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RESTRICTIONS OF PRINCIPAL SERIES
TO A REAL FORM

RONALD L. LIPSMAN

In this paper I consider restrictions of nondegenerate
principal-series representations of a complex semisimple Lie
group to a noncompact real form.

The motivation for studying these restrictions comes from
several different directions. First it is a problem of some interest
to physicists. For example, a low-dimensional instance of my work
occurs in [2]. Second the problem and methods of solution are
closely related to the project [7], [8]. In fact I shall settle the main
outstanding conjecture of [7] in this paper. Other reasons for
treating this problem are: restrictions provide a means of realizing
discrete-series representations of real semisimple Lie groups (see
[3])—in this work we seek to enumerate which discrete series
actually occur in which restrictions; it's already well-known (see e.g.,
the work of Moore [11]) that restrictions can be studied in order to
obtain information on ergodicity of group actions on homogeneous
spaces. Finally, there is an obvious connection between this pro-
blem and the problem of decomposing tensor products of principal-
series representations of real semisimple Lie groups (compare Theo-
rem 2.1 here and [9, Theorem 1]). I have some hope that techniques
employed in this paper might eventually prove useful in studying
tensor products of discrete-series representations.

Here is a brief description of the main results and of the organ-
ization of the paper. Let © be a complex semisimple Lie group, (?£©
a real semisimple Lie group whose complexification is ©. The non-
degenerate principal series representations of © are induced from
unitary characters of a Borel subgroup. So let 33£© be a Borel sub-
group, X e 23 a unitary character, and form π(X) = IndfX. We are
interested in a description of the irreducible components, and their
multiplicities, of the representation π(X) \β. Since π(l) is an induced
representation, we begin our study by invoking the Subgroup Theorem.
This requires an explicit knowledge of the 33: G double cosets in @.
But that data has been worked out already in [13]. We shall combine
Wolf's results with the Subgroup Theorem to reduce our problem to
the study of representations of the form I n d ^ , where Xx is a unitary
character of a maximally compact Cartan subgroup H in G (see
Theorem 2.1). This is the content of § 2. We then analyze the
spectrum of Inά%X1 by the technique of Anh reciprocity. That
requires that we compute the direct integral decomposition of the
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restrictions π \H for generic irreducible unitary representations π of
G. In § 3 we carry that out for the various principal-series repre-
sentations of G (corresponding to the cuspidal parabolic subgroups
of (?); in §4 we treat discrete-series representations of G. Our
results on the continuous spectrum are complete and definitive—
namely, we prove: for all principal series representations π of G,
π \H is quasi-equivalent to IndJ^ ωπ where ωπ is the central character
of π (see Theorems 3.1 and 3.4). On the other hand, we only obtain
partial conclusions for the discrete spectrum. We show that only
finitely many holomorphic (or conjugate holomorphic) discrete-series
representations occur in the spectrum of π(X) \G; and we give a
partial result to support the conjecture that all nonholomorphic
discrete-series representations (up to central character) appear in
the spectrum (see Theorem 4.2 and Proposition 4.8). In §5 we
compute the multiplicity for the continuous spectrum of π(X) \G.
The result is that multiplicity is uniform and—with two exceptions—
infinite (Theorem 5.1). We also show that holomorphic discrete
series have finite multiplicity; and we pose a conjecture on the
multiplicity of nonholomorphic discrete series. Finally, §§ 6 and 7
contain explicit examples. In § 6 we illustrate all the results of the
paper in the special case G = SU(2, 1) Q © = SL(3, C). We then use
these computations in § 7 to show that the unitarized adjoint repre-
sentation of G — SU(2, 1) is not unitarily equivalent to Ind^l .

I conclude the introduction by establishing some notation and
terminology. Since we shall rely heavily on the Subgroup Theorem
(in both § 2 and § 3), I include its statement with notation designed
to suit my purposes. Let G be locally compact with A, B £ G
closed subgroups. Let v be a pseudo-image on A\G/B of Haar
measure on G. A and B are called regularly related (resp. discretely
related) if some v-co-null set in A\G/B is countably separated (resp.
if some v-co-null set in A\G/B is countable).

THEOREM 1.1. {Subgroup Theorem). Let A and B be regularly
related in (?, and let π be a unitary representation of A. Then

\B = Γ Indf πxdv(x)
J A\G/B X

where Bx = B Π x~xAx and π%b) = π{xbx~x)f beBx.

I shall write #(A\G/B) for the Hubert space dimension of L2(A\
GjB, v). If G is type I and π is a unitary representation of G, then
the direct integral decomposition into irreducibles
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is unambiguously determined—i.e., the class of μπ is uniquely defined
and the multiplicity function nπ(ω) is uniquely determined up to
/Vnull sets. If G is unimodular and type /, I write Gd for the
discrete spectrum of the regular representation of G. If G acts on
a manifold X, then by a principal orbit type I mean an open dense
submanifold £? Q X such that Gx = {g eG: g-x = x) is conjugate to
Gy, Vx,yeέ?. The groups G99 x£6? are called principal stability
subgroups. If A £ B £ G is a sequence of closed subgroups, I write
NB(A) (resp. ZB(A)) to denote the normalizer (resp. centralizer) of
A in B. Also G° denotes the neutral component of G, and ZG =
<ZG(G) is its center. Finally the Lie algebra of a group which is
denoted by an upper case Roman letter will always be indicated by
the corresponding lower case German letter.

It is my pleasure to acknowledge valuable assistance in the
preparation of this paper from Nolan Wallach and Joseph Wolf.

2* Application of Wolf's theorem. Suppose © is a connected
complex semisimple Lie group with Lie algebra g. Let G £ © be a
real form, i.e., the connected Lie subgroup of © corresponding to a
real form g Q g. We shall assume throughout this paper that G is
simple and noncompact. We are interested in decomposing restric-
tions to G of nondegenerate principal-series representations of ©.
In this section, we effect a first reduction of the problem by employ-
ing the Subgroup Theorem and Wolf's results [13],

Let 33 be a Borel subgroup of © with Xe% a unitary character.
We set π(X) = Ind^X. The collection {TΓ(X):XG$8} constitutes (with
some duplication) the nondegenerate principal series of irreducible
unitary representations of ®. We want to decompose π(X) \G. But

π(X) \G = (IndSZ) \G

is a perfect candidate for the Mackey Subgroup Theorem. To apply
Theorem 1.1 we must investigate the double coset space 33\©/G.
Fortunately, this has been done already by Wolf [13].

THEOREM 2.1. There exist: (i) α Cαrtαn subgroup $ of % such
that H = φ ΓϊG is maximally compact among the Cartan sub-
groups of G; and (ii) finitely many unitary characters XteH such
that

(1) π(X) \a = Σ
ii

If Q f\G is actually compact {in which case we write T = $ Γ\ G),
then there exists an element σ e © such that o§σ~x £ S3 and
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( 2 ) π{X)\a= Σ Ind?X
seW®lWG

where W& = iSΓβ(φ)/φ and WG = Nβ(T)/T.

Proof. Our first observation is that S3\©/G = (S3\@)/G—i.e., there
is a natural 1 — 1 measurable-set preserving correspondence between
the double coset space 23\@/G and the set of orbits for the right
action of G on S3\®. But Wolf has proven [13] that there are a
finite positive number, say n, of open G-orbits on 33\®, and that
the complement of their union is a manifold of lower dimension.
This shows in particular that 23 and G are regularly related (even
discretely related). Hence Theorem 1.1 applies. Let gu •• ,0»€©
be any collection of points with exactly one from each open double
coset. Then

Note that if x, = SSgr, e S3\@, then the group 33,. = G Π gT^Qi is
exactly the stability group of xt under the right action of G on
33\®. We now apply the results of [13, §§4-6]. They guarantee the
existence of Cartan subgroups φ f, 1 ^ i <̂  n, such that each Hi =
$iΠ G equals 33ff. and is a maximally compact Cartan subgroup of
G. The first part of the theorem follows from the fact that any
two maximally compact Cartan subgroups of G are actually G-con-
jugate [13, Lemma 4.4]. We also remark for future use that maxi-
mally compact Cartan subgroups are necessarily connected.

Now for the second part. Assume that G actually contains
compact Cartan subgroups. Let σ e @ be in any open double coset.
Then there exists a Cartan subgroup φ £ © so that T = & Π G =
σ^fdσ Π G is a compact Cartan subgroup of G. We appeal to the
discussion in [13, pp. 1142ff]. First of all let ulf , une® be a set
of representatives for the complex Weyl group W9 = Nβ(φ)/φ. Then
the set {33<7%£G}i=1,...,Λ exhausts the collection of open double cosets,
and ^8σUiG — ̂ &σuάG <=^ utuγ e NG(T). In particular there are exactly

open orbits. Furthermore, we have

G Π σ-^σ = G Π uΐ'σ-^σUi, i = 1,

Indeed let σ~1(^dσ = ^9Ϊ be the Levi decomposition of the Borel group
σ~mσ. Then GΠ©3l = G n © = Γ . Also

G n u Γ ^ - ^ σ ^ = G Π u^^ku, = GΠ

Since the latter must be a maximally compact Cartan subgroup of
G, it is necessarily equal to G Π § = Γ. Thus we have



RESTRICTIONS OF PRINCIPAL SERIES TO A REAL FORM 371

\σ = Σ

Ind?Zσs .

Our notation reflects the fact that W9 acts on T as well as φ.
Now we want to decompose the induced representations appear-

ing on the right side of equations (1) and (2). We will achieve that
by the method of Anh reciprocity—i.e., by analyzing the restrictions
to H of generic representations of G. Generic representations of G
are made up of various nondegenerate principal series and (perhaps)
discrete series. The former are induced representations and Theorem
1.1 will again provide our main line of attack. The latter are not
induced and require other methods for their analysis.

Before proceeding we make an observation needed in the
sequel—namely Z® Π G = ZG. This is because g is a real form of g
and Z® = {g e ®: (Adg\ = 1}, ZG = {g e G: (Adg)& = 1}. In particular
then

/ O \ Ύσs I Vσ I V I

\ ό ) Λ, \zG — L \zG — L \ZG

for any se W9, σe®, XeS.

3* Continuous spectrum* In this section we compute the
continuous spectrum of π(X) \G by restricting principal-series repre-
sentations of G to a maximally compact Car tan subgroup. These
representations are given as follows. Let P be a (proper) cuspidal
parabolic subgroup of G with Langlands decomposition P = MAN.
For σ e Md, τ e A we form ττ(cr, τ) — πP(σ, τ) — Ind|σ x r, where (σ x
r)(man) = τ(α)σ(m). The set {πP(σ, τ): σ e Md, τeA} constitutes the
nondegenerate principal series representations of G corresponding to
P. There is some duplication in the set, and a "negligible propor-
tion" may actually be reducible—but that need not concern us. Now
we wish to analyze π(σ, τ) \Hf for H a maximally compact Cartan
subgroup. We must distinguish between the cases H compact and
H noncompact. In the former our main result is

THEOREM 3.1. Let T Q G be a compact Cartan subgroup. Let
P = MAN be a (proper) cuspidal parabolic subgroup of G, τ e Ά,
σ e Mdf π(σ, τ) = Ind?σ x r. Then

(4) π(σ,τ)\T = #(P\G/T)lnd7

ZGσ\Za.

We preface the proof with a lemma that will be useful on
several occasions.
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LEMMA 3.2. Let P = MAN be a cuspidal parabolic subgroup
of G. Let K be a maximal compact subgroup of G situated so that
if 9 = ϊ + q is the corresponding Cartan decomposition and θ is
the associated Cartan involution, then there is a θ-invariant Cartan
subgroup C of G inside P with C Π exp q = A. Let U Q K be any
compact connected abelian subgroup. Then there exists a principal
orbit type for the (right) action of U on (K Π M)\K for which the
principal stability subgroups are all ZG.

Proof. By a fundamental result in compact Lie transformation
groups (see e.g., [10]): the connected compact group U acting diffe-
rentiably on the compact connected manifold (K Γ) M)\K must have
a principal orbit type, say &. Since U is abelian, all the stability
groups Ux, xe^, are actually equal—say to Ux. By continuity,
every element of (K Π M)\K is pointwise fixed by every element of
Ux. We must prove that 1/χ — ZG. Clearly ZQ £ Z7Ί (because ZG £
K Π M). On the other hand, for each ute U1 we have KΓlM uί =
K Π My i.e., UiBKfiM. In particular Z7X £ M and so it normalizes
the subgroup N. Let N = ΘN be the opposed nilradical. Since
U1 £ K, Ux also normalizes N.

Now look at the canonical embedding

(5) N~-^(KΓlM)\K

obtained by injecting N into G, then projecting onto P\G and finally
using the identifications P\G - MAN\KMAN = M\KM s (JBΓΠ M)\K.
We observe that this embedding is equivariant for the action of
KΓϊM. Thus U1 is a subgroup of K Π M that pointwise stabilizes
N. Applying θ we see that it fixes the elements of N as well. The
conclusion that U1 = ZG follows immediately then from Lemma 11
of [7].

Proof of Theorem 3.1. We choose a maximal compact subgroup

K of G related to P as in Lemma 3.2. Since all compact Cartan

subgroups are mutually G-conjugate, it is no loss of generality to

assume T £ K. Now we apply Theorem 1.1 and Lemma 3.2. In

fact P\G/T= (KΠM)\K/T. Thus Lemma 3.2 shows that P and T

are regularly related, and by Theorem 1.1 we have

Ind? (σ x τ)u

P\G/T U

= dim LIP\GIT) lnάτ

Zβ(σ x r) \Zo

Next we pass to the situation in which the maximally compact



RESTRICTIONS OF PRINCIPAL SERIES TO A REAL FORM 373

Gartan subgroups are not compact. Let H be one such. Recalling
that H is connected, we write H = US where S is a maximal R-
split (nontrivial)(vector) subgroup and U is the maximal compact
(toral) subgroup of H. Let Po = M0SNQ be a cuspidal parabolic
subgroup of G satisfying Po 2 H — US, Mo 2 U.

PROPOSITION 3.3. If σ e Md, τ e S and π(σ, τ) = Ind?0<7 x r,

( 6 ) π(σ, τ) H = c | β

Proof. Consider the embedding

(7) ΛΓ0 — P0\G

given by injecting JV"0 into G, then projecting onto P0\G. This map
is jff-equivariant and its range is open dense and co-null. Let Δ be
the set of positive 3-roots chosen so that ff0 = Σ«e^8-« Every Xen0

can be written uniquely X=Σ«ejX-a, X-Λ e g_α. Put nό = {Xeΰ0: X_α^
OVα 6 A], an open dense co-null subset of π0. Now α X = Σ e~aa°s α)X_α,
for α e S . Thus if XeSJ, then α X = X<=> α(log α) = OVα 6Δ. That
can happen if and only if a — 1.

Now the group U preserves the root spaces g_α. On each g_α

we may choose a f/-invariant norm function || ||β. Next suppose
that ucL-X = X,uae H= US, Xen'o. Then ua X_a = X_a, Va e Δ, and

HX..IL - \\ua.X-a\\a - | |α.χ_ α | | α = β-
β(lo« > ||X_α!|α .

Therefore a = 1 and w X = X We apply Lemma 3.2 in order to
assert the existence of a principal orbit type 0* for the action of
U on No with principal stability group ZG. Clearly the set & n
exp So is a principal orbit type for H on which the principal stability
groups are all ZG. The proof is then completed by transferring
& D exp SJ to P0\G via the embedding (7) and applying the Subgroup
Theorem.

Now we generalize to an arbitrary nondegenerate principal-
series representation.

THEOREM 3.4. Let H = US be a maximally compact (but not
compact) Cartan subgroup of G, P = MAN a cuspidal parabolic,
σ 6 Md, τ 6 A and π(σ, τ) — Ind?σ x r. Then

( 8) π(σ, τ) \H = #(P\G/fΓ) Indf.σ \ZQ .

Proof Let Po = M0SN0 be a cuspidal parabolic corresponding
to H = C/S as in Proposition 3.3. Po is a maximal cuspidal parabolic.
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By conjugating P if necessary, we may assume that S £ A. Fur-
thermore—replacing P by an associate parabolic if necessary—we
may assume that the sets of positive α-roots and 3-roots are
compatible. That is we can find sets of positive α-roots, £-roots
respectively, say Δ, ΔOf such that

a e A U {0} —> a |, 6 Δo U {0} .

Let p, pQ be the Lie algebras of P, Po. Then

αejU(O)

Po= Σ ft,.
αej0U(0)

Clearly p £ ft,. But MA = ZG(A) S Zσ(S) = M0S. Also JSΓ = exp π £
exp ί> £ exp p0 £ Po. Hence P Q PQ This proves that once we fix a
maximal cuspidal parabolic Po, any other cuspidal parabolic is asso-
ciate to a subgroup of Po. But since associate parabolics determine
equivalent collections of principal series representations, it is no
loss of generality to assume P £ Po.

Now consider the canonical map

P\G > PQ\G .

H acts on the right and this is obviously an iϊ-equivariant map.
But we saw in the proof of Proposition 3.3 that the space P0\G has
a principal orbit type ^Ό for the action of H with principal stability
group ZG. Let ^ be its inverse image in P\G. Then clearly the
stability group for each x e <%s is also ZG. In particular the groups
P and H are regularly related; and Theorem 1.1 yields

π(σ, τ) \H = (Ind?cτ x τ) \H = #(P\G/H) Indi> \ZQ .

This completes the proof.

Now we shall apply Anh reciprocity, together with Theorems
3.1 and 3.4, to describe the continuous spectrum of π(X) \G. Let
Plf - , Pr denote a complete set of associativity classes of proper
cuspidal parabolics.

THEOREM 3.5. Let H be a maximally compact Cartan subgroup
of G.

( i ) Suppose G has no discrete series (H noncompact). Then

( 9 ) π{l) \G = 2 \@n#(PλG/H)d(σ, X)πPi{σ, τ)dμG,Pi(σ, τ)
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where n is the number of open 95: G double cosets in @,

(dim σ if σ\Za = X \ZQI
δ(σ, X) = ,

( 0 if o\ZGΦX \ Z G I ,

and dμGίP. denotes the Prpart of the Plancherel measure μG on G.
( i i) Suppose G has discrete series (H compact). Then

(10) π(X) \G - 2 [^(WJWoMPλG/HWσ, X)πPi(σ, τ)dμG,Pi{σ, τ)
i—1 J

φ Σ n(π, X)π
πsGd

where the multiplicities n{π, X) of the discrete series are not yet
specified.

Proof. If G has a compact Cartan subgroup T, then for each
π 6 Gd, we can write

α i ) 7r|Γ = Σ A tt(τr,χ)χ.
χer

But equations (4), (8) and (11) show that for a generic set of irre-
ducible representations π e G we can expand

sn{π, X)XdX ,

where H is a maximally compact Cartan subgroup of G and dX is
Haar measure on H. The cardinals n(π, X) are given explicitly for
principal series π by Theorems 3.1 and 3.4; but at this point they
are not given for discrete series π e Gd (see however §§ 4, 5). Ap-
plying Anh reciprocity [1, § I] we obtain:

(12) IndJZ = [θn(π, X)πdμG{π) a.a. X e H .

Now if H = T is compact, then "a.a. Xeff" means "all XeH." In
fact equation (12) holds for all Xe H for noncompact H — US as
well. This is because the representation Ind^λ is independent of
X \s—which is the content of [7, Theorem 3]. The argument is
finished by combining the preceding discussion with Theorem 2.1
and equation (3), and observing that the multiplicities (in the con-
tinuous spectrum) only depend (as shown in Theorems 3.1 and 3.4)
on the central character.

To summarize we have determined the continuous spectrum of
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π(T) \G for any Z e S . We shall comment on the "size" of the mul-
tiplicities n$(Pt\G/H)δ(σ, 1) in § 5. But first we need to investigate
the discrete spectrum.

4* Discrete spectrum* We still wish to exploit Anh reciprocity—
so we need to compute π \τ for π e Gd, T a compact Car tan subgroup.
That is we seek the Γ-types of discrete series representations and
their multiplicities. The Subgroup Theorem is of no use here since
discrete series representations are not induced. Of course one can
write down an "answer"—namely, just combine the Blattner formula
for iΓ-types of discrete series with the Kostant formula for Γ-types
of representations of K. The resulting multiplicity formula is totally
unwieldy and provides no usable information. On the other hand,
direct computation of the T-types in certain special cases strongly
suggests two general conjectures. Before stating them, we recall
Harish-Chandra's parametrization of the discrete series as well as
some general facts about roots.

Let T be a compact Cartan subgroup inside a maximal compact
subgroup K of G, T £ K £ G. Let t be the Lie algebra of Ty t* =
Ή.omR(t,iR) and & £ t* the lattice defined by £f = {λet*: X(x) e
2πiZ if expox = 1G}. £f is W%-vavariant and identified to t by
l(eχ-px) = eX{z\ Let Φ £ t* = Homc(t, C) be the (connected) set of
roots for (g, t). A root a e Φ is called compact (resp. noncompact)
according as the corresponding root space qa lies in t (resp. q). We
write Φc (resp. Φn) for the set of compact (resp. noncompact) roots.
Now suppose an order has been introduced in f* with respect to
which Δ £ Φ is the set of positive roots. We put Δn = Φn Π Δ, Δc =
Φcf]Δ. If we write p = l/2Σiae*a, then the set £f + p is inde-
pendent of the choice of ordering. We shall assume—for notational
convenience only (this restriction plays no real role in the ensuing
results)—that p e £f. We also put ρn = l/2χ α 6 j Λ α, ρc = 1/2 Σ α e ^ c a,
so that p = ρn + pc. Next we set £?' = {! e .Sf: si Φ Vis e Wm sΦl).
The set of regular elements £f' is also TΓ@-invariant. Harish-Chandra
has constructed (in [5]) a bijective correspondence X-+πh £f'lWG-+
Gd.

Now when G/K has a hermitian symmetric structure, there is
a natural realization of certain of the discrete series representa-
tions πλ in spaces of holomorphic (or conjugate holomorphic) functions.
These are enumerated as follows. When G/K is hermitian symmetric,
it is possible to choose the set of positive roots Δ so that

(13) α,/3eJΛ = > a + β£Δ .

The representations corresponding to the chambers
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{λej^':<λ, α><0 VαezU
(14)

{λ e Sf'\ <λ, a) >0 Vae An)

have been explicitly realized (originally by Harish-Chandra in [4])
in spaces of holomorphic (resp. conjugate holomorphic) functions.
Moreover, modulo the action of WG, there is exactly one chamber
of each in £f\ We refer to such representations πλ collectively as
the holomorphic discrete series. We refer to the remaining discrete
series—or all discrete series when G/K is not hermitian symmetric—
as nonholomorphic discrete series.

Conjecture 4.1. (a) For every nonholomorphic discrete series
representation π e Gd, the restriction π \τ is quasi-equivalent to
I d ^ \ZG" \ZQ

(b) For every X e T, the set {π eGd:π is holomorphic and X is
a Γ-type of π} is finite.

In this section I shall give: (i) a proof of a slightly weaker
result than (a) in a very special case; and (ii) a proof of (b) in
complete generality that is due to Nolan Wallach. We start with
the latter.

THEOREM 4.2. Let Xef. Then the set of holomorphic discrete
series which have X as a T-type is a finite set.

Proof. (Wallach.) We are in the case that G/K is hermitian
symmetric, G simple. As before let Φ be the set of roots for (g, t).
We may find a set Δ Q Φ of positive roots (satisfying (13)) so that
if a19 , αz are the simple roots, then the largest root is of the
form (Σi=ί%αi) + aι- Moreover,

ί l

Σ wiiCti G Δ: mi =

LEMMA 4.3. If aeΦ, then a — y1 — τ 2 for some yί9 τ 2 e Δn.

Proof. For aeΦn this is obvious, so it is enough to show that
any compact root may be written as the difference of two positive
noncompact roots. Now we know that [t, p]ζip and [p, p] £ t. Since
g = [gy g]f we must have [/>, p] = t (see also [6, p. 207]). If we set

P+ = Σ 9a P~ = ̂ Σ ff-cc ,

then

I Ό D I ==
 I D D I :== 0 .

LJr t Jr J LX^ > Jr J w
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Therefore [p+, p~] = t and the lemma follows.

LEMMA 4.4. If ae Δef then (pn, a) = 0.

Proof. If β e Δn, then β = at + Σn<ι ί»A But if j < I, then

saβ = 8Λ .α, + Σ P A = «i +

for suitable j>< and qt. Thus β^J* £ Δnf j < i. This implies sajpn = ρn

and therefore that </θn, α^ > = 0. Since the simple roots alf •••, αz_j
span J c, the lemma is proven.

Now let q — §{Δn). Suppose that Q £ Δn is a subset consisting
of q — 1 elements. Then Q — Δn — {7} for some 7 € Δn. For any
subset i2 £ J n , we set <i2> = Σ«*R

 a T^us <Q> = 2p* — V. Apply-
ing Lemma 4.4, we see that if aeΦ% then

<α, <Q»= - < « , 7 > .

Now let S = {Σ>β^ r^/8: r^ e Λ, rβ ^ 0}.

L E M M A 4 . 5 . There exist elements Xlf ••-, Xi^eS so that

Proof. By Lemma 4.3, each aό may be written a5 = yd — Ί]
with 7, , Ύj e Δn. Thus if t3- = yό + (Δn - {7;}>, then

/-A m sy \ .— /ry # ^y \ __ /ry "# Λr \ _• /ΓV . /V \ 1 <CΓ '1* /) ^ ^ 7 _ 1

Let /ij, , ̂ z_! be the Gram-Schmidt orthonormalization of the
al9 , az_j. Then

where s^ > 0 because <αt, α, > < 0.
Now choose βt = Σί=ί ^ i^i e Σί" 1 ^ ^ i so that </St, aά) = δ^. We

wish to show c^ ̂  0. But we can also write βt = Σί=ί rϋ/^i where

Hence the equality

ί - l Z - l

j=l k<j 7 = 1

guarantees that cy< ̂  0.
Set λ, = Σi=i Ciiίy e S. Then
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Σ , , Σ
A k

- <Σ cwαfc, α, > = (βif a/
k
Σ
k

Next we remark that for 7, « e 4 we have <7, α> ̂  0. Indeed
if <7, α> < 0, then 7 + α e J. But then the coefficient of α̂  in 7 +a
would be 2.

LEMMA 4.6. There exists σ e S so that (σ, a^) > 0 for all ί =

1, •• , i .

Proof. Select

Then using Lemmas 4.4 and 4.5 we have (σ, at) = 1, 1 <£ i ^ I — 1.
In addition, by the above remark, we have <λ<, αz> ̂ 0 , l ^ i ^ Z —1.
Therefore

Σ.<λi, α̂ > + <pn, θίt) ̂  <^, αz> ^ 0 .

Now the equality (pn, at) = 0 cannot hold since </on, α̂ > = 0, 1 ̂  i <̂
ϊ — 1, and g is not compact. Thus (pn, a^ > 0.

LEMMA 4.7. Lei C be a constant. Then the set

is α ̂ i ί e set.

, w < ^ 0, </9, α> < C,

Proof. Let βeQ, β — ΣUi^ΛJ and let σ be as in Lemma 4.6.
Then σ = Σ«e j n maa, m e R, ma ^ 0. Now

I

1 aeJ

We immediately conclude that C is positive or there are no such β.
Indeed

= V //Q a) < qCΣ
6 4

and

</3, 2pn) = nt(alf 2pn} .
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Therefore

qC > nt(alf 2pn) ^ 0 .

Furthermore, we deduce that

<β, °> ^ Σ maC =Clf Cί > 0 .

Hence Σ w/α,, σ) < CΊ But <αt, <τ> > 0 all i; and thus for all j ,

nβ < CJDί9 A = min <α,, σ) > 0 .

Completion of Proof of Theorem 4.2. We write s0 for the
unique element of WG satisfying sQΔe = — z/c. Now fix Z e f . Let
τr; e Gd be a holomorphic discrete series representation. It is well-
known that λ + ρn — Pc is the lowest J£-type (i.e., lowest highest
weight) for πλ\κ and that sQ(X + pn — /0β) is a lowest Γ-type. There-
fore if X occurs in πλ\τ, then necessarily

(15) 1 = so(λ + /o» - pc) + /8

where /3 is a sum of positive roots. But then <Z — β, a) > 0, Vα 6
JΛ; that is

</3, a) < C = max <Z, τ>, Vα e Λ .

By Lemma 4.7 there are only a finite number of β that can satisfy
such a condition. Hence the number of qualifying λ is finite, and
the theorem is completely proven.

Theorem 4.2 and Anh reciprocity say that Ind?Z contains only
finitely many holomorphic discrete series. Applying Theorem 2.1 we
see that in π(X)\Gf the discrete spectrum contains only finitely many
holomorphic discrete series. It may actually contain none—e.g.,
when I Ξ I , A precise description of the exact set of holomorphic
discrete series in the spectrum in complete generality does not seem
feasible. The author has worked our several interesting cases—see
e.g., SU(2, 1) in §6.

We now turn to Conjecture 4.1(a). By reciprocity, an equivalent
formulation is: for every let, the discrete spectrum of IndfZ con-
tains all nonholomorphic discrete series with central character X\Zσ.
The following result comes close to proving that, but a technical
assumption severely limits its applicability (see Remark 1 following
the proposition).

PROPOSITION 4.8. Suppose that the maximal compact group K
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is actually [simple. Then the discrete spectrum of Ind^Z contains
all discrete series of G having central character %\ZG, with at most
finitely many exceptions.

Proof. First it is of course clear that whatever occurs in the
(discrete) spectrum of Ind?% must have central character X\ZG. Next
consider the representation Ind*X. We claim that there is a finite-
dimensional representation τ of K such that the representations

τ φ IndfZ and I n d f ^ l ^

are quasi-equivalent. Postponing the proof of that momentarily, we
then conclude that the representations

Indlτ 0 Ind^Z and Ind^%|^

are quasi-equivalent. But it is a result of Harish-Chandra [5, Lemma
70] that Indf τ can contain only finitely many discrete series in its
spectrum. Furthermore the representations

Ind^ZI^ and I n d S ^

are also quasi-equivalent. This is because whenever G\K is not
hermitian symmetric (i.e., K semisimple) it must be that ZκjZG = Z2,
and then the quasi-equivalence Ind^ZI^ ^ Inά%GX\ZG can be demon-
strated by a slight extension of the argument in [8, Theorem 2].
(One diagonalizes the adjoint action of ZκjZQ on q and employs the
methods of [8, Prop. 4].) Thus we are reduced to substantiating
the claim. Its proof will require the simplicity of K.

Let {au a2, •••, ̂ J be a choice of positive compact simple roots
of (g, t). Then for λ, μ e S^ we write λ < μ to mean μ — λ =
Σ U ^ α , , niez, nt ^ 0. In particular eμ\Zjc = e\κ. Put =S^+ = the
if-dominant (highest) weights = { λ e ^ : λ > sλVse Wβ} = {X: <λ, a) Ξ>
OVαe Ac). Sf+ is a cross-section for £fjWG and parameterizes the
space K. Moreover for λ e =5̂ +, the associated representation σλ e K
has the property that the spectrum of σλ\T is

= {eμ: μe^f,X> sμVs e WG) .

Now fix μ 6 £f. Let S^(μ) = the spectrum of Indfβ^ = {σ̂ : μ e
Put ω — eμ\Zκ and set

^ ω = {σλ e K: σλ\Zκ = ωl] .

Clearly S^(μ) S Sζ, and the burden of proof is to show that
<9*{μ) is a finite set.

Let £s?rζ=<2f be the (compact root) lattice spanned by a19

Then [£f: £fr] < oo, and
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μ = Σ mtaif m, e Z/[^f

Moreover

sμ = Σ mi)8au mitt e Z\\Sf\ J2 r̂], Vs e WG .

Now if σλe*9ζ,y then for any se WG, e
λ\Zκ = e*1Zir, and so λ — sμe

£fr. Thus if σλ e ^ ω and

we have nt(X) — mί>s e Z for all i, s. Now the condition σλ

means that λ > sμ fails for some s e WG. That is, for some i and
some s, nt(\) — mi>s < 0. If we can show:

as λ = Σ ni(X)at • oo in £f+, then n^X) > + oo for every i;

our proof would be done.
Let Xlf '",Xι be the set of fundamental highest weights for

K. Then one knows that for each i

\ = Σ Qik<xk> Qik^O

Moreover because of our assumption that K is simple we have qik>0
for all i, k. Therefore when we write

X — Σ mi(X)Xi7 m€ ^ 0

we know that

X = Σ ^ ( λ ) Σ

= Σ ^i(

where

%(λ) = Σ ™>j(A)Qji ^ ( m ί n ?ϋ)(

If λ —> oo in .Sf+, then Σ i m i M -* + °° and our result is at last
completely proven.

REMARKS. 1. Unfortunately the assumptions K simple and
rank G = rank K are satisfied simultaneously only when G is locally
isomorphic to one of the three exceptional groups EV, EVIII or FΠ.
(The notation for exceptional groups is Helgason's [6].) Nevertheless
the method of proof of Proposition 4.8 is very suggestive and I feel
provides good evidence for the truth of conjecture 4.1(a).

2. If X ΞΞ 1, then K semisimple is enough to determine the
spectrum of Ind?Z. For then ZK/ZG ^ Z2 is still valid and the quasi-
equivalence I n d ? l ^ I n d ^ l follows from [7, Cor. 7]. That the
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latter is quasi-equivalent to Ind^ 1 we have already observed.
3. The explicit identification of irreducible subspaces of L2(©/33)

on which G acts by discrete series representations is of course an
interesting problem. In [3] Cowling picks out some of them.
Although he claims to have them all, it seems to me he has only
realized holomorphic discrete series. But the regular representation
of © restricted to G is equivalent to the regular -representation of
G. Also the regular representation of © is the direct integral of
the representations π(X); and each π{X)\G is a subrepresentation of
the regular representation of G. It follows that every discrete series
representation of G must occur as an irreducible summand of π(X)\G

for some X e 33. How indeed do we realize them?

5* Multiplicity• Here we shall explicitly compute the multi-
plicity of the continuous spectrum of π(X)\G, and make two comments
on the multiplicity of the discrete spectrum.

THEOREM 5.1. The representation π(X)\G has uniform continu-
ous spectrum. It is of infinite multiplicity, except when G is
locally isomorphic to SL(2, R) or SL(2, C)—in which cases the multi-
plicity is 2 or 1 respectively.

Proof. We refer back to Theorem 3.5. Our first observation
is that dim σ = oo for σ e Md unless P = MAN is a minimal parabolic
subgroup. Thus the nonzero cardinals δ(σ, X) are infinite when P is
not minimal. Next we examine the cardinal %(P\G/H) where P is
a minimal parabolic and H is a maximally compact Cartan subgroup.
When can it be finite? As usual we must consider the cases H
compact and H noncompact separately.

Suppose first that H — US is not compact. Choose a maximal
cuspidal parabolic Po = MQSN0 as in Proposition 3.3. In the proof
of that proposition we demonstrated that dim H <; dim G/Po. There-
fore the strict inequality dim H < dim G/P can only fail if P is
conjugate to Po This occurs only when G contains exactly one
conjugacy class of Cartan subgroups.

Next suppose H = T is compact. If there exists more than one
conjugacy class of noncompact Cartan subgroups, then we can find
a nonminimal cuspidal parabolic subgroup Px Φ G. By Lemma 3.2,
dim T S dim G/P,. Therefore dim T < dim G/P and so #(P\G/Γ)= oo.
Hence in both cases we are reduced to the situation of only one
conjugacy class of noncompact Cartan subgroups. We examine these
on a case by case basis. They are:

( i ) G — a complex group viewed as real;
(ii) G = SO(n, 1)°, n ^ 2;
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(iii) G = SU(n, 1), n ^ 2;
(iv) G = Sp(n, 1), n ^ 2;
(v) G = SU*(2^), n ^ 2;
(vi) G = EIV;
(vii) G - ί7//.

By explicit computation, we find that #(P\G/H) = °o in all of these
cases except when G == SL(2, R) or SL(2, C). Further computation
in those cases reveals that: §(P\GjH) — l in both instances; dim<7 = l;
and the number of open 95: G double cosets is 2 and 1 in the real
and complex cases respectively. That completes the proof of the
theorem.

What about the multiplicity of the discrete spectrum? It is
well-known that for holomorphic discrete series the multiplicity of
T-types is finite. This is because (in the notation of § 4) p~ acts
trivially on the lowest highest weight space. Alternatively, one
can use equation (15) to establish the finiteness. We shall see (by
example in the next section) that although the holomorphic discrete
series appears with finite multiplicity in π(X)\β, the multiplicity is
not uniform. As for nonholomorphic discrete series, specific examples
and the proof of Proposition 4.8 suggest that the multiplicity is
uniform and always infinite. But at this point I do not know how
to prove that.

REMARK. In the case 1 = 1 and G/K not hermitian symmetric,
the multiplicity can be determined. We leave it to the reader to
augment Remark 2 of § 4 so as to establish that π(l)\σ and Ind2G 1
are actually unitarily equivalent (G Φ SL(2, C)).

6* An example* In this section we consider the specific case
G = SU(2, 1) c © = SL(3, C). We write out explicitly the spectrum
and multiplicity for any restriction π(X)\G. This will illustrate all
previous theorems and conjectures. Moreover in § 7 we shall use
these data to settle the main outstanding problem from [7], [8].

We set

© = SL(3, C) — the 3 x 3 complex matrices of determinant 1

/I 0 0\

G = SU(2, 1) = ge®:gJtg = J, J= 0 1 0

\0 0 -1)

hi «12 0 V j

K=S(U2x Ud = \\ «* Ma 0 16 G: (utj) e U(2), \c\ = 1

0 0 c/ )
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as =
ia x z\

0 b y j e ©
\0 0 el
(a 0 0̂

0 δ OleSS l

% = 0 ζ O l 6 Γ : ζ » =

i\ /

Γ =

Given Z e 8 a unitary character, we define ωχ = X\Zβ and i(Z) = the
order of ωx. We have Nβ(T)/T s Z2 with representative

ββ = - 1 0 0 \ e K ,

and s S8 with

a generator of order 3. The double coset 23G is open in ©, e.g.,
because S3 n C? = Γ. Therefore the set {s*: i = 0, 1, 2} is a complete
set of representatives for the open 58: G double cosets. According
to Theorem 2.1

Now we delineate the generic representations of G. There is
only one conjugacy class of noncompact Car tan subgroups; and a
corresponding minimal parabolic group is P = MAN where

M =

A =
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0 1

\0 0

in +

z
1

: z e C, % e JR

Let σ — σn e M and τ = τreA be described by

e* 0 0

τ ί 0 1 0 I = eitr, r e R .

0 0 β/

Write τr(^, r) = ττ(<7Λ, r r ) = Ind?ern x τr. Then, since %(T\G/P) = 00,
Theorem 3.1 says that

π(nf r)\τ = 00 \TAT

ZQO%\ZG .

According to Theorem 3.5, the continuous spectrum of π(X)\G is
exactly:

(16)
—00 n=j(χ) mod3

Now we wish to describe the discrete spectrum for π(X)\β. We
have seen that that is tantamount to describing the Γ-types of
discrete series representations πλeGd. The author has computed
those by means of the Blattner formula (see e.g., [12]). Here are
the results. First we have

I Iiu 0 0

ί 0 iv 0

\ 0 0 iyl

In t* we chose coordinates according to the following convention:

- iv) + V 3 n(ίu + iv)

— (m + λ/3 n)in + ( — m + l / 3 n)iv, m, neR .

Then

m

= Z-span of λlf0 and λ_1/2, vj/6 .

We have chosen coordinates in this way so that the Killing form
is (a multiple of) the usual Euclidean inner product. If we put
Oίι = λι 1 > 0, 0C2

 z=z Ai-i/2, ^T/2> ^ 3 = = »̂—1/2, "̂3"/2> t l l β l l
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Φ = {±au ±a29 ±α3} Φc = {±αj Φ^= {±α2, ±α3} .

The lattice £fτ is the Z-span of rtj, α2, and

,,5 w e i- i/yz, m

Writing λ0 for λ_1/2)1vτ/6, i.e., the second basis vector of £f, we [see
that a2 = 3λ0 + a, and [=^: ̂ ] = 3. The picture is (Fig. 1):

FIGURE 1

λel

FIGURE 2

We may take J = {a19 a29 α3} and the condition

a, β 6 Δ% = » a + β<£Φ

is satisfied. One checks easily that ^ + is the closure of / U // U
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FIGURE 3

III; and that the chambers I and /// give rise to holomorphic
discrete series, chamber // to nonholomorphic discrete series. The
shaded regions in the diagrams in Fig. 2 represent the set of
2£-types (i.e., the highest weights of the representations occurring
in πλ\κ) for λ = λw,n e I or λ = λw,n e //. The corresponding diagram
for λ G III is very similar to that of I. In all cases it is of course
understood that μ e J2f in the shaded region is to be counted <=>μ ==
λ mod ̂ r . The Z-multiplicities in all cases are 1. In order to find
the Γ-types, we only need take the TfG-convex hull of the shaded
region. For the chamber II that gives all μe^f which are con-
gruent to λmod£fr. For λ e J , we get Fig. 3. Again μe^f is
counted only when it is conjugate to λ modulo J*fr.

The multiplicity of a Γ-type μ = λm,n is the number of m/s
satisfying: λmi,Λ is a Z-type, λΛl,Λ = ^ m o d ^ , and \m\ ^ mx. Obvi-
ously that number is infinite for λ e 17, but finite for λ e l . In the
latter case it's possible to write down specific multiplicities of the
T-types, although the actual numbers are not so enlightening. The
most important fact to note is this: although the multiplicities of
the holomorphic discrete series occurring in π(X)\G are finite, they
are not uniform. For example, if n > 1, then in π(na2 + na3)\sυi2tl),
the representation πja, j — 1, 2, , n, occurs with multiplicity j .
Note finally that the number sup {n: 3holomorphic discrete series π
occurring with multiplicity n in π(X)\G} is not a bounded function of Z.

7. A counterexample* In two papers [7], [8] I considered the
problem of decomposing the canonical unitary representation of a
semisimple Lie group on L2 of its Lie algebra. In the notation of
this paper, the problem is to decompose the representation

TG(g)f(x) = f(Adg-Xx)), geG,xeβ,fe L2(g) .

The L2 space is with respect to Lebesgue measure on g (which is
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G-in variant). The working conjecture was that

(17) TG = Indg, 1 .

Indeed in the course of [7], [8] the conjecture was established for
all the simple real Lie groups except SU(m, n), S0*(4w + 2) and
EΠI. However the conjecture is false in general. We shall use
the T-type diagram constructed in § 6 to demonstrate that.

Let G = SU(2, 1) as in § 6. According to [7, Thm. 9] we have

TG s °o Ind % I φ o o lnάG

Zκ 1 .

We are going to produce a discrete series representation, with trivial
central character, whose restriction to M and also to Zκ does not
contain a fixed vector. In fact we shall look at holomorphic discrete
series πλ arising from λ in chamber /. No such representation has
the zero vector as a Zκ-weight. We now compute for which λ, the
restriction πλ\M contains a fixed vector.

First of all we may restrict attention to the lattice Sfr since
all central characters are trivial. Next we ask: for which Xef is
X\M = 1. Recall that

M =

then

(

t '
l{ue) =

leiβ

f O

\o

0

0

0

0
eiβ

so that if 1^ λw,%, then X(u,)= e««w>β*•<-"> ^ ( a - ^ ). Thus%U =
1 if and only if 3m — τ/3w = 0, or n — V?>m. Now examining
the diagram (Fig. 3) of T-types for a holomorphic discrete series
πh Xe I, we see that in order for πλ\M to contain a fixed vector, it
must that λ + a2 lies "to the right of α3". More precisely: τr*mfJ*
contains the trivial representation <=>n + "i/ΊΓ^ i / 3 m < Zn9 which
is roughly half the chamber J. This proves that TG φ. Ind^ 1, since
a portion of the discrete series is missing from TG.
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