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ZEROS OF Hp FUNCTIONS IN SEVERAL
COMPLEX VARIABLES

NICHOLAS TH. VAROPOULOS

Let Ω be a strictly pseudoconvex smoothly bounded
domain in Cn and let MaΩ be a complex hypersurface in
Ω. In this paper I develop a condition that is sufficient to
ensure that Λf=/-χ(O) for some feHp(Ω) (i.e., some / belong-
ing to some Hardy class of Ω). That condition refers to
the growth of the 2n—2 dimensional volume of M as it
approaches the boundary dΩ.

Introduction• Quite recently G. M. Henkin and H. Skoda,
independently, in two remarkable papers [7] [15] have obtained a
complete characterization of the zero sets M of functions in the
Nevanlinna class of a strictly pseudoconvex domain Ω c C*. The
characterization is very simple and is just the Blaschke condition on
the growth of the volume of M as it approaches the boundary (cf.
§ 1 for the exact definitions).

The question naturally arises as to what can be said about the
zero sets of functions in the Hardy iP-classes (p > 0) of the same
domains. When n, the complex dimension, is one it is of course
well known that the same Blaschke condition is necessary and suffi-
cient to characterize the zero sets of all these classes.

When n J> 2 the situation is considerably more complicated.
Indeed it is known [8], [14] that for two different values of p > 0
the zero sets of functions in the corresponding IP-classes differ
(this fact is essentially proved in § 9 below). In view of this fact
a complete characterization of the zero sets of functions in Hp

becomes much more difficult and to, my mind, not even very
feasible.

In this paper I give a general condition on M an analytic set
in Ω to be the zero set of some function in some iP(,Q)-class (i.e.,
for some value of p > 0). The exact statement will be given in
§ 1. If I were to attempt to describe the condition in general terms,
I would say that it is just the Blaschke condition again, except that
it makes sure that no point at infinity (i.e., on dΩ) takes more limit-
ing mass of M than its due. In other words the Blaschke condition
holds in a uniform fashion as we approach the boundary (hence the
terminology "uniform Blaschke").

The above uniformity can be expressed in terms of a Carleson
condition at the boundary. In the case of the complex ball which
is a domain that admits a transitive group of holomorphic self-
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mappings, the above uniformity can be expressed by the fact that
the Blaschke nature of the divisor M stays stable by all holomor-
phic self-mappings of Ω. For n — 1 the above "uniform Blaschke
condition" reduces to the classical Carleson interpolation condition
for sequences in the unit disc [1][2].

The way the material is organized is as follows:
§ 1. Exact definitions and statements of the theorems are given.
§ 2. The uniform Blaschke condition is examined in details and

the basic real variable Theorem 2.1 is stated.
§ 3. The geometric condition needed for the proof of Theorem

2.1 is given.
§4. The Theorem 2.1 is proved modulo the geometric estimates

that are postponed untill the next paragraph.
§ 5. The geometric estimates are given.
§ 6. The proof of the main theorem is completed.
§ 7. The passage to the general strictly pseudoconvex domains

is examined.
§8. Special kind of divisors that are obtained from complex

lines are examined.
§ 9. The previous results are illustrated by examples.
§ 10. The best possible nature (in some sense) of the uniform

Blaschke condition is exhibited.

The heart of the matter is §3 and §4. The" power-house" (i.e.,
the sordid computations that are needed to make everything else
work) is §5.

All the theorems are stated and hold for general strictly pseudo-
convex domains. Some of the more tedious "local" estimates and
geometric computations, however, are only given for J5, the complex
ball, and dimension w=2 for that matter. The situation is perfectly
typical and the reader who possesses some technique (and is suffici-
etly perverse) can, I am sure, carry these details out in general
domains for himself.

1* Notations, definitions, and statement of the main theorem*
Let Ω = {z e Cn; p < 0} be a bounded strictly pseudoconvex domain
of Cn and let us suppose that Ω is defined by some function p which
is C4 and strictly plurisubharmonic in some neighborhood of Ω and
such that dp Φ 0 on dΩ.

We shall say that μ a Radon measure on Ω is a Carleson
measure if:

(1.1) \μ\(Bt(ζ0))^C\Bt(ζ0)\; 0 < t < t0 , ζQedΩ
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where C is a constant that depends only on μ and not on ζ0 or £.
The definition of the demains Bt(ζQ) and Bt(ζQ) has been given in
[18] 2.1 where also the notion of a Carleson measure has been
elaborated at length. We shall refer the reader there for the
details.

Let now

<*> = Σ ωi,jdzΣ Λ dzj
I.J

be a current of order zero in Ω (i.e, such that its coefficients ωIyJ

can be identified with Radon measures in Ω). We shall denote
then by

which is a positive measure in Ω and by

the total mass of ω when that mass is finite. (|α>7fJ| and | |α) / } J | |
denotes, of course, the absolute value and the total mass of the
measure (oIfJ). We shall also say that a current ω of order zero
satisfies the Carleson condition, or that it is Carleson, if \ω\ is a
Carleson measure in Ω. (Observe that this definition is not consistant
with the one given in [18] 3.1.)

Let XaΩ be a ^-dimensional orientable submanifold regularly
embedded in Ω, we shall adopt then the standard notation [X] for
the integration current on X, provided of course that the integration
current is well defined. More explicitely let us assume that for all
compact subset KcczΩ the ^-dimensional volume \X f) K\p < + °o,
we can then define

[X]<p = Jφ
x

for all C°° compactly supported differential form φ in Ω. [X] when
defined is clearly a current of order zero.

Let now M be a divisor in Ω given by the Cousin data {fi9 Ut,
ί = 1, 2, •••} where {C7J is a covering of 42. Concerning divisors
we shall follow all the notations and definitions of P. Lelong [10]
(especially Ch. VII). In particular we shall denote by M the under-
lying analytic set of M, by M* c M the subset of regular points of
M, and by

CO

M* = U Mi

the decomposition of M* into its topological components. We shall
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denote by m(x) (a e l * ) the multiplicity function of the divisor
defined on M* (m(x) = mk is constant on each component M* f k ~
1,2, . . .)•

We shall denote by

t = ±dd log \ft I on Ut i = 1, 2,

the Lelong current associated with the divisor M in Ω [cf. [10] Ch.
VII]. P. Lelong's basic theorem says then that t is a positive cur-
rent in Ω and that

(1.2) ί = gmJΛf* ] .

In particular therefore £ is a current of order zero in Ω.
Let us now denote by δ(x) the Euclidean distance of x e Ω from

dΩ, δ(x) is then comparable with — p(x) when x is near d£? in the
sense that there exists C > 0 some positive constant such that

(1.3) C-K-f*x)) ^ δ(x) ̂  C(-p(x)) .

t being a current of order zero we can define b = 6^ = δ(aj)ί a new
current which is also a current of order zero. We shall then say
that the devisor M satisfies the Blaschke condition, or that it is a
Blaschke divisor if \\bs\\ < +°o.

Let us denote by dσβ the 2w — 2 Euclidean volume element on
M* (dσβ as a measure is given by the volume current l/(n—ϊ)l[M*]Λ
βn~x where β = iβ^Γύ=ιdzό Λ dzί9 but this fact is irrelevant for us).
In terms of dσβ we can then express the Blaschke condition as

— \ m(x)δ(x)dσβ(x)

Indeed the two "norms" \\M\\β and ||&^|| are easily seen to be equi-
valent.

Let us now consider

(1.4) Φ = - ίdd log {-p) = id±ΔΪP + i
p

+ i
p -p

which is a positive (1, 1) form on Ω and let us consider the positive
measure o n F defined by

(1.5) dσφ = * [M*] Λ Φ^1

(n - 1)!

dσφ is then the 2w — 2 volume element on I * for the Hermitian
metric on Ω defined by the fundamental form Φ (but this again,
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for our purposes, is irrelevant).
Let us also denote by

||ifiΓ|U= ί m(x)δn(x)dσφ(x) .

We shall then say that M satisfies the Malliavin condition if ||ifiΓ#||<
+ oo. We shall also denote in what follows by

(1.6) dv = dvu = m(x)δn(x)dσφ(x)

the Malliavin measure of the divisor. The above measure and the
above condition were introduced and studied for the first time by
P. Malliavin (cf. [12]). It has since been proved that there exists
C > 0 a positive constant that only depends on Ω such that

(1.7) C

for all divisor M in Ω (cf. [15], II §2).
We are now in a position to introduce the main notion of our

paper.

DEFINITION. We shall say that a divisor MaΩ satisfies the
uniform Blaschke condition (U. B. in short) if the Malliavin measure
of the divisor dvu is a Carleson measure in Ω.

The above definition is quite general. If we specialize however
Ω, to be the unit ball in Cn

= \Zl\*

we can give an equivalent definition that does not involve Carleson
measures. Towards that let us denote by G the group of all holo-
morphic automorphisms of B (i.e., all holomorphic injective mappings
of B onto B), for all g e G let us also denote by Mg the image of
the divisor M by the mapping g:z—>g.z, Mg is then (for all geG)
a new divisor in B. We have then

PROPOSITION 1.1. Let M be a divisor in B. The following
conditions on M are then equivalent:

( i ) M satisfies the U.B. condition.
(ii) sup.es ||M, 11̂  < + oo,
(iii) sup,e(? IIM,||Φ < + oo.
The fact that (ii) and (iii) are equivalent follows from (1.7), the

equivalence with (i) will be proved in the next paragraph.

We are finally in a position to state the main theorem of this
paper.
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THEOREM 1.1. Let Ω be a bounded strictly pseudoconvex domain
in Cn of class C4 as above, and let M be a divisor in Ω that satis-
fies the U.B. condition and whose canonical cohomology class in
H2(Ω; Z) is zero. There exists then p > 0 some positive number
and FeHp(Ω) a holomorphic function belonging to the Hardy p-
class such that M = F~\0) (i.e., such that M is exactly the divisor
of zeros of F, with multiplicity counted).

We can further choose our function F as above such that the
admissible boundary values of F on dΩ (which exist almost every-
where on dΩ) define a function F*(x) (xedΩ) such that

The definition of the classes HP(Ω) is classical (cf. [14]). The
definition of BMO is also classical (cf. [4]), for the adaptation of
BMO to the boundary of complex domains cf. [18].

In some sense, but in some sense only, the above theorem is
best possible. Indeed we have

THEOREM 1.2. For all p0 > 0 there exists M a divisor in BaC2

that satisfies the U.B. condition and such lhat

FeHpo(Ω); F~\0) 2 M => F = Q.

2* The uniform Blaschke condition for currents* In this
paragraph I shall lay down the basic ground work and I shall state
the key real variable theorem needed for the proof of Theorem 1.1.
That theorem is, I believe, of some independent interest. For the
definition of positive currents and the necessary background that is
needed in this paragraph, we shall refer the reader to [10] Ch. VII
and also [11].

Let Ω be as in § 1 and let

(2.1) T = Σ Ttjdzt A dzj

be a (1, 1) current of order zero in Ω. We shall then say that T
satisfies the U. B. condition (uniformly Blaschke) if the current

§T + δ^Γ Λdp + S1/2T A dp + T A dp A dp

is a Carleson current in Ω (p and δ are as in (1.2)).
We have then the following:

PROPOSITION 2.1. Let T be as in (2.1) and let us assume that
T is a positive current, then T satisfies the U.B. cohdition if and
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only if the current

δT + T A dp A dp

is a Carleson current.

PROPOSITION 2.2. Let T be as in (2.1) and let us assume that
T is positive and closed (i.e., dT — 0), then T satisfies the U.B.
condition if and only if the current

T A dp A dp

is a Carleson current.

PROPOSITION 2.3. Let MaΩ be a divisor in Ω and let t be the
Lelong current associated to M. Then the divisor M satisfies fe U.B.
condition if and only if the current t satisfies the U.B. condition.

We shall now state the following basic

THEOREM 2.1. Let T be a (1, 1) closed current in Ω satisfying
the U.B. condition, and let us suppose that the canonical cohomo-
logy class of T in H2(Ω; Z) is zero. There exists then H a current
of degree 1 and order zero such that

and such that

H+ δ-1/2HQΛA dp

is a Carleson current. (HQtl denotes of course the (0, 1) component
of H). Furthermore if T is a real current, H can also be chosen
real.

We say of course, in general, that a current S is real if S = S
where the bar indicates the complex conjugation operator that can
be extended, naturally, to the space of currents.

The above theorem is the "power-house" for the rest of this
paper, and its proof will be our main task in § 3, § 4 and § 5. For
the rest of this paragraph however, I propose to give the proofs
of Propositions 2.1, 2.2 and 2.3 as well as of Proposition 1.1.

To simplify notations I shall assume for the rest of this para-
graph that n = 2 and Ω = B is the unit ball in C2. The situation
is perfectly typical. We have then

0 = 1 1 2 1 1 * - 1 = 12,1* + 1 2 , 1 * - 1

and
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dp = zίdz1 + z2dz2 , dp = ^eE^ + 22^£2

We shall also set

a) — z2dzι — zxdz2 ώ — z2dz1 — zλdz2 .

It is clear then that the four forms

(2.2) dp , dp , ω , ώ

are orthogonal and they are of Euclidean norm i/2 | | z | | 2 at every
point zeB, they form thus a basis of the cotangent space in some
neighborhood of dB. We shall in fact use that basis systematically
in the rest of this paper.

Let us also define for all t > 0

Ct = {z = ( z u z 2 ) e B ; \ z λ - l \ £ t }

which is a neighborhood basis of 1 in B that is equivalent to Bt(ΐ)
in the sense of [18] 2.2 (i.e., we can use Ct and their complex
rotations to verify the Carleson condition (1.1)).

LEMMA 2.1. Let T be as in Proposition 2.1 and let us assume
in addition that T is C°° up to the boundary in B (i.e., that the
coefficients Ti5 are C°° functions up to the boundary) we have then
for all 0 <t < 1/2

(2.3) ^ δ1/21 T Λ dp\ = ^ δ1/21 T A dp\ ^ C o {(^ δ | T\

T A dp A dp\J2 + ^ δ1/21 Γ Λ dp A dp\I p p\J ^

where CQ is a numerical constant (Co = 1010 say, in fact Co = 10
will also do I).

LEMMA 2.2. Let T be as in Lemma 2.1 and let us assume in
addition that dT = 0, we have then for all 0 < t < 1/2

(2.4) \ S | T | ^ C o j f \TAdpAdp\ + (\ δ\T\)

(L 1/21

where again Co is a numerical constant.

Proofs of the lemmas. If we use the basis (2.2) we can write

T = i(Sndρ A dp + Sί2dρ A ω + S21ω A dp + S22ω A ώ)

and by the positivity of T we see that
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(2.5) S21 = S12; S1U S22 ^ 0; |S1 2 |
2 ^ SnS22

at every point of some neighborhood of 1. It is also clear that

(Γ Λ dp = i(S21ω A dp A dp + S22ω Λ ω Λ dp)

[T Λdp Λdp = iS22ω A ώ A dp A dp .

Using then Schwartz's inequality and (2.5) we obtain

197

* (L
But (2.6) implies that

δ1/2\T Adp\ = [
Ct jCt

Άdp\

5S Co{\ δ^\Sn\ + \ δ1'2 \TΛdpΛ dp\\
Uct Jct )

and this together with (2.6) and (2.7) completes the proof of (2.3).
The proof of (2.4) is a little more subtle. We shall immitate

the proof in [15] II. 2. Towards that let us fix 0 < K 1/2 and let
us define 0 ^ φfa) <£ 1 a C°° function in C2 that depends only on
the variable z± and which satisfies

(2.8)

φ(Zl) = 1

φ{zd = o

S t/2

> t

Vz,.

Such a function can clearly be constructed. We shall now apply
Stoke's formula to the form

Ω = pφdp A T

in the ball B. So that

(2.9) ί dΩ = 0 .
J B

We also have

(2.10) dΩ = φdp A dp AT + φpddp A T + pdφ A dp A T

dzx

where, as an easy computation shows, we have:
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We conclude therefore that

(2.11) \pdφ A dp A T\ g lOOδ |Fcp||S22| + 100δ\ z2\\Pφ\\Si2\ .

Integrating then (2.10) and using (2.9), (1.3) and (2.11) we finally
obtain

ί δ\T\^cΛφ\p\\TAddp\

(212) J** J*

^CΛ\ |ΓΛ3/0Λ3|0|+\ S\Fφ\\S22\ + \ i

and if we use the fact that

δ ^ t y I z21 ^ 10i/ t Vz 6 Ct

we obtain by (2.6)(2.8) and (2.7) that:

'ί δ\Fφ\\S22\^cΛ \T A dp A dp]
JCt JCt

(2.13)

From (2.12), (2.13) and (2.6) our inequality (2.4) follows.
We can now give the

Proof of Proposition 2.1. Let T be as in Proposition 2.1, if T
is C°° up to the boundary our proposition is an immediate con-
sequence of (2.3). If T is not C°°, by an obvious regularization
process we can prove that (2.3) also holds for arbitrary positive
currents and our proposition again follows.

By a regularization process, that is perhaps slightly less obvious,
because now we have to preserve the d-closure of the form, we
can also prove that (2.4) also holds for arbitrary d-closed positive
currents, from this we can deduce the

Proof of Proposition 2.2. Let T be as in Proposition 2.2 and
let us denote f or 0 < t < 1/2

= M \TΛdpΛdp\

/8(ί)=-M

By multiplying then T by an appropriately small constant and by
using Proposition 2.1 of II, [15] we see that we can suppose that
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(2.14) a(t)£10-10(C0 + iy2, Vθ<t<l/2; β(t)£l, VlO~lo^t^l/2 .

Inequality (2.4), which is valid for T, as we just pointed out, gives
then

(2.15) β(t/2) £ A + i(/3(*))1/2 VO < t < 1

and (2.14) together with (2.15) implies that

β(t) ^ 1 0 < t < 1/2

and completes the proof of Proposition 2.2.

Proof of Proposition 2.3. Here again for simplicity I shall
assume that n — 2. A simple computation for the Malliavin measure
dv of the divisor M [cf. (1.2) (1.4) (1.5) (1.6)] gives

(2.16) ώ> = ζ-ί Λ (Ϊ3/0 Λ 5/0) + -^-t A (iddp) - vx + v2

P \P\

where vx and v% are two positive measures. And using (1.3) we see
that there exists some constant C such that in some neighborhood
of dΩ we have

C~% ^v^CVi i = 1, 2

where

From the above it follows at once that M is a U. B. divisor if and
only if ϊ>1 + v2 is a Carleson measure i.e., if and only if t satisfies
the U. B. condition.

The geometric meaning of | ί | is of course clear, it is just the
2-dimensional Euclidean volume of M* counted with multiplicity.
The geometric meaning of 11 Λ dp A dp \ is just as obvious. It is
just the projection of that volume on the complex normal line that
passes from each ^point. It is worth nothing that in view of Pro-
position 2.2 M satisfies the U. B. condition if and only if the
measure v1 is a Garleson measure. In § 9 we shall exhibit a divisor
M that does not satisfy the U. B. condition but for which never-
theless the corresponding measure v2 is Carleson. The above con-
siderations suggest that, contrary to what may appear at first
sight, the measure vx is a more significant invariant of the divisor
than the measure £2

Let us now observe that when Ω — B the fundamental form
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(1.4) becomes

(2.18) Φ = -idd\og(l- \\z\\2) .

So that the induced Hermitian metric is then the Bergman metric
of By cf. [10]. That metric is of course invariant under all the
analytic automorphisms of B.

From the above we deduce that if J ί c J ? is a divisor of B and
if Mg (g e G) is the divisor that we obtain by the action of the
automorphism g eG on M as in Proposition 1.1 than

(2.19) dσΊ = g(dσφ)

where dσφ and dσ% are the measures obtained in (1.5) from the
divisors M and Mg respectively, and g is the mapping on the space
of Radon measures on B induced by g:z^g.z. We are now in a
position to give the

Proof of Proposition 1.1. For the proof of that proposition I
shall use a devise that was suggested to me by John Garnett and
which makes the original proof much clearer. We shall need two
lemmas.

LEMMA 2.3. (J. Garnett [5]). A positive measure λ in BaCn

is a Carleson measure if and only if

sup\ =̂ N ° J N dX(z) = M(X) <
| 1 - z.zQ

 Zn

and M(X) defines a norm which is equivalent to the "Carleson norm"
{which is implicit in the definition (1.1)).

LEMMA 2.4. Let g: B —> B (g eG) be an analytic automorphism
of B. We have then

(2.20) i
" \l-z.g-\0)\2

Before giving the proof of these two lemmas we shall complete
the proof of Proposition 1.1.

Towards that let I c B be a divisor in B. Using then the
fact that G acts transitively on B and Lemma 2.3 we see that M
is U. B. if and only if

s u p f ( 1 ~ ^ " ^ ' ' ^ ( l - \\z\\Tm(z)dσΦ(z) < +oo
geo J | i — z.g \0)\2n

which by Lemma 2.4 is equivalent to the fact that
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(2.21) supίd - \\g(z)\\rm(z)dσ (z)
geG J

<

If we use the fact that m9(g(z)) = m{z) where m9 denotes the multi-
plicity function on Mg and the definition of the mapping g (of (2.19))
we see that (2.21) is equivalent to

(2.22) sup((l - \\z\\2)nmg(z)dσ9

φ(z)
geGJ

Here we have of course used (2.19). But that last relation (2.22) is
just a reformulation of condition (iii) in Proposition 1.1, and our
proof is complete.

Proof of Lemma 2.3. The proof of that lemma for n = 1 is
contained in [5]. That proof is elementary and it amounts to
analyzing the level lines, for n — 1, of the function

(2.23) /.(*)

inside the unit disc flcC. The case n ^ 1 is just as simple. Indeed
the function fn(z) in (2.23) only depends on z.z0 — u e C and there-
fore the level surfaces of fn(z) as zeBaCn are determined by the
level lines of fx(z) as zeDczC. That devise allows us to reduce
the general case to the one dimensional one and completes the proof.
(The details are left to the reader.)

Proof of Lemma 2.4. The proof is again elementary and is
also done by reducing the problem to the one dimensional case,
where (2.20) is a very well known identity for Mόbius transforma-
tions. To show how this reduction is done let us assume for sim-
plicity that n = 2, and let g±eG be a general automorphism of B.

Let us then denote by D the complex disc

D^izgTKO); zeC; \\zgr\0)\\ < 1} .

There exists then gQeG a particular automorphism of B such that

(2.24) 9o(O) = grKO); go(D)czD

and which act on I) as a Mobius transformation. (g0 determined
as above is, modulo complex rotations, in fact unique.) Using the
explicit form of g0 we can also verify directly that Lemma 2.4
holds for g = g^\

Let us then denote by 7 — g^o e C. We then have 7(0) = 0 and
this implies that 7 e U(C) is a unitary transformation in C2. It
follows therefore from the above that
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which together with (2.24) gives (2.20) and proves our lemma.

3* The main construction* To make the central idea come
through as clearly as possible and to avoid irrelevant technical
complications we shall concentrate, once more, in this paragraph on
the unit ball B = {||z|| < 1 } C C 2 .

Let us denote by Ta(dB) the tangent space of dB at a e dB, and
let us also denote by n = n(a) the inwards unit normal at α. One
thing that simplifies matters in BaC2 is that the manifold dB can
be identified canonically with SU(C; 2) which acts on 91? by complex
rotation. That identification induces then a natural parallelization
on dB. In other words it is possible to choose continuously an
orthonormal basis on Ta(dB) as a runs through dB.

More explicitely let us denote by 1 — (1, 0) 6 dB the north pole
of dB and let:

i = ί(l) - (0, 1, 0, 0)

j = i(l) = (0, 0, 1, 0)

k = k(l) = (0, 0, 0, 1)

be the standard basis of Tλ(dB) for the real coordinates (xl9 yu x2, y2)
of C2 where z — x1

Jr iylf z2 = x2 + iy2. Let now aedB be given,
there exists then a unique g = gae SU(C; 2) such that gl = α, we
shall set then

La = {i(a) = g.i; j(a) = g.j; k(a) = g.k}

which will then be a basis of Ta(dB), that depends smoothly on α.
Let us standardize further some more notations.
For any zeB z Φ (0, 0) = 0 we shall denote by z* edB the

radial projection of z onto dB, i.e., z* is the unique point on dB
such that

dist («,«*) - 1 - p l l =δ(s) = ί .

Let us now fix three real numbers

(3.1) Θ = (Θ»Θ»O*); \ θ < \ £ c i = 1 , 2 , 3 ,

where c is a small numerical constant (c = 10~10 say). For all zeB\
{0} we shall then denote by pθ(z) the unique point on Tz*(dB) whose
coordinates with respect to the basis Lz* are

(3.2) pe(z) = (0A βyT9 βyT); t = 1 -
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If we identify Tz*(dB) with a hyperplane in C2 we can consider
pθ(z) as a point in C2. The real line pθ(z) + Xn(z*) XeR intersects
then dB at two points we shall denote by φθ(z) the one that is
nearest to Tz*(dB).

A more intrinsic definition for φθ{z) (and one that is just as
good for our construction) would have been to set φθ(z)=Exp (pθ(z))
where Exp is the exponential mapping from Tz*{dB) on dB. We
defined φθ{z) as we did because we can then perform all the explicit
computations that will be needed much more easily.

Let us finally denote by lθ{z) the directed line segment in C2

(3.3) l*(z) = [z,<Pe(z)] zeB\0.

The family of segments lθ{z){z e B\ϋ) will now be used to define a
smooth homotopy in B\0

Hθ(z, s) e B\0; zeB\0 se [0, 1]

such that Hθ(z, 0) = z, Hθ(z, 1) = φθ(z), H(z, u) e B (u < 1) and

Hθ(zf s) 6U(z) VzeB\0 se[0, 1] .

That homotopy gives us in fact a retractation of J?\0 on dB that
is smooth in the interior.

For each fixed θ the homotopy defined above can then be used
in a standard and canonical way to solve the Poincare equation
dω = Ω [cf. [3] specially § 14].

More precisely let us denote by A the space of all currents T
in B such that 0 g supp T we can then define a linear operator (cf.
Appendix)

(3.4) Hθ: A > A

(de Rham uses the letter M and Af *) that has the following pro-
perties

( i ) Hθ is real, i.e.,

VTeA.

(ii) Hθ is a homotopy operator for the d-complex

(3.5) H9od(T) + doH9(T) = T; VTeA.

Furthermore the operator Hθ is continuous for the natural topology
on A and depends continuously on θ in an obvious manner.

Let us finally denote by

H(T) = (2c)-3Γ Γ [ Hβ^dθ.dθβθ,', VTeA
J-c J-c J-c
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where the above integral has to be interpreted as a weak integral
in the linear topological space A (one readily verifies that the con-
vergence of the above integral gives no problems). I shall give no
more details on the operator Hθ and their average H. The reader
should consult the above reference of de Rham and reconstruct all
the details.

We can state now the following basic proposition (the proof
will have to wait until the next paragraph).

PROPOSITION 3.1. Let T be a (1, 1) current in B that satisfies
the U.B. condition. Let us assume that T e Λ, and let us denote
by H = H(T) and by K = H0Λ the (0, 1) component of H. The
current

H + δ-1/2K A dp

is then a Carleson current, (δ = 1 — \\z\\.)

The above proposition essentially contains Theorem 2.1 in the
case Ω = B.

Indeed if we ignore the assumption 0 g supp T for the moment
we see that for T is as in Theorem 2.1 with dT = 0 we have by
(3.5) dH = Γ, and if in addition T is real then H is also real.

It is quite clear also that the assumption 0 $ Supp T is not
essential for the above construction, indeed we can replace 0 by any
other point, it is enough therefore to assume that Supp T Φ B.

If Supp T = B we have to use a smooth partition of unity and
decompose T = 2\ + T2 where Supp Tu Supp T2 Φ, B, and then use
the procedure that will be developed in § 7 for the general strictly
pseudoconvex domains. Observe however that in the applications
that we have in mind T is the Lelong current associated with a
divisor M in B, and that there the assumption Supp T Φ B is
generously satisfied.

We can generalize the above construction quite easily for B(zCn

the unit ball in Cn (n Ξ> 2) and even more generally for any ΩaCn

strictly convex domain in Cn with smooth (say C4) boundary.
The only new problem here is the smooth choice of an ortho-

normal basis

(3.6) La = {i, jlfj2, •••, j2w_2}

in Ta(dB). Indeed this cannot be done globally in general (except
for n = 1, 2, 4).

A global choice of ί in (3.6) is of course always possible. We



ZEROS OF Hp FUNCTIONS IN SEVERAL COMPLEX VARIABLES 205

simply set i = Jn(a) where n(a) denotes as before the inwards normal
and J is the almost complex structure in Cn (i.e., / denotes multi-
plication by i / ^ ϊ in Cn). What is also possible is to give local
definitions of j u j2, , j2n_2 to complement Jn in Ta(dB).

More precisely for every point aedΩ we can find Θ an open
neighborhood of a in dΩ in which a smooth choice of a basis Lb (b e Θ)
is possible. We can then construct as above an operator

He AΘ > ΛΘ

where

Λ9 = {T; 0 ί Supp T ze Supp Γ = > z* e Θ}

such t h a t

Hθ(T) = HΘ(T); HΘod(T) + d<>Hθ(T) = Γ;

and such that jff9 satisfies the conditions of Proposition 3.1.
The problem is then to globalize the above construction. But

that is exactly the problem that will be faced and solved in § 7
where the general strictly pseudoconvex domains will be examined.

4* The geometry of currents that satisfy the uniform
Blaschke condition* The aim of this paragraph is to give a proof
of Proposition 3.1. Once more I shall work entirely with the unit
ball Ω = BaC2, and I shall preserve all the notations already
introduced.

Let p = || z ||2 — 1 and let dp, dp, ω, ώ be the orthogonal basis of
the cotangent space of J3\0 introduced in (2.2).

For every zeΩ let us also denote by

(a = a(z) - δβp A dp; ft - ft(s) = δzdp A ώ

(ft = ft(s) = Szω A dp; y = y(z) = δzω A ώ

where δz denotes the Dirac δ-mass at the point zeΩ. a, βu ft, and
7 are then currents of order zero supported by the point z. The
above currents generate in an obvious way all the (1, 1) currents
of order zero in the space A (A was defined just before equation
(3.4)).

Indeed let

T = adp Adp + bλdρ A ώ + b2ω A dp + cω A ώ

be such a current and let us identify α, blf b2 and c with Radon
measures in Ω. We can then write T in the form
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(4.2) T = ί a{z)da{z) + ( β^db^z) + ( β2(z)db2(z) + [ j(z)dc(z)
JΩ )Ω )Ω JΩ

where the above integrals are weak integrals in the space of currents
of order zero (which is a dual space). Furthermore the above
decomposition is obviously unique. We have then

PROPOSITION 4.1. Let T be a (1, 1) current of order zero in Λ
and let a, blf b2, c be the Radon measures associated to the decomposi-
tion (4.2). Then the current T satisfies the U.B. condition if and
only if the measure

τ = | c | + S 1 / 2 ( | 6 1 | + | 6 2 | ) + δ\a\

is a Carleson measure in B.

This is, of course, just an alternative formulation of the defini-
tion. We shall introduce now some more notations. Let θ be as
in (3.1) and let us denote by

aθ = Hθ(a); β\ = H$(β<), i = 1, 2; 7* = HΘ{Ί)

Pθ = (α'Viϊ <A = G3?)o.i, i = 1, 2; rθ = (<γ>)Otl .

All these are currents of order zero. a\ β\ and yθ are obtained
from α, β{ and 7 by the homotopy operator Hθ and pθ, qt, rθ are
the (0,1) components of the currents a\ β\y yθ. All these currents
depend of course on the point z on which a, β, 7 are supported (so
a more comprehensive notation would have been aθ(z) = Hθ(a(z))
etc. . .).

Let us finally denote by

(4.3) Rh ^{zeB; | | s | | > l - f c } h>0

and by lRh its characteristic function. We have then

PROPOSITION 4.2. For all ε < 1 there exists a constant C = Cε

that depends only on ε such that for all zeRε we have the follow-
ing estimates

I«ΊI ^ Ct

(4.4) \\δ~1/2pθ
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(4.5) -^qt Λ dp\\ ^ Ct1'* for i = 1, 2

\\δ'1/2rθ Adp\\ rg(4.6)

where t = 1 — \\z\\ = δ(z).

The above proposition contains the essential set of estimates on
which the proof of Proposition 3.1 will be based. The proof is
elementary but very lengthy. It will be postpone until the next
paragraph.

Let us now define

(4.7) A = H(a) = (2c)-3 Γ Γ Γ aBdθ1

A which is then a current of order zero that depends on z. We
denote analogously Bt = H{β%) i = 1, 2; C = Jϊ(7). We also denote
by P, Qt(i = 1, 2) and j? the (0, 1) components of A, Bt{i = 1, 2) and
C respectively. An integral representation of the form (4.7) holds
then for all these currents with aθ replaced by β\y Ί

Θ, pθ, ql and rθ

as the case may be. We have then

PROPOSITION 4.3. For all ε < 1 there exists C = Cε a constant
that depends only on ε such that for all zeRε we have

where ί = 1 — ||g|| = δ(z).



208 NICHOLAS TH. VAROPOULOS

Proof. The above estimates are obtained immediately by inte-
grating over θ the corresponding estimates in Proposition 4.2.

Let now Bh(l) be the region in (1.1) that defines the Carleson
condition centered at the point 1, and for any zeB let us denote

by h(z) = inf {h > 0; z e BJXJ). With lθ(z) defined as in (3.3) we have
the following

LEMMA 4.1. Let h>0 and z e B\{0 U Bch(l)} suppose that for

some θ,\θ\<c~\ we have lθ(z) Π BΛX) Φ Φ Then t = 1 - | | z | | ^
c~ιh(z). c denotes here a large numerical constant (c = 1010 say).

LEMMA 4.2. Let h and z be as in Lemma 4.1 and let us denote
by

(4.8) Xz = {θ = (θu θ2, θz) lθ(z) Π ί C l ) ^ } c f .

dimensional measure of Xz satisfies then

where C is a numerical constant.

Proof of Lemma 4.1. The fact that lθ(z) Π Bh(l) Φ φ for some

θ \θ\ < c"1 implies clearly that Beit(z*) Π BhQ) Φ φ for some constant

C l (d = 105 say, z* = «/||«||), but this implies that

(4.9) BClt(z*) Π

Our hypothesis on z on the other hand implies that

(4.10) t = 1 - | | * | | ^ <Λ or z* $ Beh(ΐ)

or both. In either case we conclude from (4.9) and (4.10) that 1 e
Bet(z*). But then we are done. Indeed

1 e Bci(z*) <=> z* e ββ t(l) = > z e C u ) = - ί > c'hiz) .

Proof of the Lemma 4.2. Let £ be as in the lemma. By
changing the role of z* and 1 we see that the set Xz is obtained
by a rotation on dB of the set

where ξ = (1 — t, 0), 0 < t = 1 — | | z | | < 1, and where ζ0 is some fixed
point on dB. We also have that

(4.11) Yt c {0 G J23; ?>,(£) G £
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where c is some large numerical constant and φ&(ξ) is the point
defined in § 3 (it is the end point of Wί)) The verification of (4.11)
will be left for the reader (observe that verification becomes much
easier for the Siegel upper half space).

We have now

Zt = [θ = (βlt
) ; pθ(ζ) e Sh(ζ0)}

where Sfe(ζ0) is the region in Tx(dB) obtained by projecting Bch(l)
along the nil) direction on the tangent plane Tx{dB).

The 3-dimensional volume of that region clearly satisfies

and since the point pθ(ζ) is given on 2\(d2?) by the coordinates

we deduce t h a t \X,U = \Yt\>£\ZtU£ C(h/t)\

But from Lemma 4.1 we also deduce that Xz = Φ unless t >
C^hiz) ^ h and from that last estimate it readily follows that

and the proof of the lemma is complete.
Let us now denote by Xh the characteristic function of the set

Bh(l). We can state then the following

PROPOSITION 4.4. For all ε < 1 there exists C = Cε > 0 such

that for all h> 0 and all z e Rε\Bch(l) (c = 1010 say) we have

(4.12)
/ h \

-v'P Λ dp\\ g C{±-) t

(4.13)

(4.14)

i = 1, 2

t)

where t = 1 - | |z | | = δ(z) and ί = 1, 2.
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Proof. We have

\\XhA\\<ί\ \\XΛha>(z)\\MiM&*

^ sup \\xBla»(z)\\ ιx.i. ̂  c A t (A)3 '2 = c(A)6 '2*

by (4.4) and by Lemma 4.2.
Similarly

11 Xkδ~™P Adp\\s\ II XRhδ-vY A dp 11

Z ^ V Λ dp\\. \Xz\^

again by (4.4) and the Lemma 4.2. This proves (4.12).
The other two estimates (4.13) and (4.14) are obtained analog-

ously. We are finally in a position to complete the

Proof of Proposition 3.1. Let T be as in Proposition 3.1 and
let α, bl9 62 and c the Radon measures obtained by the decomposition
(4.2). Let us denote by H = H{T) and by K= (H(T))Otl the (0,1)
component of H. We have then

H= [ A(z)da(z) + [ B^db^z) + [ B2(z)db2(z) + [ C(z)dc(z)
)Ω JΩ )Ω }Ω

K = ( P(z)da(z) + [ Qάzidbfc) + [ Q2(z)db2(z) + ( R{z)dc{z) .
JΩ }Ω )Ω }Ω

If we denote by

τ = |c | + S1/2(|δ1| + |62|) + δ |α |

which is a Carleson measure in Ω (by Proposition 4.1) and by

= \C(z)\ + \δ~mR(z)Λdp\

4 + Iδ~1/2Q^) Λ 5/91)

which is a measure that depends on 2;. We have the following
estimates

(4.15) X = I-HΊ + | r i / 2 ίΓ Λ dp\ ^ C

where C is a positive constant and the above inequality refers of
course to the order relation in the space of positive measures.
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From Proposition 4.3 we also obtain that

(4.16) | |@(s) | |^C VzesuppT

and from Proposition 4.4 we obtain that

(4.17) \\Xh&(z)\\ £ C ( A ) = C ( ^ ) ; Vz e supp T\C(ί)

From the above three relations (4.15) (4.16) and (4.17) we shall
conclude that

(4.18) WW)) = \\XhX\\ £ Ch*

for some constant C independent of h, and that, of course, will
complete the proof of Proposition 3.1 since by an obvious rotation

we can bring any test set Bh(ζ0) to the position Bk(ΐ).
Towards that let us observe that by (4.15) we have

\\XhX\\ ^ S ί + 33

where

« = _ \\&(z)\\dτ(z)
JzeBch{l)

_ ||Z*@(s)||dr(s)

where c is an appropriately chosen large constant.
But by (4.16) we clearly have

(4.19) 81 ̂  sup ||@(s)|| τ{BJX)) ^ Ch2

z

because τ is a Carleson measure.
Using Lemma 4.1 and (4.17) we also obtain that

(4.20) 93
θ(Z)

where cλ and c2 are appropriately chosen constants. If we then
denote by

F(X) =

which by the hypothesis on τ satisfies

(4.21) F(X) ^ Cλ2

and if we use the definition of h(z) (cf. Lemma 4.1) in (4.20) we
obtain that
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S °° / h \ 5 / 2

ί!L) dF(x).
c3h\ X /

And by an easy integration by parts in (4.22) we obtain using (4.21)
that

(4.23) 33 ^ CW .

The two estimates (4.19) and (4.23) give then at once the required
estimate (4.18) and complete the proof of our proposition.

As a final remark observe that the only reason that we insisted
that TeΛ (i.e., that OίsuppΓ) was that we had to get rid of the
ε dependence of the constants of Proposition 4.4 for zeRε.

5* Geometric lemmas* The aim of this paragraph is to give
the proof of Proposition 4.2.

In the course of this paragraph we shall use the parameters
θl9 θ2, θ3 introduced in (3.1) and we shall need to introduce a number
of new parameters, namely ξeB\0 and t = 1 — \\ξ|| in (5.1) and
δίf 32, δ3, δ4; λ, μ, v in (5.2) (5.5) and (5.8). Concerning the above para-
meters and to avoid constant repetition I shall make once and for
all the following convention:

I shall say that K (resp. K) is an admissible (resp. weakly
admissible) constant if it does not depend on λ, μ and v but may
well depend on the other parameters

K = *(£, 0fδ) κ = κ(ξ, θ, 3)

and if furthermore for all e > 0 we have

sup{|ic|; t < 1 - ε; θ, 3} < +oo

(resp. sup p | ; θ, 3} = C(ί) < +oo)

i.e., K stays bounded when ξ stays away from 0.
We shall say similarity that φ(X, μ) (resp. ψ(λ, μ)) is an admis-

sible function (resp. weakly admissible function) if it is a function
of λ and μ that may also depend on the parameters ξ, t, θ, 8 but
not on v and for which

(resp. \\ψ|U +

is an admissible (resp. weakly admissible constant).
The letters /r, ίί, ψ, ψ (possibly with suffixes) will be reserved

exclusively and without any further notice for the above creatures.
The letter θ (possibly with suffixes) will denote quantities that do
not depend on λ, μf and v and that stay bounded for all values of
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the other parameters. Finally when the above letters appear several
times in a formula it will not in general mean that they represent
the same function or the same constant.

We shall now proceed to give a series of geometric lemmas.
The situation is clearly rotation invariant so we can suppose once
and for all that our point z e B\0 for which we shall estimate a(z)
etc... lies on the xx axis. To avoid possible confusion with later
considerations we shall denote such a point by

(5.1) £ = ( l - ί , 0 ) 0 < ί < l .

We shall also systematically use in C2 the coordinates

(xu yu x2, y2); zλ = x1 + iy,; z2 = x2 + iy2 .

The first thing to observe is that

9θ{ξ) = (1 - θot, θλt, ftl/T, ΘZVT)

and that therefore the coordinates of the vector lθ(ξ) are given by

ύfe) = ((i ~ βo)t, ΘJ, Θ2VT, βyT).

We shall parametrize lθ(z) linearly by a parameter v e [0,1] so that
the coordinates of the general point on lθ(ξ) are given by

&! = 1 - t + (1 - θo)tv; yx = ΘM

x2 = θ2VTv; y2 = ΘzVTv 0 ^ v ^ 1 .

We have then

LEMMA 5.1. For all ξ and θ as above and all z e lβ{ξ) para-
metrized as above we have

(5.3) 1 - | |z | | = δ(z) ^ (1 - t)t(l - v) = ^-^(l - v) .

Therefore if zelθ(ξ) Π Rh [cf. (4.3)] we have

1 v < 1 κ(5.4) -t t t

Proof.
(5.4) is of course an immediate consequence of (5.3). The proof

of (5.3) is done by elementary geometry and it involves drawing a
picture. The reader has to do that for himself.

Let us now fix small real numbers 8U d2, <53, <?4 and consider the
point:
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(5.5) £(λ, μ) = Q~t + δxλ, δ2μ, δ3λ, δ4μ) e C2; 0 ^ λ, μ ^ 1

which is the generic point on a small rectangle Δ that is spanned
by the two vectors

(«i, 0, δ3, 0); (0, δ2, 0, δ4)

that are translated so that the origin comes to the point ξ.
We shall denote by

δ2 = δ2 + δ2 + δl + δl

and we shall prove a series of lemmas concerning 2nd order estimates
with respect to δ.

LEMMA 5.2. For all 0 < t < 1 there exists δ(t) > 0 such that

\\&\ μ)\\ = \\ξ\\ + δi* + 8>*(\f μ)

t(λ, jK) = 1 - | | ί (λ, μ)\\ = t - δx

) = i/T - ^ +

/or αίί δ <

LEMMA 5.3. ΓΛ6 coordinates of ζ*(X, μ)=ξ(\ μ)l\\ξ(\ μ)\\ satisfy

, μ)

y2 = δilr(λ, ju)

δ S "); /3 = x% + iy2 =

/or αϋϊ δ < δ(t), where δ(t) is as in Lemma 5.2.

Let us now denote by

6x(λ, μ) - ^ί(λ, j«); α2(λ, μ) = ί2i/t(λ, /ι); 62(λ, JK) =

where ^, ^2 and ^3 are as in (3.1). Let us also determine αx(λ, j«)^
such that the point

X(λ, jei) = (1 - αx(λ, j«), 6x(λ, j«), α2(λ, μ\ 62(λ, ̂ ))

lies on dB and in some small neigaborhood of the point 1. αx(λ, j&
is then uniquely determined by the equation

a\ - 2a, + ^ί2(λ, ^) + (θ\ + ί|)ί(λ, ̂ ) = 0

and an easy computation involving power series gives
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LEMMA 5.4.

αx(λ, μ) = ΘJk + /cδ.X + δ2ψ(X, μ)

for all δ < δ(t) (δ(t) as in Lemma 5.2).

If we denote by
X(λ, μ) = (^(λ, μ), Z2(X, μ))

the complex coordinates of the point X(X, μ) we then have

) = 1 + θt + /cδ,X + δ2f(λ, μ)

Z2(X, μ) = θVT + κ^&* + δ2ψ(X, μ) .

Let us now denote by U the unique complex rotation (special
unitary transformation) that brings the point 1 to the point
ξ*(\ μ) = (a, β). By the definition of φθ{ξ) it is then clear that

S μ)) = U.X(X, μ)

as for U, it is given in matrix form by

\β a )

where a and β are as in Lemma 5.3.
We conclude therefore that if the complex coordinates of

ΦθiζCλ, μ)) are given by

then

(5.6) %tT-U.-
and to the first order we have

[U^X, μ) = 11,(0, 0) + δψ(X, μ) = 1 + θt + δψ(X, μ)

[f/2(λ, μ) = C72(0, 0) + δ^(λ, i«) = ΘVT+ δψ(X, μ) .

Taking differentials in (5.6) with respect to X and μ we obtain

LEMMA 5.5.

dU1 = fcδ.dX + κδ2dμ + δVTd[ψ(X, μ)] + δ2d[ψ(X, μ)]

dU2 = δd[f{X, μ)] + κ^=dX + δ2d[ψ(X, μ)] .

Let us now consider the 3-dimensional chain element (in the
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sense of G. de Rham [3] § 6; except that here our chain element
is not compact in B) that is obtained by the following parametriza-
tion

(5 8) ί WΊ = (1 - * + δλX + id2μ)(l - v) + Ux{\ μ)v

\W2 = (δ3λ + iδ4μ)(l - v) + U2(X, μ)v

where 0 <; λ, μ ^1 0 ^ ^ < l , and where W1 W2 are the complex
coordinates in C2 of the generic point on that chain element.

To the first order we have by (5.7)

(5 9) \Wl = ( 1 ~
IW2 = C/2(0, 0)v + δ[f (λ, ^) + vf (λ,

The support of that chain is of course the set

U U(z)

and the integration current on that chain is just the current
HΘ([Δ\) i.e., the current that we obtain from the integration current
[Δ\ on A by applying the homotopy operator Hβ. (Cf. Appendix.)

Differentiating the equations (5.8) in λ, μ and v and using
Lemma 5.5 we obtain the following expression on the differentials
on that chain element.

(5.10) dWx = aδλdX + aδ2dμ + <5i/TD(λ, μ) + θtdv + JB

(5.11) VTdW2 = αδ^λ + α(?2^ + δi/

where α, D(λ, /ι) and R are of the form

a = ic + vtc

, μ)] + vd[ψ(X, μ)]

R = dψ(X, μ)dv + δ2d[ψ(X, μ)v] .

We conclude that:

dWλ = X±dX + X2dμ

dW%= YjdX -\

where

(5.12)
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(5.13) δVT)

Let us finally set

dWλ A dW1 A dW2 = AdX A dμ A dv

dW2 A dW2 A dWλ = BdX A dμ A dv

and let us denote by

Using then the estimates (5.12) and (5.13) we obtain the follow-
ing key lemma.

LEMMA 5.6. For all 0 < t < 1 there exists δQ = δo(t) such that

for δ rg δ0.

From the above proposition we can already obtain an estimate
for \\HΘ([J])\\. Indeed we have

(5.14) ||2Ϊ,([J])|| ^ lθθf(| A\ + \B\)dXdμdv ^ S + /rδ3 .

Similarly by Lemma 5.1 we see that there exists δ0 = δo(t, h) such
that for all δ < δ0 we have

\\XRhHθ([A\)\\ ^ lOOΪ (I A\ + \B\)dXdμdv ^ * A s + £S3 .

Let us now denote by

JΓ(2f) - K = [Hθ([J])l,i

the (0, 1) component of the current HΘ([J]). To obtain estimates on
K we shall need some ground work first.

Let us denote by

H0{[A\) = aώ + bdp + cω + edp

K — aώ +

where α, 6, c, e can be canonically identified with Radon measures in

Ω. We have then
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(5.15) K A dp = aώ A dp

(5.16) HΘ{[Δ\) Adp Adp Aω = aώ Adp Adp Aω = V

where V now is just a volume form and can therefore be identified
with a Radon measure in Ω. From (5.15) and (5.16) we deduce that

(5.17) \KΛdp\^tc\V\

(observe that the length of the vectors dp, dp, ω and ώ is i/lΓ||z||).
Let us now denote by

V1 = HΘ([Δ\) A dz2 A dz1 A dz1

V2 = HΘ([Δ\) A dz2 A dz2 A dzt

and let us expand

/ C 1 O , dp A dp A ω = ^ ( | ^ | 2 + \z2\
2)dz2 A dzx A dz,

(o.lo) _
— zz{\Zi\% + \z2\

2)dz2 A dz2 A dzλ .

From (5.18) we deduce then that

and if we also have in mind that | z2 \ ̂  CV t in the support of
HΘ{[Δ\) we finally conclude that

(5.19) I F I ^ C d ^ l + l/ΓlF.I)

where C is a numerical constant. We shall now use Lemma 5.6 to
make estimates on V1 and V2.

Towards that observe first, that by Lemma 5.1 and (5.9), we
have

1 — Π l̂l2 = -PV) ^ \κ~\t(v - 1) + yf(λ, μ)δ + f2(λ, μ)δ)\

(*k 9(Ϋ\ \l = £ I (1 + δψXX. μ))v — (1 + δψc

From (5.20) and from Lemma 5.6 we obtain

'^V.W ^ lOofl^r121 A\ dXdμdv

(5.21) ^ (KS + icδs)\J—dXdμdv
J y \P\

provided that δ < δ0 where δ0 = δo(t) may depend on t.
Similarly we have
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\\X

Rh
+

z in the above integral is of course the generic point of the chain
(5.8). Notice now that by Lemma 5.1 when zeRh lies on the chain
(5.8) and when δ < δ0 (where δ0 = δo(t, h) > 0 depends on t and on
h) then

l - v < * A .
~ t

We conclude therefore from (5.20) that

s n

JzeRi

provided again that δ < δ0 = δo(t, h).
We obtain therefore that

(5.22) | | Z i ? J ί > r 2 F 1 | | ^

We have similarity

(5.23)
θΓ1/2 \B\ dXdμdv

. f r
^ ί(κS + icδ*)\ J

V t i v
\p\ V t

ίcδs

(5.24)

\\X

If we combine now the estimates (5.21) (5.22) (5.23) (5.24) together
with (5.17) and (5.19) we finally obtain the following

LEMMA 5.7. For all 0 < ί < 1 and h > 0 there exists δo=δo(ί, h)
such that

\\XBh \ρ\-υϊK{Δ) Adp\\^ KJ-^-S + icδ*

for all δ < δ0.

Let us now consider the point

ξ'(\ μ) = (1 - t + δ,X, δ2μ, δ',μ9 δ'4X) 0 ^ λ, μ ^
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which is the generic point on a small rectangle Δ* that is spanned
by the two vectors

(*i, o, o, §0; (0, K K 0)

Δr can be obtained from our previous rectangle A by interchanging
the axes x2 and y2. From this fact, or from reworking out all the
estimates afresh for £'(λ, μ) and Δf we see that all the estimates
that we have obtained up to now for HΘ([Δ]) and K(Δ) also hold for
HΘ([Δ']) and K{Δf) = [HΘ([Δ'])]Q)1, where of course now δ = 8} + 3| +
δ? + δ?.

I t is time now to make an assumption on δl9 δ2, δ3, δ4, δ
r

3, δ'4. We
shall distinguish three cases.

Case 1. We consider the rectangle Δ and set δλ = δ2 = 0, δ3 —
δ4 Φ 0 in that case

(5.25) S = δH .

Case 2. We consider the rectangle Δ and set: either

δ, = δ4 = 0, δ2 - δ3 ̂  0

or

δ2 = δ3 = 0, ^ = δ4 ̂  0 .

We consider the rectangle Δf and set: either

or

δ2 = δί = 0, δx = δίΦ 0

in that case

S ^ lOδVT.

3. We consider the rectangle Δ and set δ3 = δ4 = 0, ^ =

<52 ̂  0, in that case

S ^ 100δ2 .

We are finally in a position to give the

Proof of Proposition 4.2.

Case 1. Let us suppose that δlf δ2, δs, δ4 are as in Case 1 above.

In that case we have
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(5.26) ±-[Δ\ — - δξdxλ A dy,
δ2 δ>0

the convergence takes place for the weak topology of currents of
order zero. From this it follows that for all θ as in (3.1)

(5.27) HΘ(±-[Δ] ) — Hoiδ.dx, A dVl)

for the weak topology of currents of order zero, because Hθ is
continuous for the convergence in (5.26) (observe that the fact that
l/δ2[J] stays bounded in norm and its support stays in some compact
subset of Ω makes the verification of that fact very easy).

From (5.27) it follows therefore that

dXt A dVl)\\ <: lim-±- \\HΘ{[Δ})\\ -
δ-*o 3

By (5.14) and (5.25) we deduce therefore that

\\Hθ(oξdx1 A dy^W ^ tct

but by definition (4.1) we have

a(ξ) = 2i(l - tγδζdx, A dyι

and from this our estimate

follows at the point ζ = (1 — t, 0).
Since the situation is clearly rotation invariant we have the

same estimate for a(z) at every point z e B\0 this proves the first
estimate in (4.4). All the other estimates are proved in an identical
manner. Case 1 gives estimates (4.4). Case 2 gives estimates (4.5)
and Case 3 gives estimates (4.6). The varification of these final
details will be left to the reader.

6. Proof of Theorem 1Λ when Ω = {\\z\\ < 1}. In this para-
graph we shall give the proof of Theorem 1.1 when Ω is the unit
ball {|| z || < 1} (or even more generally an arbitrary convex set with
smooth boundary). The passage to this theorem is not very simple,
fortunately however all the extra work needed to obtain it has
been done elsewhere so we shall be brief and follow very closely
H. Skoda [15] II. The reader who wishes to understand the follow-
ing few lines is strongly advised to study first Ch. VII of [10] and
pt II of [15].

Let M c ΰ be a divisor as in Theorem 1.1. Let us suppose as
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we may that 0 g M and let us denote by t the corresponding Lelong
current which is then a real current that satisfies the U. B. condi-
tion. Using then Theorem 2.1 (or even Proposition 3.1, observe
that teΛ) we can find a real current v of degree one such that

dv = t

and such that v + S~1/2v0>1 A dp is a Carleson current. Let us then
set w — — iv and let

w = -w l f 0 + wQtl

be the decomposition of w into its (1, 0) and (0, 1) components. The
current wOtl is then 3-closed and the current w0)1 + δ~V2w0Λ A dp is
Carleson, in other words w0Λ satisfies all the conditions of Theorem
3.1.1 in [18] (observe that what we call a Carleson condition for a
current μ there, differs from our present terminology and corre-
sponds to the fact that \μ\ + d~1/2\μ A dp\ is a Carleson measure).
From Theorem 3.1.1 in [18] then, and from Proposition 2.2 in [15]
it follows that we can find two functions:

( 6 1 ) (ueBM0(dΩ)

\UeL\Ω) for the volume measure

such that

(6.2) - ( U A dφ = ί wOtί A <P - [ u A ψ
JΩ JΩ JdΩ

where (6.2) is valid for all ψ a (2,1) from that is C1 in some neigh-
borhood of Ω. From (6.2) and from the fact that v is real we
deduce at once that

dU = wOtl in Ω

and from these two facts it follows that if we set W = π{ U + Ό)
we have

±ddW=t.
π

But then by the Lelong theory (as developed say in [10] Ch. VII)
and the work done in [15] II (or [7]) it follows that there exists
F(z) a holomorphic function in Ω belonging to the Nevanlinna N*(Ω)
(sometimes denoted N+(Ω)) class such that

(6.3) log\F(z)\=W(z).

The N*(Ω) class is the subclass of the Nevanlinna class N(Ω)
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that consists of these functions / 6 N(Ω) that satisfy

(6.4) limt \\og\ f(rz)\\dσ(z) Λ \\og\f*(z)\\dσ(z).
r-Λ JdΩ J3Ω

In (6.4) Ω denotes the unit ball and dσ(z) denotes the Lebesgue
measure element on dΩ, we also denote by f*(z) the radial limits
of the function f(z) that exist for almost all zedΩ.

The fact that we are in N*(Ω) rather than the general class
N(Ω) is proved in [15] Appendix I (H. Skoda does not explicitely
state that fact but he proves it. G. M. Henkin actually explicitely
states it.)

In our case if we denote by F*(z) the boundary values of the
function F that satisfies (6.3) and if we set

w*(z) =

we have w*(z) = π(n(z) + u(z)) (cf. [15] Appendice I).
It follows therefore from (6.1) that

log\F*(z)\eBMO(dΩ) .

This by the John-Nirenberg theorem [9] implies that there
exists some p > 0 such that

F*(z)eLp(dΩ) .

But the above fact and the fact that FeN*(Ω) (cf. [20] Ch. 7,
Th. 7.50) implies that

F(z) 6 H*{Ω) .

The proof of Theorem 1.1 is complete.

7* The general strictly pseudoconvex domains and the
Poincare equation for Carleson currents* In this paragraph we
shall prove Theorem 2.1 in its full generality, i.e., when Ω is a
general bounded strictly pseudoconvex domain with smooth boundary
in C\ Theorem 1.1 in its full generality can be dealt by the same
method as in paragraph 6.

In the passage from Theorem 2.1 to Theorem 1.1 there arises
a slight problem in applying the Lelong theory when H\Ω; R) Φ 0
that problem can be delt with by a method due to R. Harvey (cf.
[6]).

In this paragraph we shall follow very closely, once more, H.
Skoda in [15] II § 4.

By the assumption on Ω it follows that there exists a finite
open covering of Ω in Cn
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flc \JΩ5
3=1

and for each Ωό there exists an operator Hά defined in the space
of all currents T of Ω that satisfy

supp T c Ω5

which satisfies

doHj + Hjod = Id

and which is such that the current XΩ.(Hά{T) + d~v\Hό{T)\Λ A dp)
is Carleson for each T that satisfies the U. B. condition.

The construction of Hό is obvious when Ω5 Π dΩ = φ, when Ωά Π
dΩ Φ φ we just have to use the fact that dΩ is locally biholomor-
phically equivalent with a piece of a strictly convex hypersurface
in Cn and then apply the results of § 3, § 4 and § 5.

The problem now is to "glue" back all these operators.
Let fo 6 C"(Cn) 1 ̂  i ^ m be functions that satisfy

supp ψ3 c Ωd 1 <; j ^ m; Σ ψJ = 1 o n ^

For all Γ as in Theorem 2.1 let us set then:

= Σ toiHiifas AT)- dirj A Hjii
i=i

It follows that θ is a closed current of degree 2 and order zero
that satisfies the Carleson condition. It also follows that the canon-
ical cohomology class of θ in H\Ω; Z) (cf. [6] 1.5) is the same as
the class of T i.e., it is zero.

To complete the proof of Theorem 2.1 it suffices therefore to
prove the following

LEMMA 7.1. Let θ be a closed Carleson current of degree 2 in
Ω whose cohomology class in H\Ω\ Z) is zero. There exists then a
current w of order zero and degree 1 that satisfies

dw — θ

and which is such that δ~~1/2w is a Carleson current.

Observe that the above situation is self adjoined and therefore
when θ is real w can also be chosen real.

The above lemma is what replaces H. Skoda's Lemma 4.1 in
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[15] pt II.
For the proof of this lemma we shall follow Skoda's method in

([15], II § 4) and we shall use the three sheaves ^ , ^ , and ^\
that are defined there. The only alteration that we shall make is
that we shall replace (II. 4.4), (II. 4.5) and (II. 4.6) of [15] by the
following

(II. 4.4)' lκθ is Carleson .

(II. 4.5)' Z*(|w| + δ~1/2\dw\) is Carleson .

(II. 4.6)' y~κδ~υ\\9\ + \dg\) is Carleson.

From these onwards our proof follows Skoda's proof word by
word.

To make the sheave theoretic machine in that proof work,
however, we shall need to give a proof of the local version of
Lemma 7.1.

This is contained in the following proposition which holds for
all convex sets in Cn with smooth boundary but which, for simpli-
city, we shall state and prove only for the unit ball BaCn. We
shall again denote by A the space of all currents T in B such that
0 0 Supp T. We have then

PROPOSITION 7.1. There exists

H*:Λ >Λ

a linear operator such that

doH* + H*od = Id

and such that ifTeΛ is a Carleson current then δ~V2H*{T) is a
Carleson current also.

In other words H* gains an exponent 1/2 on <?. The above
proposition is of the same nature as Proposition 3.1. Its proof
however is considerably simpler, the reason for that is that the
situation now is isotropic. Indeed the complex structure of Cn

plays no role either in the statement or in the proof of Proposition
7.1. Observe also that the condition OgSuppT is purely technical
and can easily be eliminated.

The construction of H*.
To simplify notations and to avoid repetition we shall suppose

that n = 2 and we shall repeat all the constructions of § 3 making
only one modification.
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In (3.2) instead of defining pθ{z) as we did, which was designed
to bring out the anisotropic structure of dΩ, we shall simply set:

pθ(z) = (0xί, θ2t, θzt)

all the rest remains unchanged. We obtain then an operator H*
which is the average of the operators Hθ given by

H*(T) = (2c)A Hθ(T)dθ1d02dθ3 .

We claim that H* satisfies all the conditions of Proposition 7.1.
The fact that H* is a chain homotopy is of course obvious. What
has to be verified is the estimate on δ~V2H*(T). The strategy to
prove that estimate is identical with the one in § 4 and § 5 and the
details are much simpler. We shall be brief.

Let J be a multiindex and let us denote by

V = VW = δ*dχi

which is of course a current of order zero supported by the point
z, let us also denote by

if = η\z) = He(j])\ H - H{z) - (2c)A
J 10^1

PROPOSITION 7.2. For all ε > 0 there exists Cε a constant that
depends only on ε > 0 such that for all zeB with \\z\\ > ε and all
θ we have

(Rh is as in (4.3)).

PROPOSITION 7.3. For all ε > 0 there exists Ce a constant that
depends only on ε such that for all zeB with \\z\\ > ε and all θ
we have

Vi.oJ II o H\\ ^ O£V t .

PROPOSITION 7.4. For all ε > 0 there exists Cε a constant that
depends only on ε such that for all θ, all h > 0 and all zeB such

that z&Bch(l) (c — 1010 say) and | | z | | > ε we have:

\ιA) ΛΛ0 i l S* O e—-—

t
If we suppose in addition that
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t = δ(z) Ξ> cV h

then we have

, n hδ/2

(7.5) | |Z f cr

(ZA is as in Proposition 4.4).

Proof of Proposition 7.2. Proposition 7.2 is the analogue of
Proposition 4.2. To prove it we consider, as in § 5, a "cubical"
chain element of size δ and dimension n — \I\ (which will play the
role of an infinitesimal chain element since we shall let δ —> 0) at ξ
and we shall make estimates for H0([Δ]). We shall then let δ —> 0
and observe that provided that Δ is properly oriented we have

just as in (5.26). The proof is then concluded as in § 5.
The estimates that we need on HΘ[Δ] are the following

\\δ~1/2Hθ([Δ])\\ ^ K8*-^VT Vδ < δo(t)

\\XRhδ-1/2Hθ([Δ])\\ ^ fcδ^Vh Vδ < δo(t)

where δo(t) > 0 depends on t. These estimates are very easy to
obtain here and no development up to the 2nd order in δ, as in §5,
is needed.

Indeed the chain element that represents HΘ([Δ]) is a "spike"
based on Δ with a long edge of length comparable with t along the
vector lo(ξ). The estimates above follow immediately from that.

Proof of Proposition 7.3. Proposition 7.3 is of course the
analogue of Proposition 4.3. To prove it we just have to integrate
the estimate (7.1) over θ.

Proof of Proposition 7.4. Proposition 7.4 is the analogue of
Proposition 4.4. To prove it we just have to integrate the estimate
(7.2) over θeXz where Xz is defined as in (4.8) but for our new
definition of p(z). Concerning that new set Xz Lemma 4.2 is no
longer valid what replaces it is the following.

LEMMA 7.1. Let h>0 and 0 Φ zeBch(l) {where c = 1010 say)
then
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If in addition we assume that

t = 8{z) >

then

The proof of Lemma 7.1 follows exactly the same lines as the
proof of Lemma 4.2. It will therefore be omitted.

Observe that the analogue of Lemma 4.1 does hold and that
therefore Xz is empty unless d(z) ̂  c~λh.

We can now complete the

Proof of Proposition 7.1. Let T be a Carleson current as in
Proposition 7.1. We have then

H(z)\ (Sίϊ))d \T\(z)

+ ί = w +

(where h(z) is defined as in Lemma 4.1) .
We have then from (7.3):

(7.6) « ^ CVh\T\ (BJX)) = Ch

We also have from (7.4) and (7.5) that

(7.7) S3 ̂  Ch*λl[z 6 B; cVh^ h{z) ^ h; δ(z)

δ/2

δ(z)

(7.8) IE ̂  C/^5/2(z[^ 6 5 ; h(z) ^ d | J ' ( g )

where Z in the above integrals indicates the characteristic func-
tion of the corresponding sets. The inequality δ(z) ̂  c^hiz) inside
these characteristic functions follows by the analogue of Lemma
4.1 which as we already pointed out does hold for the new defini-
tion of Xz.

Let us now denote by

(7.9)

by (7.7) and (7.8) we deduce then that

(7-10)
Jch
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(7.11) © < Cλβ/2("

An easy integration by parts in (7.10) and (7.11) together with (7.9)
gives then

(7.12) S3 ̂  Ch2

(7.13) K ̂  C%2.

The estimates (7.6) (7.12) and (7.13) put together complete the
required estimate on \δ~1/2H*(T)\ and we are done.

8* Complex lines* The aim of this paragraph is to examine
divisors that consist of a countable union of complex lines, and to
give a necessary and sufficient condition for such a divisor to satisfy
the U. B. condition.

We shall work exclusively in the unit ball B aC2 (n = 2) and
we shall also find it convenient to use the sets Ch(ζ0) (h > 0: ζ0 e dB)

(8.1) CA(Co) = { ζ e β ; | l - ζ . ζ o | < Λ }

to test the Carleson condition, this is certainly legitimate because

these sets are equivalent to the sets Bh(ζ) (cf. [18] § 2.2).
Let now laC2 be a complex line represented parametrically by

(8.2) I = {z = (zlf z2) I 3X = sj + az, z2 = z\ + βz9 zeC}

where («J, zt)eC and α ^ O α 2 + | ^ | 2 = l and let us denote by dσ
the 2-dimensional Lebesgue (2-dimensional Hausdorff) measure ele-
ment on L

We have then

PROPOSITION 8.1. There exists C a numerical constant (inde-
pendent of I) such that if we denote by v the Malliavίn measure
on I Π B (cf. (1.6)) and by d(ΐ) the diameter of the disc I Π B we
then have

(8.3) C~ιd{iγσ £ v ^ Cd(l)2σ

(8.4) v(Ch(ζ0)) ^ Ch2 V/*>0, VζoedB.

Proof. We shall use the decomposition

V = V1 + V2

and the two measures
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= \t Λdp Λdp\

that were introduced in (5.16) and in (5.17), and we shall denote
as usual by t the Lelong current associated to the divisor I f) B,
and by δ = δ(z) == 1 - p | | .

For the proof of (8.3) we shall also suppose, as we may, that

J — ί — //V /V \ I /V — 1

for some 0 < r < 1.
We have then

(8.6) C~\l - r) ^ d(l)2 ^ C(l - r)

(8.7) 1 - (r2 + I z21
2)1/2 = δ(z) ^ 1 - r Vz = (^, ^2) e Z n ^

for some numerical constant C. We also have

t = —

(8.8) D, = | ί Λ 3 i ί Λ 9|0| = ^\z\σ\dzx Λ dzj Λ ώ«2 Λ

= 2|z2 |
2σ .

But from (8.7) and (8.8) it then follows that

(8.9) v, - 2[(1 - δ(z))2 - r2]σ = (1 - r > -

Since also by definition

(8.10) £2 = δσ ^ C(l - r)σ

we obtain at once that

^ 1 + ^ 2 ^ C(l - r)σ

which together with (8.6) gives the right hand inequality in (8.3).
To obtain the left hand inequality we observe that by (8.9)

(8.11) v, ^ C~\l - r)σ

in the domain where δ(z) ^ 10-10(l - r) but when δ(z) ^ 10-10(l - r)
we have by (8.5) that

(8.12) v2 ^ C'\X - r)σ

and the inequalities (8.11) and (8.12) put together complete the
proof of (8.3).

For the proof of (8.4) we shall, as we may, assume that ζ0 = 1
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and that I is a general line parametrized as in (8.2).
We first observe that

\z2\^CVT Vz = (z,,z2)eCh(l)

and that I Π Ch(l) is a convex subset of I whose diameter is bounded

by the diameter of Ch(l) which is Ci/T. From the above two

observations it follows that

(8.13) σ(Cha)) = \lΓiCk(l)\2t£Ch

and that

(8.14) UCh{ϊ)) ^ sup δ(z).σ(Ch(l)) ^ Ctf .
z e Ch (1)

It also follows that

(8.15) / = [ \z2\
2dσ ^ Chσ(Ch(l)) ^ Ch2 .

JcA(i)

If we use the parametrization (8.2) of I we see that

dzγ Λ dZi — \a\2dz A dz

but that means that the integral

I = ( \t Λ dz, A dzx\ = ί \[l] A dz, A dz,\
jchω Jchω

is just twice the 2-dimensional area on the line {z2 = 0} (which is
the zt axis) of the orthogonal projection on that line of the set
I Π Ch(l), that area is clearly bounded by the area \Ch(l) Π {z2 = 0}|2
and this means that

(8.16) I^Ch2.

We can finally estimate

\tAdpAdp\

\t A dz, A dzt\ + c\ \z2\\t Adz, Adz2\

\z2\
2\t Adz2Adz2\ ^GI+CK+CJ

ickω

where

(8.17) K = [ \z2\\tAdz,A dz2\ ^ VTT
J(7A(1)

by the positivity of the current t (cf. (2.5)). The estimates (8.15)
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(8.16)(8.17) and (8.14) put together give (8.4) and complete the proof
of Proposition 8.1.

We shall now examine divisors that are obtained by taking
countable unions of complex lines.

More explicitely let ls c C2, j = 1, 2, be a sequence of complex
lines and let us denote by

M = ϋ (h n B)

which is a divisor in B (we give multiplicity one on each line).
Let us denote by

Ki = B n ls, dό = diam (Ks); j = 1, 2, - .

The divisor M then clearly satisfies the Blaschke condition if and
only if ΣΓ=i d) < + °° (this immediately follows from Proposition
8.1). We also have

PROPOSITION 8.2. The divisor M satisfies the U.B. condition if
and only if there exists c > 0 some positive constant such that

(8.18) Σ d\ ̂  ch2 ,
KjCLCh{ζQ)

(8.19) Card {j \ Kά n Ch(ζ0) Φ ψ; K^Cch{ζQ)} ^ c

for all h > 0 and all ζ0 e dB.

Proof. The fact that the two conditions (8.18) and (8.19) put
together (for some c > 0) are sufficient to ensure that M is U. B.
is an immediate consequence of Proposition 8.1. It is also clear
from the same proposition that if M is U. B. then (8.18) has to be
verified for some c > 0. The proof that (8.19) also has to be verified
when M is U. B. is more delicate. That proof is based on the
following

LEMMA 8.1. Let lm m = 1, 2, be a sequence of distinct com-
plex lines in C2 and let us suppose that

lelm m = 1, 2, •

then the divisor

M=V(lmf)B)
m=l

is not U. B.

In fact, for the applications that we have in mind, the above
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lemma will be more useful than the actual Proposition 8.2. From
the above lemma however we can easily give the

Conclusion of the proof of Proposition 8.2. Indeed let us
suppose that M is U. B. but that (8.19) fails to hold for every c>0.
By letting c->oo we can easily construct a new divisor N that is
U. B. and that consists of infinite many lines all going through a
single point say 1 on 32?. This together with Lemma 8.2 supplies
a contradiction and completes the proof. To make this argument
work it is best to work on the Siegel half space

(8.20) S = {u = (ulf u2) G C2; ZImu, > \u2\
2} .

The reason is that S has a natural dilation structure

(8.21) (uu u2) > (X2ul9 Xu2), λ > 0

and by letting h fixed, c —> oo and λ = 1/ch we can realize the
above construction at the point 0 e dS (which corresponds to the
point 1 of the ball). We shall leave the details to the reader and
proceed with the proof of the Lemma 8.1.

We shall need the following

LEMMA 8.2. For all complex line ί c C 2 such that lei lf]BΦφ
there exists then hQ = ho(l) > 0 such that for all h < hQ we have

1 Λ .
100

Proof. Indeed it is clear that there exists some h0 = ho(l) depending
only on I such that

(8.22) {z = (zl9 z2)el; \zx\ < 1, I I — zx\ £ 2 ( 1 - \zλ\) ^ h}aCh{l)

for all h < h0. Let us denote by

Dh = {ZleC; \zλ\<l, 1 1 - ^ 1 ^ 2 ( 1 - | ^ | ) ^ M

it then follows from (8.22) t h a t

(8.23) Jh{l) ^ \ I [ϊ] Λ dz, A dzx \ = \ Dh |2 ^ J£-
l*lel>h 1 0 0

(where \Dh\2 is the 2-dimensional area of the set Dh).
To see the second equation in (8.23) it suffices to parametrize I

by

(8.24) zx = z + 1; z2 = az
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and observe that then dz, A dz, — dz A dz.
Let now ί be a complex line that goes through 1 and let us

suppose that it is parametrized as in (8.24). It follows then that

L = ί I [I] A (dp A dp - I z, \2dz, A dz,) \
jchω

^ 2 ί I z2\ \[l] A dz, A dz2\ + \ \z2\
2\[l] A dz2 A dz2\

(8.25) ]ch{1) ichU)

[ \z2\
2\[l]Adz2Adz2\

z21
21 [I] A dz2 A dz21YΎί [I] A dz, A dzX

/ \jchω /
I 211 [] 2 21

chω / \jchω

by the positivity of the current [I] (cf. (2.5)).
But we clearly have

(8.26) Iz21 ̂  ah Vz = (zlf z2)elf] Ch(l) .

From (8.25) (8.26) and (8.13) we deduce therefore that

(8.27) L^C\a\2hz + C\a\h*/2

where C is a numerical constant and a depends on I.
But if we combine (8.27) with Lemma 8.2 we deduce that for

all I as in Lemma 8.2 there exists h0 = ho(l) > 0 such that

(8.28)

for all h < h0. From (8.28) Lemma 8.1 follows at once.

9* EXAMPLES. The aim of this paragraph will be to give a few
examples and also to supply a proof of Theorem 1.2. Once again
we shall work exclusively in B the unit ball in C2, we shall also
preserve all the notations of the previous paragraph.

EXAMPLE 1. Let {a3eC; \a5\ < 1 j = 1, 2, •} be a sequence of
points in the unit disc that has the following property

(9.1) {

^C "in ^ 1; 1 ^ p £ 2n

where C is a fixed constant that depends on the sequence but is
independent of n and p.

Observe that the above condition (9.1) implies that for all ζoeC,
|ζ o | = 1 we have
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(9.2) £

where Ct only depends on C.
We have then

PROPOSITION 9.1. Let {̂ }j°=i be a sequence as above that satisfies
condition (9.1) for some C, the divisor

(9.3) M = U ({*i = aj} Π JS)
5 = 1

then satisfies the U.B. condition.

We shall need the following

LEMMA 9.1. Let ζ0 = (cos Θ, sin 0) e dB (—π/2 ^ θ <^ ττ/2), and let
us denote by X(θf h) the orthogonal projection on the line {z2 — 0}
(which is the zt axis) of the set Gh(ζ0) [cf. (8.1)]. X(θ, h) is then a
convex set on that line and its diameter satisfies

(9.4) diam X(θf h) ^ C0(h + l / ¥ | sin θ |)

where Co is a numerical constant.

We shall postpone the proof of that lemma until later and
complete the

Proof of Proposition 9.1. We shall fix ζ0 = (cos 0, sin θ) and
h > 0 with O ^ ί g π/2 and we shall verify that the Malliavin
measure v of the divisor (1.6) satisfies the Carleson condition (1.1)
for the set CΛ(ζ0). Clearly this is sufficient to complete the proof
of the proposition because the configuration that we are considering
is invariant by transformations of the form (zlf z2) —• (eί<Plzl9 e

i<P2z2).
We distinguish two cases.

Case 1. l/X ^ l/2000(C0 + 1) | sin θ |.
It follows then from (9.4) that

(9.5) diam (X(θ,h)) ^ s i n ^
100

But we also have:

(9.6) 1 - 2 sin2— = cos 0 e X(θ, h) .
Δ

But then from conditions (9.1) (9.5) and (9.6) it follows that
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(9.7) Card {j | a5 e X(θ, h)} S C

where C depends only on the original sequence {αy}5U. From (9.7)
and (8.4) it follows clearly then that

v(Ch(ζ0)) ^ Ch?

and we are done.

Case 2. τ / ¥ ^ l/2000(C0 + 1) sin θ.
In that case

diam (X(θ, h)) ̂  φ

where c2 is numerical. But this together with (9.6) implies then
that

X(θ9h)<z{z1eC; |1 — «J £ CJi)

and therefore that

We deduce therefore that

v(Ch(ζQ)) ^ v(Cΰ3h(l)) rg Σ vfe = as)

and if we use then (8.3) and (9.2) we obtain that

»(C*(Co)) ^ Ch*

and we are done again.
It remains to give the

Proof of Lemma 9.1. Let ζ0 = (cos#, sintf) and h be as in the
lemma. For a = (au α2) e C2 arbitrary let us denote by L(a) the
complex line that is represented parametrically by

zx = ai — z s i n θ

z2 = a2 + zcosθ zeC .

L(a) passes then through a and is perpendicular to the vector ζ0 in
C2. Using the lines L(a) we can then fibrate Ch(ζ0) as following

(9.8) CΛ(Co)= U i'(α)
oe/ifc(C0)

where we denote by

Λ(Co) = ία e 5 ; | |α - ζo | | ^ h], L\a) = L(α) n 5 .

We clearly have
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diam

diam (L'(α)) ^ 100τ/T Vα e Λ(Co) .

Therefore

(9.10) diam (projection of Jy'(α) on {̂ 2 = 0}) ^ 100l/7Γ|sin #| .

Our lemma now follows from (9.8) (9.9) and (9.10).
We are now in a position to give a proof of Theorem 1.2. To

do that we shall need to recall first a few well known facts about
HP(B) functions.

PROPOSITION. (H.R.) Let p>0 and let f(zu z2) eHP(B), then the
function φ(z) — f(z, 0) satisfies the following condition:

(Ap) i\ \φ(z)\pdz Adz
JUKI

Conversely if φ{z) is a function of one variable (defined for | z | < 1)
that satisfies (Ap) for some p > 0 then the function

Furthermore if φ(z) is as before and does not vanish at the origin
then the sequence of its zeros {aό e C}J=ι satisfies

(9.11) Σ ( l ~ | α y | ) ^ — l o g ( t f + 1) + C(φ);N^l
3 = ί P

where C(φ) is a constant that depends on φ and where in (9.11)
we can use any ordering of the sequence {â }~=i that does not decrease
the moduli (i.e., \ax\ <; |α 2 | ^ •••)•

The first part of this proposition is well known and easy to
verify. Results of that kind were first brought to light by W.
Rudin ([13] 3.4.4). The part about the zeros is a result of C.
Horowitz and is an easy consequence of Jensen's formula (cf. [8]
3.9). We can now give the

Proof of Theorem 1.2. Let p0 be as in Theorem 1.2. We first
construct a sequence {aά e C; \aά\ < 1, j = 1, 2, •} that satisfies
condition (9.1) for some C but for which (9.11) fails if p = p0. This
is very easy to do. It suffices then to set

and apply Proposition 9.1 and Proposition (H.R) to obtain the
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required divisor.

EXAMPLE 2. Let ln c C2 n = 1, 2, be a sequence of complex
lines in C2 and let us denote by dn = diam (ln Γ\ B) (n*z 1) and by

the corresponding divisor. Let us also denote by t the Lelong
current associated to M and by

its absolute value which is a measure equivalent to the 2-dimen-
sional Lebesgue measure on M. We have then

PROPOSITION 9.2. Let M be as above and let us assume that
there exists ε0 > 0 such that

;(9.12) d /d +i ̂  1 + ε0 w = 1, 2, .

T/fcβ measure σ satisfies then

(9.13) tf(CΛ(ζ0)) ^ CΛ; Vζ0 6 3 5 , h > 0

where C depends only on ε0.

From (9.13) i t follows in part icular t h a t t h e measure δ\T\ = v2

is Carleson.

By combining t h e above proposition wi th, say, Lemma 8.1 we

conclude

PROPOSITION 9.3. There exists a divisor M in B that does not
satisfies the U.B. condition but for which never the less the measure
v2 = δ\t\ (t being the associated Lelong current) is Garleson.

Proof of Proposition 9.2. We shall suppose, as we may, that
ζ0 — 1, and we shall denote by σn the 2-dimensional Lebesgue measure
on lnΠ B (n ^ 1). We have then

σ(Ch(l)) = Σσn(Ch(l)) -
% = 1 d

By our hypothesis we have

A ^ π Σ _dl ^ Ch .
dns^h

Similarly by our hypothesis and Proposition 8.1 we have
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B ^ C Σ βn2h2 = h2 Σj_dn2 ^ Ch .

The above two estimates complete the proof of the proposition.

EXAMPLE 3. Let us denote here by dφ (dΦ(a, b)a, b e B) the
Bergman metric in the ball B (cf. (1.4)).

Let 3 be a sequence of points

(9.14) 3 = {s*eB; i = 1, 2, •}

concerning 3 w e shall make two definitions.
We shall say that 3 satisfies the Carleson interpolation condi-

tion if the measure

is a Carleson measure in B (cf. [1], [19] for the motivation and the
significance of the above definition).

We shall say that 3 is iV-separated where N ^ 1 is a positive
integer if the following two conditions are verified

(a) dφ(ziy zd) > N, Vi Φ j .
(β) There exists a fixed positive integer k depending on $

such that

&c.\J{zeB;2-{pN+k+1) ^ 1 - | | s | | ^

In the above definition, if we denote by

3P = {ze3; 2 " ^ + f c + 1 ) ^ 1 - \\z\\ s

it is clear that $p is finite and that

(9.15) 3

The point of the second definition is the following

LEMMA 9.2. Let 3 be a sequence of points in B that satisfies
the Carleson interpolation condition, and let N ^ 1 be a positive
integer, we can decompose then 3 into finitely many sequences

3 = £<» u 3 ( 2 ) u u 3 ( s )

such that each Qik) k = 1, 2, -s is N-separated.

The proof is trivial and will be left to the reader.

We can state now
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PROPOSITION 9.4. Let $ be a sequence of points in B as in
(9.14) that satisfies the Carleson interpolation condition, there exists
then {ijCiC2; j = 1,2, •••} a sequence of complex lines in C2 such
that the divisor (J?=i (h Π B) satisfies the U.B. condition and such
that ztelt (i = 1, 2, •••).

From that proposition we have the following

COROLLARY. Let $ be as in the proposition, there exists then
some p > 0 and some 0 Φ feHp(B) such that f

To prove the Proposition 9.4 we shall need the following

LEMMA 9.3. There exists c > 10 a numerical constant such that
for all N > c and all 3 N-separated sequence there exists

{luciC2; ueS)

a sequence of lines that satisfy the following conditions
( i ) uelu, VueS
(ii) lunBdCcil_llull)(u/\\u\\), VueS
(iii) For all ζ0 6 dB and h > 0 there exists at most one line

In (u e S) that satisfies

h ΓΊ C,(ζ0) Φφ;l%<£ CU(ζ0) .

We shall postpone the proof of Lemma 9.3 until later and complete
the

Proof of Proposition 9.4. Let 3 be as in Proposition 9.4 by
decomposing then 3 into finitely many subsequences each satisfying
the conditions of Lemma 9.3 (this can be done by Lemma 9.2) we
can suppose without loss of generality that 3 itself satisfies the
conditions of that lemma.

Let then

be the family of complex lines constructed in Lemma 9.3. We claim
that the family of lines satisfies conditions (8.18) and (8.19) of Pro-
position 8.2 and that therefore the divisor U«β;r(Z«n2?) is a U. B.
divisor.

Condition (8.19) follows trivially from (iii). Condition (ii) on the
other hand implies that

(9.16) d i a m & n B ) ^ c(l - INI)1/2
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and (9.16) and the definition of the Carleson interpolation condition
imply then that condition (8.18) is also verified. This completes the
proof.

To give a proof of Lemma 9.3 we shall need the following

LEMMA 9.4. For all zeB such that t = 1 — \\z\\ ^ c"1 (c is a
numerical constant c = 101000 will certainly do) and all icC2 complex
line in C2 there exists a complex line IXCLC2 such that

zelL; l1ΠBc:

inf {|1 — z; ύ\; zel, uelu z, u edB} ^> c~H .

Proof, A direct proof of the above lemma can, no doubt, be
given. The easiest way to prove it however is to use the gener-
alized Cayley transformations and to pass to the Siegel upper half
space S given by (8.20). Using then the natural dilation structure
of S given by (8.21) we can assume that the point z in our lemma
above becomes the point / = (i, 0) 6 S.

It is enough then to show that there exists a numerical constant
c such that for all complex line I in C2 there exists another complex
line lλ such that

Iel^ lλc\ Sa{u = (uu u2) eC 2 ; \u±\ < c}

d(l n dS, k Π dS) > c-1

where we denote by d(a, b) the natural distance function on dS
given by d(a, b) = \ax - b,\ + |α2 - 62|

2.
That fact follows by an easy compactness argument and no

direct computation is needed. This completes the proof of Lemma
9.4.

Proof of Lemma 9.3. Let ,8 be as in Lemma 9.3 were c is
large (c = 101000 will certainly do) and let

the decomposition (9.15) of Q into its successive "layers".
We shall then construct a sequence of lines {lu; ueQ} such that

(9.16) uelu; lu
\\u\\

and such that for two distinct a, b e 8 we have
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inf{ | l~ z.ΰ\; zelaf)dB, uek
( } ^ β ^ m i n K l - H α l l ) , (

The above lines, then, will clearly satisfy the conditions of
Lemma 9.3 (possibly with a larger c).

The above construction of lines will be done inductively on the
layers &p of £.

Indeed let us suppose that lines

k; ue US,}
K q=0 )

have been constructed for some p0 ^ 1 and that they satisfy (9.16)
and (9.17). It is then very easy, using the hypothesis and Lemma
9.2 to construct finitely many more lines

such that the lines

p~0

still satisfies conditions (9.16) and (9.17). This is the inductive step
and it completes the construction.

10 • The optimal nature of the uniform Blaschke condition*
Let Ω £ Cn be as in § 1 and let μ be a Radon measure in Ω. We
shall say that μ satisfies the Ca (a > 0) condition if

\μ\ (BMO)) ^ Ctn+«; ζ0eBΩ, 0 < t < t0

where C is independent of t and ζ0. We shall say that T a (1, 1)
current as in (2.1) satisfies the U.B.α condition if the measure

S\T\ + δ1/2(\T Λdp\ + \T Λdp\) + \T A dp A dp\

is a Cα-measure in Ω,
It is very easy to see that the condition Ca, if postulated at

the beginning, it propagates in a very natural way right through
the paper. In particular if T is a real cϊ-closed current that satisfies
the U. B.α condition for some a > 0 then there exists a real solu-
tion W of the equation

iddW= T

such that W\d0 e Λa(dΩ).
The above facts may be of some mild interest, unfortunately

however, they do not seem to have any significance in complex
analysis because of the following
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PROPOSITION 10.1. Let MaΩ be a divisor in Ω (where Ω is as
above) and let t be the Lelong current associated with the divisor.
Let us also suppose that the measure v1 — \t A dp Λdp\ satisfies
the condition

(10.1) HBXQ) = o(ί )

as t —• 0, uniformly in ζ0 6 dΩ. Then the divisor M is empty (M=φ).

Proof (outline). To simplity life I shall suppose that Ω=BaC2

the unit ball in C2. Let M satisfy condition (10.1) in B. Then by
considerations analogous to the ones in the proofs of Propositions
2.1, 2.2 and 2.3 we conclude that v the Malliavin measure of the
divisor [cf. (1.6)] satisfies the condition

v ( j £ o = o(ί2); as t >0 uniformly in ζoedB .

But then by rerunning through the proof of Proposition 1.1 we
conclude that

(10.2) lim ||ifif,||, = 0

where G is as in Proposition 1.1 and g —> °° means that we tend to
the point at infinity of the locally compact (but not compact) space
G (i.e., that we eventually leave every compact subset). This last
fact (10.2) is however only possible if M = φ.

Indeed suppose that M Φ φ and let us choose a sequence of
points such that:

zneM*; n = 1,2 . \\zn\\ >1

this clearly is always possible. Let also gn e G (n ^ 1) be a sequence
of holomorphic automorphisms of G such that gn(zn) — 0 for all
n ^ 1. Clearly then

0 G Mg* n > 1; gn > oo in G .

But by an easy application of Wirtinger's inequality [cf. [17]
Theorem (B)] we see that the fact that 0 6 M*n(n ^ 1) implies that

This completes the proof.

APPENDIX. In this Appendix I shall give a short guide of how
to read the relevant passages of G. de Rham [3] so as to obtain
formula (3.5).
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Observe, first of all, that in the text I did not specify the
exact value of H$(z, t) elθ(z) (0 ^ t ^ 1) (i.e., I did not specify the
speed with which the point z slides along lθ(z) during the homotopy).
The reason for that is the operator Hθ that is defined from that
homotopy on the space A (cf. (3.4)) does not depend on that speed
and is invariant by a change of parametrization along the dif-
ferent rays lθ{z). This will, hopefully, become apparent in the
next few lines. At any rate the reader who does not wish to
overexert himself can think that the parametrization, that is fixed
once and for all, is, say, the linear parametrization given in vector
notations by:

H 0 ( z , t) = ( 1 - t)z + t ψ θ { z ) 6 B \ { 0 } ; z e B \ { 0 } , O ^ t ^ l .

Observe also that we called currents in this paper are "des
courants impairs" in de Rham's terminology (cf. [3] § 8 p. 39, 2nd
edition).

Let us now apply the construction of G. de Rham ([3] § 14
"FORMULES dΉOMOTOPIE" p. 68, 2nd edition) and let us set

W = V = B\{0}

μ(t, z) = /!<•>(«, z) = H$(z, (1 - e)ί) 0 <, t <ί 1

where 0 < s < 1.
Let us also suppose that T is a current with compact support

in B\{0}. G. de Rham's formula (3) reads then:

μίε)T - μlε)T = bMtT + MtbT

where Mε is the M operator of G. de Rham that corresponds to the
family of mappings μu)(t, z). We shall give an explicit formula for
that operator at the end of this appendix.

Let us observe that μί>ε)T = T and that μ[ε)T—^0 (this is

because the support of μ[ε)T is pushed to dB i.e., to infinity as ε-»0).
It is also easy to verify that MεT converges as e->0 for all T
with compact support (the verification is done directly on the defini-
tion of the operator Λf). If we set then MT = limβ-oAfβT we get

(11.1) -T = bMT + MbT

and this is just our formula (3.5) when we set Hθ — w<>M where
w is the operator defined in ([3] § 11, p. 54, 2nd edition), w is in
fact just multiplication by ± 1 depending on the degree of the
current.

Let us now consider the general case, i.e., the case when TeΛ
is not assumed to have compact support. In that case our hypo-
thesis on the support of T says that inf {\\z\\; zesuppT} > 0, from
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this it follows that the conditions of [3] § 14 (second paragraph of
p. 70, 2nd edition) are verified for all the mappings μiε) so that the
formula (3) of [3] § 14 still holds. The same passage to the limit
as before still holds, again by the hypothesis on the support of Γ,
and that completes the construction.

We shall finally give a completely explicit description of the
operator M and therefore also of Ho.

Let

T = Σ TtdVi

be a coordinate expression of TeΛ in some coordinate system,
where the Γ/s are identified with distributions, and let us denote
by X = X(t) 0 < t < 1 the characteristic function of Γ = (0, 1) which
we shall identify "qua distribution" to the Lebesgue measure on
[0, 1]. We shall denote then by

where X®Tχ is the tensor product of the two distributions. ΓT
is then a current on the product manifold / ' x CB\{0}) (observe that
I follow very closely the notations of G. de Rham who denotes
IT = I(t)T(y) cf. [3] §14 "FORMULES PRELIMINAIRES").

Let us also denote by

μ: Γ X (B\{0}) > B\{0}

the mapping defined by μ(t, z) — Hθ(z, t).
The operator M that satisfies (11.1) can then be defined by

MT = μ{ΓT)

i.e., the direct image of the current ΓT by μ (cf. [3] § 11 p. 55,
2nd edition).

To finish up let us suppose that T is the integration current
on some chain element c regularily embedded in B\{0} [cf. [3] § 8,
Example 1] sometimes such a current is denoted by T == [c]. It is
clear that then HΘ(T) is also an integration current on a chain
(element) that is no longer compact but goes all the way to the
boundary 3£. The support of that chain element is

supper) - u h(χ).
xesupp e

(Observe that what / called support of a chain element above is
just the set π(Π) in the notations of [3] § 6.)

It is worth observing also, that the easiest way to see that
the operator Ho does not depend on the particular parametrization
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along the lines lθ(z), is to go through chain elements. Indeed by
the above it follows that HΘ{T) is independent of the parametriza-
tion in question when T = [c] for some chain element c. But the
most general current can be thought as a weak integral of "infinite-
simal chain elements", and that of course gives the result.
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