic automorphisms of B.

From the above we deduce that if // c B is a divisor of B and
if M,(geG) is the divisor that we obtain by the action of the
automorphism g€ G on M as in Proposition 1.1 than

(2.19) do’ = §(da,)

where do, and do% are the measures obtained in (1.5) from the
divisors i and M, respectively, and § is the mapping on the space
of Radon measures on B induced by ¢:z—g.2. We are now in a
position to give the

Proof of Proposition 1.1. For the proof of that proposition I
shall use a devise that was suggested to me by John Garnett and
which makes the original proof much clearer. We shall need two
lemmas.

LEmMMA 2.3. (J. Garnett [5]). A positive measure N in Bc C”
is a Carleson measure if and only if

sup|C— 12 a0 z) = Mo < o
2es) |1 — 2.2, ’

and M(\) defines a norm which is equivalent to the “Carleson norm”
(which is implicit in the definition (1.1)).

LEMMA 2.4. Let g: B— B (g€ @) be an analytic automorphism
of B. We have then

_ 2 A —{lg7O)PHA — [[2]P)
(2.20) 1— gl T vzeB.

Before giving the proof of these two lemmas we shall complete
the proof of Proposition 1.1.

Towards that let M c B be a divisor in B. Using then the
fact that G acts transitively on B and Lemma 2.3 we see that I/
is U. B. if and only if

(L= g OB g _ {11 _
sup| Ty & el m@don) < +

which by Lemma 2.4 is equivalent to the fact that
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(2.21) sup|(L — [l9@) [y m(@)do @) < += .

If we use the fact that m*(g(z)) = m(z) where m? denotes the multi-
plicity function on M, and the definition of the mapping § (of (2.19))
we see that (2.21) is equivalent to

(2.22) syuegg(l — 2 prm(R)dod(z) < + oo .

Here we have of course used (2.19). But that last relation (2.22) is
just a reformulation of condition (iii) in Proposition 1.1, and our
proof is complete.

Proof of Lemma 2.3. The proof of that lemma for n =1 is
contained in [5]. That proof is elementary and it amounts to
analyzing the level lines, for » = 1, of the function

_ (1= Ilzoilz_)”

(2.23) e = (= e

inside the unit disc D C. The case » = 1 is just as simple. Indeed
the function f,(2) in (2.23) only depends on 2.z, = uc€C and there-
fore the level surfaces of f,(z) as z€ BC C" are determined by the
level lines of fi(z) as ze Dc C. That devise allows us to reduce
the general case to the one dimensional one and completes the proof.
(The details are left to the reader.)

Proof of Lemma 2.4. The proof is again elementary and is
also done by reducing the problem to the one dimensional case,
where (2.20) is a very well known identity for Mobius transforma-
tions. To show how this reduction is done let us assume for sim-
plicity that » = 2, and let g, € G be a general automorphism of B.

Let us then denote by D the complex disc

D = {297'(0); z€C; ||zg7(0) ]| < 1} .
There exists then g,€ G a particular automorphism of B such that
(2.24) 940) = 9:%(0); 9.(D) D

and which act on D as a Mobius transformation. (g, determined
as above is, modulo complex rotations, in fact unique.) Using the
explicit form of g, we can also verify directly that Lemma 2.4
holds for g = g;*.

Let us then denote by v = ¢g,9,€C. We then have v(0) = 0 and
this implies that ve€ U(C) is a unitary transformation in C2. It
follows therefore from the above that
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_ 21— llva-Y(2) 1P=1— llg-t(z) |2 = L= 1lge(ODA 2]
1-]lg.)|F=1—]l7g:" (&) [*=1—lgs*(2) | L—Z0.0)F

which together with (2.24) gives (2.20) and proves our lemma.

3. The main construction. To make the central idea come
through as clearly as possible and to avoid irrelevant technical
complications we shall concentrate, once more, in this paragraph on
the unit ball B = {||z]| < 1} < C~

Let us denote by T,(0B) the tangent space of 6B at a €oB, and
let us also denote by » = n(a) the inwards unit normal at a. One
thing that simplifies matters in B C* is that the manifold 0B can
be identified canonically with SU(C; 2) which acts on 6B by complex
rotation. That identification induces then a natural parallelization
on 0B. In other words it is possible to choose continuously an
orthonormal basis on T,(6B) as a runs through oB.

More explicitely let us denote by 1 = (1, 0) 9B the north pole
of 0B and let:

1 =1(1)=(0,1,0,0)

J=31)=1(0,0,1,0)

b = k(1) = (0,0, 0,1) |
be the standard basis of T,(0B) for the real coordinates (x, ¥, %, ¥.)
of C* where z =12, + iy, 2, = %, + 1Y,. Let now a€oB be given,

there exists then a wunique g = g, € SU(C; 2) such that g1 = a, we
shall set then

L, = {i(a) = g.1; j(a) = g.7; k(a) = g.k}

which will then be a basis of T,(0B), that depends smoothly on a.
Let us standardize further some more notations.
For any zeB z+(0,0) =0 we shall denote by 2z*€oB the
radial projection of z onto oB, i.e., z* is the unique point on 0B
such that

dist(z,2") =1 —||z]| =6() =t.
Let us now fix three real numbers
3.1) 0= (0, 06,06); |6/]<c 1=1,2,3,

where ¢ is a small numerical constant (¢ = 107 say). For all z€ B\
{0} we shall then denote by p,(z) the unique point on T..(0B) whose
coordinates with respect to the basis L,. are

(3.2) poz) = (L, 6,V T, 6,V ¢); t =1 — |[z]| .
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If we identify T,.0B) with a hyperplane in C®* we can consider
p4(2) as a point in C:. The real line py(2) + AMn(2*) M€ R intersects
then 0B at two points we shall denote by @,(z) the one that is
nearest to T,.0B). .

A more intrinsic definition for ®,(2) (and one that is just as
good for our construction) would have been to set @,(z)=Exp (ps(2))
where Exp is the exponential mapping from 7..0B) on ¢B. We
defined @,(z) as we did because we can then perform all the explicit
computations that will be needed much more easily.

Let us finally denote by l,(z) the directed line segment in C?

(3.3) l(2) = [2, Ps(2)] z€ B\O.

The family of segments l,(z)(z € B\0) will now be used to define a
smooth homotopy in B\0

H,(z s)eB\0; zeB\0 se]0, 1]
such that Hy(z, 0) = 2z, Hy(z, 1) = @4(z), Hz,u)€ B (u < 1) and
Hyz,s)ely,(z) vzeB\0 se[0,1].

That homotopy gives us in fact a retractation of B\0 on 4B that
is smooth in the interior.

For each fixed ¢ the homotopy defined above can then be used
in a standard and canonical way to solve the Poincaré equation
dw = 2 [ef. [3] specially §14].

More precisely let us denote by A the space of all currents T
in B such that 0¢supp T we can then define a linear operator (cf.
Appendix)

(3.4) Hp 41— 4

(de Rham uses the letter M and M*) that has the following pro-
perties
(i) H, is real, i.e.,

H(T)=H/(T) vTed.
(ii) H, is a homotopy operator for the d-complex
(3.5) Hypod(T) + doHy(T) =T; VT e 4.

Furthermore the operator H, is continuous for the natural topology
on A and depends continuously on # in an obvious manner.
Let us finally denote by

H(T):(zc)—3§ S S;H9<T)dold02das; VT e A

c
—C J—C
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where the above integral has to be interpreted as a weak integral
in the linear topological space A (one readily verifies that the con-
vergence of the above integral gives no problems). I shall give no
more details on the operator H, and their average H. The reader
should consult the above reference of de Rham and reconstruct all
the details.

We can state now the following basic proposition (the proof
will have to wait until the next paragraph).

PrOPOSITION 3.1. Let T be a (1,1) current tn B that satisfies
the U.B. condition. Let us assume that Te A, and let us denote
by H= H(T) and by K= H,, the (0,1) component of H. The
current

H+ 6*K A op

is them a Carleson current. (0 =1 — ||z]].)

The above proposition essentially contains Theorem 2.1 in the
case 2 = B.

Indeed if we ignore the assumption 0¢ supp 7' for the moment
we see that for T is as in Theorem 2.1 with d7 = 0 we have by
(8.5) dH = T, and if in addition T is real then H is also real.

It is quite clear also that the assumption 0¢ Supp T is not
essential for the above construction, indeed we can replace 0 by any
other point, it is enough therefore to assume that Supp T + B.

If Supp T = B we have to use a smooth partition of unity and
decompose T = T, + T, where Supp T,, Supp T, #+ B, and then use
the procedure that will be developed in §7 for the general strictly
pseudoconvex domains. Observe however that in the applications
that we have in mind 7T is the Lelong current associated with a
divisor M in B, and that there the assumption Supp T # B is
generously satisfied.

We can generalize the above construction quite easily for B C*
the unit ball in C* (n = 2) and even more generally for any 2cC*
strictly convex domain in C" with smooth (say C*) boundary.

The only new problem here is the smooth choice of an ortho-
normal basis

(3.6) L, = {1, Ji, Joy ** 5 Jon—a}

in T,(0B). Indeed this cannot be done globally in general (except
for n =1, 2, 4).
A global choice of ¢ in (3.6) is of course always possible. We
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simply set 7 = Jn(a) where n(a) denotes as before the inwards normal
and J is the almost complex structure in C* (i.e., J denotes multi-
plication by v—1 in C"). What is also possible is to give local
definitions of j,, Ju, *-*, Jon_r to complement Jn in T,(0B).

More precisely for every point a o2 we can find @ an open
neighborhood of @ in 42 in which a smooth choice of a basis L, (b€ ®)
is possible. We can then construct as above an operator

Hg: dg— g
where
Ay = {T;0¢ Supp T'; z€ Supp T — z* € 6}
such that
Hy(T) = Ho(T); Hood(T) + doHo(T) = T; YT € 4o

and such that H, satisfies the conditions of Proposition 3.1.

The problem is then to globalize the above construction. But
that is exactly the problem that will be faced and solved in §7
where the general strictly pseudoconvex domains will be examined.

4, The geometry of currents that satisfy the uniform
Blaschke condition. The aim of this paragraph is to give a proof
of Proposition 3.1. Once more I shall work entirely with the unit
ball 2 = Bc C? and I shall preserve all the notations already
introduced.

Let o = ||| — 1 and let dp, 9p, ®, @ be the orthogonal basis of
the cotangent space of B\0 introduced in (2.2).

For every ze 2 let us also denote by

a = a(z) = 06,00 A\ 0p; B, = B,(2) = 8,00 N\ @

@ B = By(z) = 8,0 A 8p; ¥ = Y() = 0,0 N\ @

where 6, denotes the Dirac é-mass at the point ze€ Q2. a, B, 3, and
v are then currents of order zero supported by the point z. The
above currents generate in an obvious way all the (1,1) currents
of order zero in the space 4 (4 was defined just before equation
(3.4)).

Indeed let

T =ado ANop+ bopoAd+bwAdp+co\d

be such a current and let us identify a, b, b, and ¢ with Radon
measures in £. We can then write T in the form



206 NICHOLAS TH. VAROPOULOS

42 7= a@d@ + | s + | p@ane + | 1@ dew

where the above integrals are weak integrals in the space of currents
of order zero (which is a dual space). Furthermore the above
decomposition is obviously unique. We have then

PROPOSITION 4.1. Let T be a (1, 1) current of order zero in A
and let a,b, b, ¢ be the Radon measures associated to the decomposi-
tion (4.2). Then the current T satisfies the U.B. condition if and
only if the measure

T = le| + 0"%(|b| + |b,]) + 9 a|

18 a Carleson measure in B.

This is, of course, just an alternative formulation of the defini-
tion. We shall introduce now some more notations. Let 6 be as
in (3.1) and let us denote by

a’ = Hy(a); B! = Ho(By), © =1, 2; v = Hy(v)
po = (ao)o,l; qg = (Bg)o,u 1= 1, 2; 7 = (79)0,1 .

All these are currents of order zero. af’ B¢ and v’ are obtained
from «, 3; and v by the homotopy operator H, and 2’ ¢?, 7’ are
the (0, 1) components of the currents a?, B/, v*. All these currents
depend of course on the point z on which «, B, v are supported (so
a more comprehensive notation would have been a’(z) = Hy(a(z))
ete...).

Let us finally denote by

(4.3) R,={z¢B; ||z|]|>1—h} h>0
and by X, its characteristic function. We have then
PROPOSITION 4.2. For all € <1 there exists a constant C = C,

that depends only on & such that for all ze R, we have the follow-
ing estimates

lla’]] < Ct
%0l = C 2t

(4.4) 4”3—-1/2p¢9 A 5‘0” < Ct

—1/2 A —}_L-
123750 A Boll = € ot
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1821l < Ce

1%, 81 = € 2pre

“5 Y157a2 A Bpl| = Ce2 for i=1,2

1,070t ABpll = € Lo

Il < C
1, < €2
(46) Yo7 A Bpli = €

s g 7
ey A Bpl S C 2

where t =1 — ||z]| = 0(2).

The above proposition contains the essential set of estimates on
which the proof of Proposition 3.1 will be based. The proof is
elementary but very lengthy. It will be postpone until the next
paragraph.

Let us now define

1 A = Ha) = (2c)-3§°_c§c_c§c «’d6,d0,d6, .

—c

A which is then a current of order zero that depends on z. We
denote analogously B; = H(B,) 1 =1,2; C = H(y). We also denote
by P, Qi =1, 2) and R the (0, 1) components of A, B;(s = 1,2) and
C respectively. An integral representation of the form (4.7) holds
then for all these currents with af replaced by g7, 7, »’, ¢/ and 7’
as the case may be. We have then

PROPOSITION 4.3. For all ¢ <1 there exists C = C. a constant
that depends only on & such that for all ze R. we have

Al = Ct
{115‘”1’/\ dpll = Cut
|B,|| < Ct

{ua—% A Bpll < Ct
e =c.

lll6-=R A 3ol = C.

i=1,2

where t =1 — ||z]| = 0().
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Proof. The above estimates are obtained immediately by inte-
grating over 6 the corresponding estimates in Proposition 4.2.

Let now B/,If) be the region in (1.1) that defines the Carleson
condition centered at the point 1, and for any ze€ B let us denote

by h(z) = inf{h > 0;z¢ B:?l/)}. With [,(z) defined as in (3.3) we have
the following

LEMMA 4.1. Let >0 and zeB\{OUB/:,fl)} suppose that for

some 6,]0] <c™', we have ly(2) N By(1) #¢. Then t=1— |z =
¢ *h(z). c¢ denotes here a large numerical constant (¢ = 10° say).

LEMMA 4.2. Let h and z be as in Lemma 4.1 and let us denote
by
(4.8) X, ={0=1(0,0,0);1l(z)NB,Q1) #¢) C R .

The three dimensional measure of X, satisfies then

(XL=o(2); 1xLso(L)”

where C 18 a numerical constant.

Proof of Lemma 4.1. The fact that [,(z) N B,,A(-i) # ¢ for some

00| < ¢ implies clearly that é:t(z*) N ﬁ;/(l) # ¢ for some constant
¢, (¢, = 10° say, z* = z/||2]||), but this implies that

(4.9) B, .(2*) N B,(1) # ¢ .
Our hypothesis on z on the other hand implies that
(4.10) t=1—]|z||=ch or 2*¢ B,,(1)

or both. In either case we conclude from (4.9) and (4.10) that 1¢
B,,(z*). But then we are done. Indeed

1€ B, (") = 2* € B,(1) — z€ B,,(1) — ¢ > ¢ 'h(2) .
Proof of the Lemma 4.2. Let z be as in the lemma. By

changing the role of z* and 1 we see that the set X, is obtained
by a rotation on 0B of the set

Y, = {9 B 1,e) N B,G) + 0}

where 6 =(1—1¢,0),0<t=1-—||z|| <1, and where {, is some fixed
point on 0B. We also have that

(4.11) Y, c{0e R’ 9y(8) € Bu(lo)} = Z,



ZEROS OF H? FUNCTIONS IN SEVERAL COMPLEX VARIABLES 209

where ¢ is some large numerical constant and @,(&) is the point
defined in § 8 (it is the end point of 1,(£)). The verification of (4.11)
will be left for the reader (observe that verification becomes much
easier for the Siegel upper half space).

We have now

Zz = {0 = (611 62: 53); p&(f) € Sh(Co)}

where S,({,) is the region in 7,(0B) obtained by projecting B, (1)
along the n(1) direction on the tangent plane T,(0B).
The 3-dimensional volume of that region clearly satisfies

[S,(&)ls = [Bao) s = Ch*

and since the point p,(&) is given on T, (0B) by the coordinates
i) = (0., 0,V ¢, 0V ¢),

we deduce that | X,[, = | Y, = |Z,; < C(h/t).

But from Lemma 4.1 we also deduce that X, = ¢ unless ¢t >
C'n(z) = h and from that last estimate it readily follows that

IXZIa é C(_}_L_>3/2
t
and the proof of the lemma is complete.
Let us now denote by X, the characteristic function of the set

B,LA(-i). We can state then the following

PROPOSITION 4.4. For all e <1 there exists C = C,> 0 such
that for all h > 0 and all z€ R\B,,(1) (¢ = 10" say) we have

144l < C. <’}§‘)t

- 1%072P A Bl = C (L)t
(2,8, = €. (L)

(4.13) o0, A el <G ( % )t i=1,2
TRETACH

(4.14)

1072 R A Jpl| = C. (L)

where t =1 — ||z|| = 6(2) and ¢ =1, 2.
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Proof. We have
Al S | 112e,00)| dodo.ds,

< sup | Xn @@ | K.l < C2 ¢ (L) = o( L)

by (4.4) and by Lemma 4.2.
Similarly
1%,07P Aol < | 11e,07p? A Bl do,dodn,
_/ _ 7 h\2 h\¥2
= 112490 . = —t.|—) = —
< sup |12,379" A Bpll 1 X1 5 CTa (L) s o (L)

again by (4.4) and the Lemma 4.2. This proves (4.12).
The other two estimates (4.13) and (4.14) are obtained analog-
ously. We are finally in a position to complete the

Proof of Proposition 3.1. Let T be as in Proposition 3.1 and
let a, b, b, and ¢ the Radon measures obtained by the decomposition
(4.2). Let us denote by H = H(T) and by K = (H(T)),, the (0, 1)
component of H. We have then

— SQA(z)da(z) + ggBl(z)dbl(z) + Sg B(2)db,(2) + SgC(z)dc(z)
K= ggP(z)da(z) + SQQl(z)dbl(z) + SQQz(z)dbz(z) + SQR(z)dc(z).

If we denote by
T =le| + 0"(|b] + [b:]) + 9 al
which is a Carleson measure in 2 (by Proposition 4.1) and by
&(z) = IC(Z)I + |07 R(2) A 90|

1/5( R Z(I By(2)| + 1677Qu(z) A dpl)

* 5 )(IA(Z)I + [07*P(2) A\ 9p)

which is a measure that depends on z. We have the following
estimates

(4.15) E= |H|+|6"KAdp|=C gg@(z)df(z)

where C is a positive constant and the above inequality refers of
course to the order relation in the space of positive measures.
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From Proposition 4.8 we also obtain that
(4.16) 1&®)|| < C Vzesupp T

and from Proposition 4.4 we obtain that
h 5/2 h 5/2 o~
< — = —_ 5
@17 16LSR)]] =C(t) C< - (z)) ; Veesupp T\B,(1) .

From the above three relations (4.15) (4.16) and (4.17) we shall
conclude that

(4.18) EBy(1) = [|%,X]] < Ch

for some constant C independent of %, and that, of course, will
complete the proof of Proposition 3.1 since by an obvious rotation
we can bring any test set B,({,) to the position B,(1).
Towards that let us observe that by (4.15) we have
[LE|=A+ B

where

u=| _ 8@l

ch

B=| _ 1n8@ld@

€ By,

where ¢ is an appropriately chosen large constant.
But by (4.16) we clearly have

(4.19) 9 < sup [|S(2) || (B(L) < CI?

because 7 is a Carleson measure.
Using Lemma 4.1 and (4.17) we also obtain that

h

(4.20) B = Csa(z)zclh(z)gczh <3(z)

)m dr(z)

where ¢, and ¢, are appropriately chosen constants. If we then
denote by
FO) = o(B1)
which by the hypothesis on 7 satisfies
(4.21) FQ\) < OV

and if we use the definition of h(z) (cf. Lemma 4.1) in (4.20) we
obtain that
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oo h 5/2
4. < o )
(4.22) B < CLh( N) dF()
And by an easy integration by parts in (4.22) we obtain using (4.21)
that

(4.23) B < Ch*.

The two estimates (4.19) and (4.23) give then at once the required
estimate (4.18) and complete the proof of our proposition.

As a final remark observe that the only reason that we insisted
that Te 4 (i.e., that 0¢ supp T') was that we had to get rid of the
¢ dependence of the constants of Proposition 4.4 for zcR..

5. Geometric lemmas. The aim of this paragraph is to give
the proof of Proposition 4.2.

In the course of this paragraph we shall use the parameters
0., 6,, 6, introduced in (3.1) and we shall need to introduce a number
of new parameters, namely £eB\0 and ¢ =1 - ||&]| in (5.1) and
0y, 0, 05, 045 N, ¢, v in (5.2) (5.5) and (5.8). Concerning the above para-
meters and to avoid constant repetition I shall make once and for
all the following convention:

I shall say that « (resp. £) is an admissible (resp. weakly
admissible) constant if it does not depend on A\, # and v but may
well depend on the other parameters

£ = k(§ 0, 0) K =K 0, 0)
and if furthermore for all ¢ > 0 we have

sup{[kl; t<1—¢; 0,0} < +oo
(resp. sup {|£[; 6, 6} = C(¢) < + )

i.e., £ stays bounded when £ stays away from 0.

We shall say similarily that (A, ) (resp. +(n, &) is an admis-
sible funection (resp. weakly admissible function) if it is a function
of N and g that may also depend on the parameters &, ¢,6,6 but
not on v and for which

e + 1170l
(resp. ||V [le + 172,69 [l

is an admissible (resp. weakly admissible constant).

The letters «, £, 4, ¥ (possibly with suffixes) will be reserved
exclusively and without any further notice for the above creatures.
The letter & (possibly with suffixes) will denote quantities that do
not depend on \, ¢, and v and that stay bounded for all walues of
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the other parameters. Finally when the above letters appear several
times in a formula it will not in general mean that they represent
the same function or the same constant.

We shall now proceed to give a series of geometric lemmas.
The situation is clearly rotation invariant so we can suppose once
and for all that our point ze€ B\0 for which we shall estimate a(z)
ete... lies on the x, axis. To avoid possible confusion with later
considerations we shall denote such a point by

(5.1) E=01-¢0 0<t<l.

We shall also systematically use in C? the coordinates
@1y Yy ®gy Yo); &1 =Ty + Y5 2 = Ty + 1Y, -

The first thing to observe is that

@ﬂ(S) = (1 - ﬁot, 01t; 02‘/—{‘; 631/?)

and that therefore the coordinates of the vector le(—é) are given by

L@ = (1 — 0, 0L, 00/ T, 00/ ) .

We shall parametrize l,9(_;) linearly by a parameter v €0, 1] so that
the coordinates of the general point on [,(¢&) are given by

x,=1—t+ 1A — O,)tv; y, = ;ty;

(5.2) _
2, =0Vty; ¥,=0ty 0<v=<1.

We have then

LEMMA 5.1. For all ¢ and 0 as above and all z€l, (&) para-
metrized as above we have

(5.8) 1—|z]l=0)=A -t —v) =1 — ).
Therefore if zelyé) N R, [ef. (4.3)] we have

)
5.4 1-ys_ L 1t
&9 TEI o

Proof.

(5.4) is of course an immediate consequence of (5.3). The proof
of (5.3) is done by elementary geometry and it involves drawing a
picture. The reader has to do that for himself.

Let us now fix small real numbers 4., 0,, d;, 6, and consider the

point:
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(5.5) &0 1) = (L — t + O, 5yft, O\, 3)€C% 0=\, <1

which is the generic point on a small rectangle 4 that is spanned
by the two vectors

(51’ O) 53; 0); (Oy 52’ 0, 64)

that are translated so that the origin comes to the point &.
We shall denote by

0% = 0% + 0% + 0% + 6%
and we shall prove a series of lemmas concerning 2nd order estimates
with respect to d.
LEMMA 5.2. For all 0 <t <1 there exists o(t) >0 such that

HEQw 1] = IEI + 0n + %N, 1)
N ) =1 — [0y, )] =T — O + 0%(N, 1)
) =vVT —ON 4 5
Vi, 1) =Vt el T (N, 1)
for all 6 < o(t).
LEMMA 5.8. The coordinates of £*(\, p)=&(\, W/l E(\, o) || satisfy

x, =1+ (N, 1)
Yy = KOt + O*p(N, 1)
T, = Oy(N, f)
Yo = oy(\, 1)
a =2+ 1y, =1+ kdpt + *p(\, t); B = X, + 1Y, = oy (\, )

for all 6 < d(t), where o(t) is as tn Lemma 5.2.

Let us now denote by

b1(7\', {‘t) = 6lt(>\’y !’!); a2(>"7 /’t) = 021/t()\’9 #); b2(>"; #) = 031/t(>"y #)

where 6, 6, and 6, are as in (3.1). Let us also determine a,(\, #£)=0
such that the point

X\, ) =1 — a,(\, o), (N, ), ax(h, 1), b,(\, 1)

lies on 9B and in some small neigaborhood of the point 1. a,(\, p)
is then uniquely determined by the equation

a: — 2a; + G20\, p) + (62 + )t ) =0

and an easy computation involving power series gives
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LEMMA 5.4.
a, (N, 1) = 608 + KON + 0%p(N, 1)

Jor all 6 < @) (6(t) as in Lemma 5.2).

If we denote by

X()\” #) = (Z1(>"5 /")’ Zz()"; #))
the complex coordinates of the point X(\, #) we then have
Z(\, 1) = 1 4 6t + £ON + 0%p(N, )

ZOn ) =0V + x%— +EF0 1) .

215

Let us now denote by U the unique complex rotation (special
unitary transformation) that brings the point 1 to the point

&*(\, 1) = (a, B). By the definition of @,(&) it is then clear that

as for U, it is given in matrix form by

o _5
v-(a %)
L8 a
where « and B are as in Lemma 5.8.
We conclude therefore that if the complex coordinates

Ps(E(N, 1)) are given by
Pa(E(N, 1) = (U, U,)
then

(5.6) {UI(M ¥ = U, = aZ, - R,

U2<>\’? p) = U, = BZ, + &z,
and to the first order we have

{Ul(& ) = U0, 0) + o9\, ) = 1 + 0t + og(\, o)
U\, 1) = Uy(0, 0) + 03\, ) = 6V + 8%\, ) .

Taking differentials in (5.6) with respect to » and ¢ we obtain

(6.7

LEMMA 5.5.
AU, = £d.dN + k8, dpt + 6Vt d[y (N, )] + 82d[F(, w]

au, = ddfy(n, )] + £ jat_dx + d[FO 1] -

of

Let us now consider the 3-dimensional chain element (in the



216 NICHOLAS TH. VAROPOULOS

sense of G. de Rham [3] §6; except that here our chain element
is not compact in B) that is obtained by the following parametriza-
tion

(5.8) {Wl = (L=t + 0 + id)(L — ») + U(\, o)

W, = (0,0 + 10,8)(1 — v) + U,(\, Ly

where 0 =\, £ <1 0=<v <1, and where W, W, are the complex
coordinates in C? of the generic point on that chain element.
To the first order we have by (5.7)

W= (1 —81 =) + U0, 0w + o[F(\, 1) + v¥(n, )]

59 | ) g
W, = U0, 0y + o[F (v, ) + 5500, 1]

The support of that chain is of course the set

U l(2)

z€4

and the integration current on that chain is just the current
H,([4)) i.e., the current that we obtain from the integration current
[4] on 4 by applying the homotopy operator H,. (Cf. Appendix.)

Differentiating the equations (5.8) in A, # and » and using
Lemma 5.5 we obtain the following expression on the differentials
on that chain element.

(5.10) AW, = add\n + addp + 6Vt DO\, p) + 6tdy + R
(5.11)  VEAW, = addr + addy + 6V E DO\, 1) + 6tdy + R
where a, D(\, ¢¢) and R are of the form

a = K + YK

DO\, 1) = dly(n, 9] + va[yp(n, 1))
R = o3\, dv + o*d[§ (N, p)v] .

We conclude that:

AW, = X,dn + Xdp + Xody
AW, = Yidn + Yidp + Yidv

where

X[l < K@, + 0V't) + £
(6.12) 1 Xl < 60, + OV T) + &o°

[| Xsllo = £ + K0
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NY. )l £ 20, + 0VT) + &6

V't
(5.13) K — sy
| Yelle = 1/7(52 +0V't) + kb
Y]l < £Vt + K.

Let us finally set

AW, A AW, A AW, = Adn A dpe A dy
AW, A dW, A dW, = Bdx A dpe A dy

and let us denote by
S = S(t; 51; 52; 0s, 0,) = 0,0, + (0, + 52>§1/?+ 0%t .
Using then the estimates (5.12) and (5.13) we obtain the follow-

ing key lemma.

LEMMA 5.6. For all 0 <t <1 there exists 0, = 0,(t) such that
|4l £ £SV'T + &% || Bl < £S + &°
for 0 £9,.

From the above proposition we can already obtain an estimate
for || H,([4])|l. Indeed we have

(.14)  ||H,(4D]| = 100§(|A] + | B dMdpdy < S + R6° .

Similarly by Lemma 5.1 we see that there exists 6, = d,(¢, k) such
that for all 6 < d, we have

1 X, Ho([4D || < 100§ (Al + | Bhdndpdy < IC%—S TR

1—v=k

Let us now denote by
K(4) = K = [Hy([4D)o,

the (0, 1) component of the current H,([4]). To obtain estimates on
K we shall need some ground work first.
Let us denote by

Hy([4) = a® + bdp + co + edp
K = a® + bop

where a, b, ¢, e can be canonically identified with Radon measures in
2. We have then
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(5.15) KAGo=ad A dp
(5.16) H([4) ANdpoANdpAN®=ad ANdpANpAw=V

where V now is just a volume form and can therefore be identified
with a Radon measure in 2. From (5.15) and (5.16) we deduce that

(5.17) [KNopl=k|V|

(observe that the length of the vectors dp, 9o, w and @ is V2 ]jz|)).
Let us now denote by

V. = Hy,[4]) N dz, A\ dz, A dZ,
V. = H,(4]) A dz, A dZ, A dz,

and let us expand

(5.18) 00 Nop N\ @ =22+ |20dz A dz, A dzZ,
' - zz(!zllz + Izzlz)dzz A d-z_z A dzl .
From (5.18) we deduce then that
VIS C( V.| + |2V,])

and if we also have in mind that |2, < CV't in the support of
H,([4]) we finally conclude that

(5.19) VIS CV +VE[VLD

where C is a numerical constant. We shall now use Lemma 5.6 to
make estimates on V, and V..

Towards that observe first, that by Lemma 5.1 and (5.9), we
have

1=zl = —0(2) = |£7(E@ — 1) + vu(\, )0 + P, 199)]

(5.20) \/ ﬁ < £+ 09 ) — L+ 890N, )7
From (5.20) and from Lemma 5.6 we obtain
ol Vil = 100{ 0% | 4| drdpd
(5.21) < (kS + ESS)S\/—‘—Zmdxd;zdu
< kS + £o*

provided that 6 < 6, where é, = 6,(t) may depend on t.
Similarly we have
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1 Xey [0 Vil < (68 + ’353’&63,, J |p<tz>l

2z in the above integral is of course the generic point of the chain
(5.8). Notice now that by Lemma 5.1 when ze€ R, lies on the chain

(5.8) and when 6 < 4, (where &, = 0,(¢, k) > 0 depends on ¢ and on
h) then

and pdy

1—-v§x£.
t

We conclude therefore from (5.20) that

g AR
ze Ry p(z) t
provided again that ¢ < d, = d,(¢, h).
We obtain therefore that
(5.22) |2, 10172 V|| < ;s\/%s e

We have similarily

I 01all = 100{ o[ | B dndpudy
(5.23)
1/__(,cs + xés)s\/————dxdpdv S+ &

oy lo1Vall = hntes + &) || y|—Lanagay
(5.24) '

TI; K >3
< L4 S+ K60,
\/t1/t

If we combine now the estimates (5.21) (5.22) (5.23) (5.24) together
with (5.17) and (5.19) we finally obtain the following

LEMMA 5.7. For all 0 <t <1 and h > 0 there exists 6,=0,(t, h)
such that

o™ K(4) A dp|| < &S + £&°
1 Xe, |01 K(4) A Fp]| < KJ%S 2
Jor all 6 < 0,

Let us now consider the point
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which is the generic point on a small rectangle 4’ that is spanned
by the two vectors
(317 0, 0, 5:): (09 52’ 31;: 0)

4" can be obtained from our previous rectangle 4 by interchanging
the axes x, and y,. From this fact, or from reworking out all the
estimates afresh for &(\, ) and 4 we see that all the estimates
that we have obtained up to now for H,([4]) and K(4) also hold for
H,([4') and K(4') = [H([4'])).;, Where of course now & = & + o2 +
02 + 02,

It is time now to make an assumption on 4,, 0,, ds, d,, 03, 6;. We
shall distinguish three cases.

Case 1. We consider the rectangle 4 and set 6,=6,=0, 0, =
0, # 0 in that case

(5.25) S =dt.

Case 2. We consider the rectangle 4 and set: either
0,=06,=0, 8,=0,%#0
or
0,=0,=0, 0,=0,#0.
We consider the rectangle 4’ and set: either
0,=0;=0, 0,=0;,+0
or
0,=0,=0, 0,=0;%#0
in that case
S <106n/¢t.
Case 3. We consider the rectangle 4 and set 6, =0,=0, J, =
0, # 0, in that case
S < 1000 .

We are finally in a position to give the
Proof of Proposition 4.2.

Case 1. Let us suppose that d,, d,, d;, 9, are as in Case 1 above.
In that case we have
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(5.26) L —b.de A dy
. 52 5_)0 3 1 1

the convergence takes place for the weak topology of currents of
order zero. From this it follows that for all ¢ as in (3.1)

(5.27) Hy(-141) 55 Hioudz, A dy)

for the weak topology of currents of order zero, because H, is
continuous for the convergence in (5.26) (observe that the fact that
1/6*[ 4] stays bounded in norm and its support stays in some compact
subset of 2 makes the verification of that fact very easy).

From (5.27) it follows therefore that

L mqa) .
4]

[ Hy(0daw, A dy)|| = 1517{)1

By (5.14) and (5.25) we deduce therefore that
|| Hy(0:dw, N dy) || < Kt
but by definition (4.1) we have
a(g) = 2i(1 — t)o.dx, A\ dy,
and from this our estimate
lla’]l = | Ho(e) || = &t

follows at the point & = (1 — ¢, 0).

Since the situation is clearly rotation invariant we have the
same estimate for a(z) at every point ze B\0 this proves the first
estimate in (4.4). All the other estimates are proved in an identical
manner. Case 1 gives estimates (4.4). Case 2 gives estimates (4.5)
and Case 3 gives estimates (4.6). The varification of these final
details will be left to the reader.

6. Proof of Theorem 1.1 when 2 = {||z]| < 1}. In this para-
graph we shall give the proof of Theorem 1.1 when £ is the unit
ball {||z]] < 1} (or even more generally an arbitrary convex set with
smooth boundary). The passage to this theorem is not very simple,
fortunately however all the extra work needed to obtain it has
been done elsewhere so we shall be brief and follow very closely
H. Skoda [15] II. The reader who wishes to understand the follow-
ing few lines is strongly advised to study first Ch. VII of [10] and
pt II of [15].

Let M B be a divisor as in Theorem 1.1. Let us suppose as
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we may that 0¢ M and let us denote by ¢ the corresponding Lelong
current which is then a real current that satisfies the U. B. condi-
tion. Using then Theorem 2.1 (or even Proposition 3.1, observe
that te 4) we can find a real current v of degree one such that

dv =1t

and such that v + 6™*,, A 6p is a Carleson current. Let us then
set w = —1v and let

W= —W;,, + W,

be the decomposition of w into its (1, 0) and (0, 1) components. The
current w,,; is then d-closed and the current w,, + 072w, A dp is
Carleson, in other words w,, satisfies all the conditions of Theorem
3.1.1 in [18] (observe that what we call a Carleson condition for a
current g there, differs from our present terminology and corre-
sponds to the fact that |g| + 672 | A dp| is a Carleson measure).
From Theorem 3.1.1 in [18] then, and from Proposition 2.2 in [15]
it follows that we can find two functions:

6.1) {u € BM 0(02)
Ue LY(Q) for the volume measure
such that
(6.2) —SU/\590=§w0,1/\¢—~Su/\sD
2 2 2

where (6.2) is valid for all @ a (2,1) from that is C' in some neigh-
borhood of £. From (6.2) and from the fact that » is real we
deduce at once that

oU = w,, in Q
Wi,0 = W,y

and from these two facts it follows that if we set W= n(U + U)
we have

Law=t.

T
But then by the Lelong theory (as developed say in [10] Ch. VII)
and the work done in [15] II (or [7]) it follows that there exists

F(z) a holomorphic function in 2 belonging to the Nevanlinna N*(Q)
(sometimes denoted N*(2)) class such that

(6.3) log | F(z)| = W(z) .
The N*(2) class is the subclass of the Nevanlinna class N(Q)
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that consists of these functions fe N(Q2) that satisfy
©4  tim| jlogl foa)lido@ — | llog| f@ldot) .

In (6.4) Q denotes the unit ball and do(z) denotes the Lebesgue
measure element on 02, we also denote by f*(z) the radial limits
of the function f(z) that exist for almost all z€0Q.

The fact that we are in N*(Q) rather than the general class
N(Q) is proved in [15] Appendix I (H. Skoda does not explicitely
state that fact but he proves it. G. M. Henkin actually explicitely
states it.)

In our case if we denote by F*(z) the boundary values of the
function F that satisfies (6.8) and if we set

w*(z) = log | F*(2)]

we have w*(z) = w(u(z) + u(z)) (cf. [15] Appendice I).
It follows therefore from (6.1) that

log | F'*(2)| € BMO(3Q) .

This by the John-Nirenberg theorem [9] implies that there
exists some p > 0 such that

F*(z)e L*(69) .

But the above fact and the fact that Fe N*(Q) (ef. [20] Ch. 7,
Th. 7.50) implies that

F(z)e H Q) .
The proof of Theorem 1.1 is complete.

7. The general strictly pseudoconvex domains and the
Poincaré equation for Carleson currents. In this paragraph we
shall prove Theorem 2.1 in its full generality, i.e., when 2 is a
general bounded strietly pseudoconvex domain with smooth boundary
in C*. Theorem 1.1 in its full generality can be dealt by the same
method as in paragraph 6.

In the passage from Theorem 2.1 to Theorem 1.1 there arises
a slight problem in applying the Lelong theory when H'(2; R) = 0
that problem can be delt with by a method due to R. Harvey (cf.
[6D.

In this paragraph we shall follow very closely, once more, H.
Skoda in [15] II § 4.

By the assumption on £ it follows that there exists a finite
open covering of 2 in C*
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— m
Rc UL
i=1

and for each 2; there exists an operator H; defined in the space
of all currents T of 2 that satisfy

supp T C 2;
which satisfies
deH; + H;od = Id

and which is such that the current X, (H;(T) + 6 "*(H,(T)),, A 30)
is Carleson for each T that satisfies the U. B. condition.

The construction of H; is obvious when 2; N o2 =¢, when 2,n
02 + ¢ we just have to use the fact that 02 is locally biholomor-
phically equivalent with a piece of a strictly convex hypersurface
in C* and then apply the results of §3, §4 and §5.

The problem now is to “glue” back all these operators.

Let 4;€C*(C™) 1 < j < m be functions that satisfy

suppy;, C2; 1 =5 = m; inﬁ =1lon 2.
For all T as in Theorem 2.1 let us set then:
0=T-— d( > qﬁ‘iHi("}fiT))
J=1
= Z= [y Hi(dp; A T) — dop; A Hi(p;T)] .

It follows that ¢ is a closed current of degree 2 and order zero
that satisfies the Carleson condition. It also follows that the canon-
ical cohomology class of 6 in H¥2;Z) (cf. [6] 1.5) is the same as
the class of T i.e., it is zero.

To complete the proof of Theorem 2.1 it suffices therefore to
prove the following

LEMMA 7.1. Let 6 be a closed Carleson current of degree 2 in
Q2 whose cohomology class in H*(Q2; Z) is zero. There exists then a
current w of order zero and degree 1 that satisfies

dw =6
and which is such that 6~?w s a Carleson current.
Observe that the above situation is self adjoined and therefore

when @ is real w can also be chosen real.
The above lemma is what replaces H. Skoda’s Lemma 4.1 in
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[15] pt II.

For the proof of this lemma we shall follow Skoda’s method in
([15], II §4) and we shall use the three sheaves .#,, .%;, and &,
that are defined there. The only alteration that we shall make is
that we shall replace (II. 4.4), (II. 4.5) and (II. 4.6) of [15] by the
following

(I1. 4.4y ZLx0 is Carleson .
(II. 4.5) e(lw| + 07 |dw]) is Carleson .
(II. 4.6) L0 (lg] + |dg]) is Carleson.

From these onwards our proof follows Skoda’s proof word by
word.

To make the sheave theoretic machine in that proof work,
however, we shall need to give a proof of the local version of
Lemma 7.1.

This is contained in the following proposition which holds for
all convex sets in C* with smooth boundary but which, for simpli-
city, we shall state and prove only for the unit ball Bc C*. We
shall again denote by 4 the space of all currents 7 in B such that
0¢Supp T. We have then

PRrROPOSITION 7.1. There exists
H*: 41— 4
a linear operator such that
doH* + H*od = Id

and such that if Ted s a Carleson current then o *H*(T) is a
Carleson current also.

In other words H* gains an exponent 1/2 on 6. The above
proposition is of the same nature as Proposition 3.1. Its proof
however is considerably simpler, the reason for that is that the
situation now is isotropic. Indeed the complex structure of C*
plays no role either in the statement or in the proof of Proposition
7.1. Observe also that the condition 0¢ Supp T is purely technical
and can easily be eliminated.

The comstruction of H*.

To simplify notations and to avoid repetition we shall suppose
that » = 2 and we shall repeat all the constructions of §3 making
only one modification.
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In (3.2) instead of defining p,(2) as we did, which was designed
to bring out the anisotropic structure of 02, we shall simply set:

Do(2) = (6, 6:t, 05t)

all the rest remains unchanged. We obtain then an operator H*
which is the average of the operators H, given by

H*T) = (20)‘3S _H(T)d6.d05, .

1051

We claim that H* satisfies all the conditions of Proposition 7.1.
The fact that H* is a chain homotopy is of course obvious. What
has to be verified is the estimate on 6 *H*(T). The strategy to
prove that estimate is identical with the one in §4 and §5 and the
details are much simpler. We shall be brief.

Let I be a multiindex and let us denote by

N = 1(z) = 0,dx;

which is of course a current of order zero supported by the point
2, let us also denote by

7 = 7(2) = Hy(n); H= H(z) = (20)—3S _7(2)d6,d0.d0, .

19,1

PROPOSITION 7.2. For all € > 0 there exists C. a constant that
depends only on € > 0 such that for all z€ B with ||z|] > ¢ and all
6 we have

(1.1) ol < CVt
(7.2) 1 Xe, 07’ || < CV'h
(R, is as in (4.3)).

PROPOSITION 7.3. For all ¢ > 0 there exists C, a constant that
depends only on e such that for all ze B with ||z|| > ¢ and all 6
we have

(7.3) [0 H|| < CAVE .

PROPOSITION 7.4. For all ¢ > 0 there exists C. a constant that
depends only on ¢ such that for all 8, all h > 0 and all z€ B such

that 2¢ Bu(l) (¢ = 10° say) and ||z]] > ¢ we have:
h3/2
(7.4) X0 2 H|| = Ce—t—

If we suppose in addition that
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t=0&) =cvVh

then we have

h5/2
(7'5) Hxha—l/zH” g Cs—ta—"
(X, 1s as in Proposition 4.4).

Proof of Proposition 7.2. Proposition 7.2 is the analogue of
Proposition 4.2. To prove it we consider, as in §5, a “cubical”
chain element of size ¢ and dimension »n — |I| (which will play the
role of an infinitesimal chain element since we shall let 6 —0) at &
and we shall make estimates for H,([4]). We shall then let 6 — 0
and observe that provided that 4 is properly oriented we have

0 4) 5= 7(9)

just as in (56.26). The proof is then concluded as in §5.
The estimates that we need on H,[4] are the following

|62 H,([4])|] < k" Ve < do(t)
1 X, 0 H([AD ] < 66"/ T V6 < 3(2)

where 6,(¢) > 0 depends on t. These estimates are very easy to
obtain here and no development up to the 2nd order in J, as in §5,
is needed.

Indeed the chain element that represents H,([4]) is a “spike”
based on 4 with a long edge of length comparable with ¢ along the
vector 1,(¢). The estimates above follow immediately from that.

Proof of Proposition 7.3. Proposition 7.3 is of course the
analogue of Proposition 4.3. To prove it we just have to integrate
the estimate (7.1) over 4.

Proof of Proposition 7.4. Proposition 7.4 is the analogue of
Proposition 4.4. To prove it we just have to integrate the estimate
(7.2) over #e X, where X, is defined as in (4.8) but for our new
definition of p(z). Concerning that new set X, Lemma 4.2 is no
longer valid what replaces it is the following.

LEMMA 7.1. Let h >0 and 0+ zeB::{l) (where ¢ = 10" say)
then

X, < c%.
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If in addition we assume that
t=0&)>cvV h
then

2
pARELY
The proof of Lemma 7.1 follows exactly the same lines as the
proof of Lemma 4.2. It will therefore be omitted.
Observe that the analogue of Lemma 4.1 does hold and that
therefore X, is empty unless 6(z) = ¢ *h.
We can now complete the

Proof of Proposition 7.1. Let T be a Carleson current as in
Proposition 7.1. We have then

16" H*(T)| (By(1)) < SB 1672H(z) | (Bo(1))d | T| (2)

<

[~ - _+| —uimae
2€Bgp (1) 22 Bop (1) h(2)ScvEh zze VR

(where h(z) is defined as in Lemma 4.1) .
We have then from (7.3):

(1.6) A < CVT|T| (Bal)) = Ch™.
We also have from (7.4) and (7.5) that

77 B=C 3’2§X[z eB; VT = hiz) = h; 6(2) = c*lh(z)]%?l

78 G=C ”S%[z e Bih(z) = eV T 3(2) = ¢~h(z)] i‘l_‘;%l
where X in the above integrals indicates the characteristic funec-
tion of the corresponding sets. The inequality d6(z) = ¢ *h(z) inside
these characteristic functions follows by the analogue of Lemma
4.1 which as we already pointed out does hold for the new defini-
tion of X,.

Let us now denote by

(7.9) FOv = | T| (B{1) = ov

by (7.7) and (7.8) we deduce then that

(7.10) B < cpr| T Y.
ch 7\,
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(7.11) €< Ch”r AFQy)

VTN

An easy integration by parts in (7.10) and (7.11) together with (7.9)
gives then

(7.12) B = Cn

(7.13) € < Cht.

The estimates (7.6) (7.12) and (7.13) put together complete the
required estimate on |672H*(T')| and we are done.

8. Complex lines. The aim of this paragraph is to examine
divisors that consist of a countable union of complex lines, and to
give a necessary and sufficient condition for such a divisor to satisfy
the U. B. condition.

We shall work execlusively in the unit ball BC C?* (n = 2) and
we shall also find it convenient to use the sets C,({,) (h > 0: {,coB)

8.1 Ci(C) = {LeB; |1 — LL| < h}

to test the Carleson condition, this is certainly legitimate because

these sets are equivalent to the sets B/,IC/) (cf. [18] §2.2).
Let now | C C* be a complex line represented parametrically by

(8.2) l={2=(2,%)]2, =2 + az, 2, = 2 + B2, 2z C}

where (2, 29)eC and a =0 a®+ |B?=1 and let us denote by de
the 2-dimensional Lebesgue (2-dimensional Hausdorff) measure ele-
ment on [.

We have then

PrOPOSITION 8.1. There exists C a numerical constant (inde-
pendent of 1) such that if we denote by v the Malliavin measure
on LN B (cf. (1.6)) and by d(l) the diameter of the disc | N B we
then have

(8.3) Cd(l)yo = v < Cd(l)’c
(8.4) v(Cy(&)) = Ch* Yh >0, V(,coB.

Proof. We shall use the decomposition
Y= +

and the two measures
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5, =t A dp A dp|

(8.5) 5 at]

that were introduced in (5.16) and in (5.17), and we shall denote
as usual by ¢ the Lelong current associated to the divisor I N B,
and by 6 =4d(z) =1 — ||2]].

For the proof of (8.3) we shall also suppose, as we may, that

l=1{2= (2, 2) |2 =171}

for some 0 < < 1.
We have then

(8.6) C'l—-—rm)=2dl)y*=Cl —1)
8.7 11—+ |2H"*"=0r)1—7r Vz2=(,2)clNB

for some numerical constant C. We also have

88) T =[tAdpAdpl = % |20 |dz, A d7, A dz, A dZ, |
= 2|20 .
But from (8.7) and (8.8) it then follows that
8.9 T =2[1—0d®)>—roc=1—1rY — 20(z) — 6*z))0 .
Since also by definition
(8.10) P, =600 <C1—1r)o
we obtain at once that
b, +75,<Cl—1r)o

which together with (8.6) gives the right hand inequality in (8.3).
To obtain the left hand inequality we observe that by (8.9)

(8.11) b, =2C*'1—1r)o

in the domain where 6(z) < 107°(1 — ) but when d(z) = 1071 — )
we have by (8.5) that
(8.12) g, =C(1L — r)o

and the inequalities (8.11) and (8.12) put together complete the
proof of (8.3).
For the proof of (8.4) we shall, as we may, assume that {, =1
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and that ! is a general line parametrized as in (8.2).
We first observe that

lz2! = C-‘/W vz = (zu zz) € Ch(l)

and that I N C,(1) is a convex subset of ! whose diameter is bounded

by the diameter of C,(1) which is Cv'%. From the above two
observations it follows that

8.13) a(C,(1) =[N G|, = Ch
and that
(8.14) ,(Ci(1)) é,f}uﬂ) d(2).0(C,(1)) = Ch* .

It also follows that
(8.15) J= SG _|alds < Cha(G(1) = O,
h 1

If we use the parametrization (8.2) of | we see that
dz, \ dz, = |a|’dz N\ dZ
but that means that the integral

1=,

h

1t A dz, A dZ,| = § ] A dz, A d7,|
e cptn

is just twice the 2-dimensional area on the line {2, = 0} (which is
the 2, axis) of the orthogonal projection on that line of the set
1N Cy(1), that area is clearly bounded by the area |C,(1)N {z, = 0}|,
and this means that

(8.16) I<Che.
We can finally estimate
5(Cy(1)) = S 1t A 3o A Bp)
Cp(1)

< cg 1t A de A dz| +0§ lallt Ade, A dal

Ch(l Ch
+ CSC _1&[ It Ade, A B S CT+ CK + CJ
hl
where

8.17) K= SC lmllt A da A dz| S VIT
13

by the positivity of the current ¢ (cf. (2.5)). The estimates (8.15)
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(8.16)(8.17) and (8.14) put together give (8.4) and complete the proof
of Proposition 8.1.

We shall now examine divisors that are obtained by taking
countable unions of complex lines.

More explicitely let I, C? j =1, 2, --- be a sequence of complex
lines and let us denote by

M=y ;nB)
which is a divisor in B (we give multiplicity one on each line).
Let us denote by
K;=BNl;, d;=diam(K;); j=1,2,---.

The divisor M then clearly satisfies the Blaschke condition if and
only if 37,d} < + o (this immediately follows from Proposition
8.1). We also have

PROPOSITION 8.2. The divisor M satisfies the U.B. condition if
and only if there exists ¢ > 0 some positive constant such that

(8.18) S 4= ok,
KjcCp (8o
(8.19) Card {j | K; N Cu(lo) # ¢; K;ZCul)} = ¢

for all h > 0 and all {,€dB.

Proof. The fact that the two conditions (8.18) and (8.19) put
together (for some ¢ > 0) are sufficient to ensure that A is U. B.
is an immediate consequence of Proposition 8.1. It is also clear
from the same proposition that if i1 is U. B. then (8.18) has to be
verified for some ¢ > 0. The proof that (8.19) also has to be verified
when M is U. B. is more delicate. That proof is based on the
following

LEMMA 8.1. Let I, m=1,2, --- be a sequence of distinct com-
plex lines in C* and let us suppose that

lel, m=12 ---
then the divisor
# = U (. B)
is mot U. B.

In fact, for the applications that we have in mind, the above
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lemma will be more useful than the actual Proposition 8.2. From
the above lemma however we can easily give the

Conclusion of the proof of Proposition 8.2. Indeed let us
suppose that i1 is U. B. but that (8.19) fails to hold for every ¢>0.
By letting ¢ — « we can easily construct a new divisor N that is
U. B. and that consists of infinite many lines all going through a
single point say 1 on 0B. This together with Lemma 8.2 supplies
a contradiction and completes the proof. To make this argument
work it is best to work on the Siegel half space

(8.20) S = {u = (uy, u,) € C* 2Imu, > |u,|*} .
The reason is that S has a natural dilation structure
(8.21) (Ugy W) —— (Nuyy MUy), N> 0

and by letting %~ fixed, ¢—  and \ = 1/ch we can realize the
above construction at the point 0€0S (which corresponds to the
point 1 of the ball). We shall leave the details to the reader and
proceed with the proof of the Lemma 8.1.

We shall need the following

LeEMMA 8.2. For all complex line | C C* such that 1€l I N B+#¢
there exists then h, = hy(l) > 0 such that for all h < h, we have

Tul) = Schm I A dz, A d7,| 2 i—(l)—oh :
Proof. Indeed it is clear that there exists some s, = h,(l) depending
only on I such that
8.22) {#=(z,2)el; |2 <1, [1—2z]|=201-]|z]) = hcC@)
for all h < h,. Let us denote by
D, =1{2,¢€C; |2 <1, |1 —2]| =20 — |2]) < h}
it then follows from (8.22) that

2
(8.23) a2 0 AdeAdE] = DLz
2,€Dy,

(where |D,|, is the 2-dimensional area of the set D,).
To see the second equation in (8.23) it suffices to parametrize [
by

(8.24) zi=2+1; z,= az
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and observe that then dz, A dz, = dz A dz.

Let now I be a complex line that goes through 1 and let us
suppose that it is parametrized as in (8.24). It follows then that

\,
2|
\,

+26%mWﬁHHAd%Ad@DmdeHAdmAdZ>

JWAWA%—MW@Aﬁm

Aml A dz A dz] + | |20 A de A dz

h h

L =

=
(8.25)

=

(1
C,
o |2, 2 |[L] A dz, A dZ,]
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by the positivity of the current [I] (cf. (2.5)).
But we clearly have

(8.26) |2, £ abh Vz = (2,2)elNCQA).
From (8.25) (8.26) and (8.13) we deduce therefore that
(8.27) L=Clalh®+ Cla|h™

where C is a numerical constant and « depends on .
But if we combine (8.27) with Lemma 8.2 we deduce that for
all { as in Lemma 8.2 there exists s, = h,({) > 0 such that

_ 1.,
(8.28) [, 01 A 30 Aol = 2o

for all h < h,. From (8.28) Lemma 8.1 follows at once.

9, EXAMPLES. The aim of this paragraph will be to give a few
examples and also to supply a proof of Theorem 1.2. Once again
we shall work exclusively in B the unit ball in C? we shall also
preserve all the notations of the previous paragraph.

ExAaMPLE 1. Let {o;eC;la;] <1 j5=1,2, .-} be a sequence of
points in the unit disc that has the following property

0  Cardfjllajelt 271 -2 Amgaye[2, 221

=C vmzl;1=p=s2

where C is a fixed constant that depends on the sequence but is
independent of n and ».

Observe that the above condition (9.1) implies that for all {,eC,
1&] =1 we have
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9.2) > A -l =sCn

lay—Loi=Cph?

where C, only depends on C.
We have then

ProrPoSITION 9.1. Let {a;};=, be a sequence as above that satisfies
condition (9.1) for some C, the divisor

8

~

9.3) i =U (. = a} 0 B)

1

then satisfies the U.B. condition.
We shall need the following

LemMmA 9.1. Let {, = (cos 8, sinf)coB (—x/2 < 0 < w/2), and let
us denote by X(6, h) the orthogonal projection on the line {z, = 0}
(which is the z, axis) of the set C, () [ef. (8.1)]. X(6, h) is then a
convex set on that line and its diameter satisfies

(9.4) diam X(8, ) < Cy(h + V' k| sin @)

where C, is a numerical constant.

We shall postpone the proof of that lemma until later and
complete the

Proof of Proposition 9.1. We shall fix {, = (cos @, sind) and
h>0 with 0<6<x/2 and we shall verify that the Malliavin
measure vy of the divisor (1.6) satisfies the Carleson condition (1.1)
for the set C,(,). Clearly this is sufficient to complete the proof
of the proposition because the configuration that we are considering
is invariant by transformations of the form (z, 2z, — (e'*12,, €'%2z,).
We distinguish two cases.

Case 1. V' h < 1/2000(C, + 1) |sin 8|.
It follows then from (9.4) that

. ~ sin’f
(9.5) diam (X, h)) = 0o

But we also have:

(9.6) 1-2 sinz-% —cosfe X0, ).

But then from conditions (9.1) (9.5) and (9.6) it follows that
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9.7) Card {j|a, e X(6, h)} = C

where C depends only on the original sequence {a;};~,. From (9.7)
and (8.4) it follows clearly then that

v(C,(&y)) = Cw*
and we are done.

Case 2. V' h = 1/2000(C, + 1) sin 6.
In that case
diam (X8, h)) < ¢.h

where ¢, is numerical. But this together with (9.6) implies then
that

X0, h)c{z,eC; |1 — z,| < Ch}
and therefore that
Ci(&) & Ceu(1)
We deduce therefore that
MGE) S 2 CopW) S B vl = a)

l—ajléc3h
and if we use then (8.3) and (9.2) we obtain that
v(C(&y)) = Cr’
and we are done again.

It remains to give the

Proof of Lemma 9.1. Let {, = (cosf, sinf) and » be as in the
lemma. For a = (a,, a,) € C* arbitrary let us denote by L(a) the
complex line that is represented parametrically by

z,=a,— 2sin@
2, =a, + zcosd zeC.

L(a) passes then through a and is perpendicular to the vector ¢, in
C*. Using the lines L(a) we can then fibrate C,({,) as following

9.8) GE)= U L)

aeap(Co)

where we denote by
4,C) ={aeB;lla = (|| =h}, L'(a) =La)NB.

We clearly have
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diam (4,()) = 2k

(9.9) _
diam (L'(a)) < 100V 1 Va e 4,(&,) .

Therefore
(9.10) diam (projection of L'(a) on {z, = 0}) < 1001 7% [sin @] .

Our lemma now follows from (9.8) (9.9) and (9.10).

We are now in a position to give a proof of Theorem 1.2. To
do that we shall need to recall first a few well known facts about
H*(B) functions.

PROPOSITION. (H.R.) Let >0 and let f(z, z,) € H?(B), then the
function @(z) = f(z, 0) satisfies the following condition:

(4,) ig‘m lp(z)|Pdz A\ dz < + oo .

Conversely if @(z) is a function of one variable (defined for |z|<1)
that satisfies (A,) for some p > 0 then the function

f(z, 2) = p(z) e H(B) .
Furthermore if @(z) is as before and does mot vanish at the origin
then the sequence of its zeros {a; € C};.. satisfies

(9.11) S —lahs Llog (N + 1) + Clpj Nz 1

D
where C(p) 1s a constant that depends on @ and where in (9.11)
we can use any ordering of the sequence {a;}3, that does not decrease
the moduli (i.e., (o < la,| £ -+ ).

The first part of this proposition is well known and easy to
verify. Results of that kind were first brought to light by W.
Rudin ([13] 3.4.4). The part about the zeros is a result of C.
Horowitz and is an easy consequence of Jensen’s formula (cf. [8]
3.9). We can now give the

Proof of Theorem 1.2. Let p, be as in Theorem 1.2. We first
construct a sequence {a;eC;la;|<1,j=1,2 ---} that satisfies
condition (9.1) for some C but for which (9.11) fails if p = p,. This
is very easy to do. It suffices then to set

#=U(z=a)nB

and apply Proposition 9.1 and Proposition (H.R) to obtain the
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required divisor.

EXAMPLE 2. Let [, CcC*n=1,2, --- be a sequence of complex
lines in C* and let us denote by d, = diam (I, N B) (» = 1) and by

i = U (.0 B)

the corresponding divisor. Let us also denote by ¢ the Lelong
current associated to M and by
o = |t|

its absolute value which is a measure equivalent to the 2-dimen-
sional Lebesgue measure on M. We have then

PROPOSITION 9.2. Let M be as above and let us assume that
there exists ¢, > 0 such that
'9.12) ddp=14+e n=12 ---
The measure o satisfies then
(9.13) 0(C,(&y) = Ch; V¢, €0B, h >0
where C depends only on &,

From (9.13) it follows in particular that the measure ¢ |T| =9,
is Carleson.

By combining the above proposition with, say, Lemma 8.1 we
conclude

PROPOSITION 9.3. There exists a divisor M in B that does mot
satisfies the U.B. condition but for which mever the less the measure
U, = d|t| (t being the associated Lelong current) is Carleson.

Proof of Proposition 9.2. We shall suppose, as we may, that
¢, = 1, and we shall denote by o, the 2-dimensional Lebesgue measure
onl,NB (n=1. We have then

oG = Fo.GM) = 5, + 3, =A+B.

B dg> R
By our hypothesis we have

Az > d,=Ch.

dysVh

Similarly by our hypothesis and Proposition 8.1 we have
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B=C2 d*n*="n*3 d.*=Ch.
h

dp>Y >Vl
The above two estimates complete the proof of the proposition.
ExaMpLE 3. Let us denote here by d, (ds(a, b)a, be B) the

Bergman metric in the ball B (cf. (1.4)).
Let 8 be a sequence of points

(9.14) B={zneB;i=1,2 -}

concerning 8 we shall make two definitions.
We shall say that 3 satisfies the Carleson interpolation condi-
tion if the measure

EECE EAES

is a Carleson measure in B (cf. [1], [19] for the motivation and the
significance of the above definition).

We shall say that 3 is N-separated where N =1 is a positive
integer if the following two conditions are verified

(@) do(2;,y 2;) = N, Yi =+ .

(B) There exists a fixed positive integer % depending on 5
such that

/8C +U°o {z GB; 2>(p,V+k'H) é 1 — HzH é 2*‘(1’N+k)} .
=0
In the above definition, if we denote by
811 — {z 68; 2——(pN+k+l) é 1 — “ZH é 2'—(pN+k)}
it is clear that 3, is finite and that
(9.15) 3 :,,':0' 3, -
The point of the second definition is the following

LEMMA 9.2. Let 3 be a sequence of points in B that satisfies
the Carleson interpolation condition, and let N =1 be a positive
integer, we can decompose then 3 into finitely many sequences

8:8<1>U8(2)U,,,U8(s)
such that each 3% k=1,2, ---s is N-separated.

The proof is trivial and will be left to the reader.

We can state now
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PROPOSITION 9.4. Let 3 be a sequence of points im B as in
(9.14) that satisfies the Carleson interpolation condition, there exists
then {;CC?% j=1,2, --:} a sequence of complex lines in C* such
that the divisor U5, (I; N B) satisfies the U.B. condition and such
that z,€l, ¢ =1,2, ...).

From that proposition we have the following

COROLLARY. Let B be as in the proposition, there exists then
some p > 0 and some 0 = f € H?(B) such that f7*(0)> 3.

To prove the Proposition 9.4 we shall need the following

LEMMA 9.3. There exists ¢ > 10 a numerical constant such that
for all N> c and all 3 N-separated sequence there exists

{l.cC?* ue3}

a sequence of lines that satisfy the following conditions

(i) wel, Yue3d

(ii) L.NBCConun(@/llul)), Yuel

(iii) For all {,co0B and h > 0 there exists at most one line
l. (ue3) that satisfies

lu n Ch(co) ;t ¢; lu ¢ Cch(CO) .

We shall postpone the proof of Lemma 9.8 until later and complete
the

Proof of Proposition 9.4. Let B be as in Proposition 9.4 by
decomposing then B into finitely many subsequences each satisfying
the conditions of Lemma 9.3 (this can be done by Lemma 9.2) we
can suppose without loss of generality that B itself satisfies the
conditions of that lemma.

Let then

{l.; weB}

be the family of complex lines constructed in Lemma 9.3. We claim
that the family of lines satisfies conditions (8.18) and (8.19) of Pro-
position 8.2 and that therefore the divisor U..» (. N B) is a U. B.
divisor.

Condition (8.19) follows trivially from (iii). Condition (ii) on the
other hand implies that

(9.16) diam (I, N B) < e¢(1 — ||u|])'* vue3
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and (9.16) and the definition of the Carleson interpolation condition
imply then that condition (8.18) is also verified. This completes the

proof.
To give a proof of Lemma 9.3 we shall need the following

LemMMA 9.4. For all z€ B such that t=1—||z]|=Zc¢™* (¢ 15 a
numerical constant ¢ = 10°" will certainly do) and all 1CC?* complex
line 1n C* there exists a complex line [,CC* such that

zel; I, N BCCC(WE_H_) ;

inf{|1 —z; @|; z€l, uel, z,ucoB} =c7't.

Proof. A direct proof of the above lemma can, no doubt, be
given. The easiest way to prove it however is to use the gener-
alized Cayley transformations and to pass to the Siegel upper half
space S given by (8.20). Using then the natural dilation structure
of S given by (8.21) we can assume that the point z in our lemma
above becomes the point I = (¢, 0) € S.

It is enough then to show that there exists a numerical constant
¢ such that for all complex line [ in C* there exists another complex
line I, such that

Icl; l,nSc{u = (u, u)eC% |u,| <c}
dinosS, l,noS) >c™*
where we denote by d(a, bd) the natural distance function on 4S
given by d(a, b) = |a;, — b,| + |a, — b, %
That fact follows by an easy compactness argument and no

direct computation is needed. This completes the proof of Lemma
9.4,

Proof of Lemma 9.3. Let 3 be as in Lemma 9.8 were ¢ is
large (¢ = 10" will certainly do) and let

8=U3,

the decomposition (9.15) of 3 into its successive “layers”.
We shall then construct a sequence of lines {l,; w € 8} such that

(9.16) wels L BE Cun(ir); Yues

and such that for two distinet a, b€ 8 we have
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inf{|1 — z.4|; z€l, N 0B, wel, N 0B}
= ¢'min [(1 — [la]), @ — [[bID].

The above lines, then, will clearly satisfy the conditions of

Lemma 9.3 (possibly with a larger c).
The above construction of lines will be done inductively on the

layers 3, of B.
Indeed let us suppose that lines

{lu; %€ qi;oJo BP}

(9.17)

have been constructed for some p, =1 and that they satisfy (9.16)
and (9.17). It is then very easy, using the hypothesis and Lemma
9.2 to construct finitely many more lines

{l; u e8po+1}
such that the lines

i nlis)

still satisfies conditions (9.16) and (9.17). This is the inductive step
and it completes the construction.

10. The optimal nature of the uniform Blaschke condition.
Let 2 < C" be as in §1 and let # be a Radon measure in 2. We
shall say that p satisfies the C, (@ > 0) condition if

|| (Bi@) < Gt Ced®, 0 <t <1,

where C is independent of ¢ and {,, We shall say that T a (1, 1)
current as in (2.1) satisfies the U.B., condition if the measure

S|T|+0"(|T ANdp| + |T Adp|) +|T A dp A dp|

is a C,-measure in 2.

It is very easy to see that the condition C,, if postulated at
the beginning, it propagates in a very natural way right through
the paper. In particular if T is a real d-closed current that satisfies
the U. B., condition for some a > 0 then there exists a real solu-
tion W of the equation

WoW =T
such that W|,, € 4,(02).
The above facts may be of some mild interest, unfortunately

however, they do not seem to have any significance in complex
analysis because of the following
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PROPOSITION 10.1. Let M c 2 be a divisor in Q (where 2 is as
above) and let t be the Lelong current associated with the divisor.
Let us also suppose that the measure P, = |t A 0p A 0p| satisfies
the condition

(10.1) 5,(By(&o) = o(t™) 5
as t — 0, uniformly in {,cd2. Then the divisor M is empty (M=g).

Proof (outline). To simplity life I shall suppose that 2=BcC*
the unit ball in C®.. Let M satisfy condition (10.1) in B. Then by
considerations analogous to the ones in the proofs of Propositions
2.1,2.2 and 2.3 we conclude that p the Malliavin measure of the
divisor [cf. (1.6)] satisfies the condition

v(lazo)) = o(t?); as t —— 0 uniformly in {,€oB.

But then by rerunning through the proof of Proposition 1.1 we
conclude that

(10.2) Glim || M,]|, = 0

where G is as in Proposition 1.1 and g — - means that we tend to
the point at infinity of the locally compact (but not compact) space
G (i.e., that we eventually leave every compact subset). This last
fact (10.2) is however only possible if M = ¢.

Indeed suppose that M+ ¢ and let us choose a sequence of
points such that:

Z,eM*; n=12--- Ilz,,ll;_—;»ol
this clearly is always possible. Let also g,€G (n = 1) be a sequence

of holomorphic automorphisms of G such that g¢,(z,) =0 for all
n = 1. Clearly then

0OeM;) nz=1; Gn 2 in G.

But by an easy application of Wirtinger’s inequality [ef. [17]
Theorem (B)] we see that the fact that 0 M (n = 1) implies that

inf HM,”II,, =107,
n1
This completes the proof.
APPENDIX. In this Appendix I shall give a short guide of how

to read the relevant passages of G. de Rham [3] so as to obtain
formula (3.5).
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Observe, first of all, that in the text I did not specify the
exact value of Hy(z, t)el,(z) 0=t <1) (i.e., I did not specify the
speed with which the point z slides along [,(2) during the homotopy).
The reason for that is the operator H, that is defined from that
homotopy on the space 4 (ef. (8.4)) does not depend on that speed
and is invariant by a change of parametrization along the dif-
ferent rays [4(z). This will, hopefully, become apparent in the
next few lines. At any rate the reader who does not wish to
overexert himself can think that the parametrization, that is fixed
once and for all, is, say, the linear parametrization given in vector
notations by:

Hyz, t) = (1 — t)z + tp,(2) e B\{0}; ze B\{0}, 0<t=<1.

Observe also that we called currents in this paper are “des
courants impairs” in de Rham’s terminology (cf. [3] §8 p. 39, 2nd
edition).

Let us now apply the construction of G. de Rham ([3] §14
“FORMULES d’HOMOTOPIE” p. 68, 2nd edition) and let us set

W = V = B\{0}
M, 2) = pt, 2) = Ho(z, L —e)t) 0=t =1

where 0 < e < 1.
Let us also suppose that T is a current with compact support
in B\{0}. G. de Rham’s formula (8) reads then:

#OT — T = bM.T + MT

where M, is the M operator of G. de Rham that corresponds to the
family of mappings u“(¢, z). We shall give an explicit formula for
that operator at the end of this appendix.

Let us observe that g7 =T and that ,u{“T;;O (this is

because the support of T is pushed to dB i.e., to infinity as e—0).
It is also easy to verify that M,T converges as ¢ —0 for all T
with compact support (the verification is done directly on the defini-
tion of the operator M). If we set then MT = lim,., M.T we get

(11.1) ~T = bMT + MbT

and this is just our formula (3.5) when we set Hy; = woM where
w is the operator defined in ([3] §11, p. 54, 2nd edition). w is in
fact just multiplication by +1 depending on the degree of the
current.

Let us now consider the general case, i.e., the case when T'e 4
is not assumed to have compact support. In that case our hypo-
thesis on the support of T says that inf {||z||; zesupp T} > 0, from
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this it follows that the conditions of [3] §14 (second paragraph of
p. 70, 2nd edition) are verified for all the mappings ¢ so that the
formula (3) of [3] §14 still holds. The same passage to the limit
as before still holds, again by the hypothesis on the support of T,
and that completes the construction.

We shall finally give a completely explicit description of the
operator M and therefore also of H,.

Let

T= ; TIdyI

be a coordinate expression of Te€4 in some coordinate system,
where the T,’s are identified with distributions, and let us denote
by X = X(t) 0 < t <1 the characteristic function of I' = (0, 1) which
we shall identify “qua distribution” to the Lebesgue measure on
[0, 1]. We shall denote then by

I'T =3 (X®T)dy,

where X @ T; is the tensor product of the two distributions. I'T
is then a current on the product manifold I’ x (B\{0}) (observe that
I follow very closely the notations of G. de Rham who denotes
IT = I®)T(y) ef. [3] §14 “FORMULES PRELIMINAIRES”).

Let us also denote by

1" X (B\{0) — B\{0}

the mapping defined by (¢, 2) = Hy(z, t).
The operator M that satisfies (11.1) can then be defined by

MT = p(I'T)

i.e., the direct image of the current I'T by g (cf. [3] §11 p. 55,
2nd edition).

To finish up let us suppose that T is the 1ntegratlon current
on some chain element ¢ regularily embedded in B\{0} [ef. [3] §8,
Example 1] sometimes such a current is denoted by T = [¢]. It is
clear that then H,(T) is also an integration current on a chain
(element) that is no longer compact but goes all the way to the
boundary 0B. The support of that chain element is

supp H,(T) zxesu';;!(l”(“) .

(Observe that what I called support of a chain element above is
just the set w(/I) in the notations of [3] §6.)

It is worth observing also, that the easiest way to see that
the operator H, does not depend on the particular parametrization
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along the lines [)(2), is to go through chain elements. Indeed by
the above it follows that H,(T) is independent of the parametriza-
tion in question when T = [¢] for some chain element ¢. But the
most general current can be thought as a weak integral of “infinite-
simal chain elements”, and that of course gives the result.
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